
Solid state systems for quantum information, Session 4

Assistants : franco.depalma@epfl.ch, filippo.ferrari@epfl.ch

1 Exercises

Exercise 1 : The Cooper pair box (CPB) Hamiltonian and the transmon limit

From the second exercise sheet and from the lecture, you should have seen that the CPB Hamiltonian reads as:

$$\hat{H}_{CPB} = 4E_C \left(\hat{N} - n_g \right)^2 - E_J \cos(\hat{\delta}),$$

where \hat{N} is the charge operator, $\hat{\delta}$ the phase operator, E_C the charging energy, E_J the Josephson energy and n_g an offset charge. \hat{N} and $\hat{\delta}$ are conjugate operators, meaning that their commutator is $[\hat{\delta}, \hat{N}] = i$.

1. Show that $[\hat{N}, e^{i\hat{\delta}}] = e^{i\hat{\delta}}$.

Hint: Use a power series to express the exponential.

2. Show that $e^{i\hat{\delta}} |m\rangle = |m+1\rangle$, where $|m\rangle$ is an eigenstate of the charge operator, i.e. $\hat{N} |m\rangle = m |m\rangle$.

Hint: Make use of the identity shown in 1.

3. Use the identities from 1. and 2. to show that the CPB Hamiltonian in the charge basis reads

$$\hat{H}_{CPB} = \sum_{m=-\infty}^{+\infty} \left[4E_C(m - n_g)^2 |m\rangle \langle m| - \frac{1}{2}E_J(|m+1\rangle \langle m| + |m\rangle \langle m+1|) \right] \quad (1)$$

4. Numerically diagonalize the CPB Hamiltonian for various ratios of $E_J/E_C \in \{1, 5, 10, 30\}$ using qutip. For this purpose, truncate the Hilbert space at a suitable dimension corresponding to a maximum charge $|m_{max}|$.

- Plot the eigenenergies $E_g(n_g)$, $E_e(n_g)$, $E_f(n_g)$, corresponding to the three lowest-lying eigenstates $|g\rangle$, $|e\rangle$, $|f\rangle$ of the CPB Hamiltonian as a function of n_g .
- For $n_g = 0$, plot the probability $p_m = |\langle m | i \rangle|^2$ to be in charge state $|m\rangle$ for the two eigenstates $|i\rangle \in |g\rangle, |e\rangle$. Convince yourself that you have chosen a sufficiently large $|m_{max}|$ in your simulations.

5. From your numerical result from 4., extract the charge dispersion $\varepsilon = E_{ge}(n_g = 0) - E_{ge}(n_g = 1/2)$ of the $|g\rangle \leftrightarrow |e\rangle$ transition, where $E_{ge} = E_e - E_g$, for the four values of E_J/E_C , and plot them as function of E_J/E_C .

6. Show that the charge operator has the following representation in the phase eigenbasis $\{<|\delta\rangle\}$:

$$\langle\delta|\hat{N}|\Psi\rangle = i\frac{\partial}{\partial\delta}\Psi(\delta), \quad (2)$$

where $\langle\delta|\Psi\rangle = \Psi(\delta)$ is the wave function in phase space. Make use of the charge basis representation of the phase eigenstates, $|\delta\rangle = \sum_{m=-\infty}^{+\infty} e^{im\delta} |m\rangle$.