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1 Exercises

Exercise 1 : Capacitance of a coplanar plate capacitor

Superconducting circuits are based on inductive and capacitive elements patterned into a super-
conducting thin film, which resides on a dielectric substrate. Here, we estimate the capacitance and
the dipole moment of a coplanar, parallel plate capacitor made of two rectangular pads, see Fig. 1.
By combining such capacitors with inductive elements, one can e.g. build on-chip LC resonators.

1. Estimate the order of magnitude of the capacitance between the two pads of this element.
Apply this to typical values a = 300 µm, b = 400 µm, l = 100 µm, film thickness t = 150 nm,
and relative dielectric constant εr ∝ 10. Assume for simplicity that the electric field lines
extend mainly into the substrate and that the substrate thickness is large compared to the
one of the capacitor.

2. Estimate the inductance required to obtain a lumped element resonator with a resonance
frequency of f ≃ 6 GHz?

3. Estimate the dipole moment of this capacitor for a single Cooper pair located on one of the
islands. The dipole operator in this example is given by d = lQ with l in this case being the
separation between the two pads and Q is the charge.

4. Calculate the charge zero point fluctuation, defined as QZPF =
√

ℏ
2Z

, where Z =
√

L
C
. How

does it compare to a single Cooper pair?

Figure 1: Sketch of a capacitor formed by two pads of a superconductor (red) on an insulating
substrate (grey).
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Exercise 2 : Input-output theory

We consider an LC-resonator which is capacitively coupled with a rate of κext through capacitor
Cc to a semi-infinite transmission line with a characteristic impedance of Z0 = 50 Ω. The LC-
resonator has an internal loss rate of κint and is depicted in Fig. 2. We consider a classical
coherent input field ⟨b̂int(t)⟩ = βine

−iωt traveling towards the LC-resonator, as well as an output
field ⟨b̂out(t)⟩ being reflected from it. The equation of motion, as a function of time, for the system
operator â = â(t) reads

∂â

∂t
=
i

ℏ

[
Ĥsys, â

]
− κint + κext

2
â+

√
κextb̂in (1)

with Ĥsys = ℏω0â
†â being the system Hamiltonian of the LC-resonator. The boundary condition

which relates the output to the input field is

b̂in(t) + b̂out(t) =
√
κextâ(t) (2)

1. Calculate the commutator
[
Ĥsys, â

]
and use the Ansatz ⟨â(t)⟩ = αe−iωt for the time depen-

dence of the expectation value of the system operator and simplify the equation of motion.
Express the amplitude α of the expectation value of the system operator as a function of the
angular frequency ω and the amplitude of the input field βin.

2. Solve for the frequency dependent reflection coefficient S11(ω) =
⟨b̂out⟩
⟨b̂in⟩

.

3. Plot the squared absolute value, and the real and imaginary parts of the reflection coefficient
S11(ω) for a resonator with parameters ω0/2π = 6 GHz and κext/2π = 5 MHz. Use three
different internal loss rates rates of κint/2π ∈ {0, 5, 100} kHz. What changes when the internal
loss rate is increased? Discuss all three cases.

We now consider an LC-resonator which is capacitively coupled to two semi-infinite trans-
mission lines, as shown Fig. 3.

4. Calculate the transmission coefficient S21(ω) =
⟨b̂2,out⟩
⟨b̂1,in⟩

. Show that the transmission coefficient
S21(ω = ω0) → 1 for a lossless LC-resonator.

Figure 2: Electrical circuit of an LC-resonator capacitively coupled to a semi-infinite transmission
line for a measurement of the reflection coefficient S11.
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Figure 3: Electrical circuit of an LC-resonator capacitively coupled to two semi-infinite transmission
lines for a measurement of the transmission coefficient S21.

5. Plot the squared absolute value, and the real and imaginary parts of the transmission coef-
ficient S21(ω) for the same parameter values as in 3. In what way do the results differ from
those for the reflection coefficient in 3.
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Exercise 3 : Coupled-cavity Arrays

Figure 4: Coupled cavity array made of a chain of coupled LC resonators. The figure is taken from
https://arxiv.org/abs/2403.18150.

In this exercise we study the transmission coefficients of coupled cavity arrays. We consider the
system described in Fig. 4, which is chain of coupled L LC resonators.

1. Quantize the circuit and write down the equivalent Hamiltonian in terms of bosonic creation
and annihilation operators âℓ and â†ℓ.

2. Assume periodic boundary conditions and diagonalize the Hamiltonian by passing in Fourier
space by means of the momentun representation of the creation and annihilation operators

âℓ =
1√
L

∑
k

âke
ikxℓ , â†ℓ =

1√
L

∑
k

â†ke
−ikxℓ . (3)

3. Suppose that now all the resonators have an intrinsic decay rate equal to κint, and that the
first and the last resonators, due to the coupling with external feedlines, have an additional
external decay rate equal to κext. Write down the input-output equations for the intracavity
field ⟨âℓ⟩.

4. Re-write the input-output relations in the compact form

∂

∂t
⟨ˆ⃗a⟩ = iM⟨ˆ⃗a⟩, (4)

where M is a L × L non-Hermitian matrix. Show that it is possible to diagonalize M with
a matrix transformation, obtaining eigenmodes and eigenfrequencies of the system. Numer-
ically diagonalize M for chains with L = 10 and L = 50 resonators. Discuss the physical
interpretation of the system’s eigenfrequencies, in light of what you found in point 2.
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5. We now want to explore the response of the system to the injection of external photons,
that we model with an external classical drive on the first cavity, ⟨b̂in(t)⟩ = βine

iωt. Modify
the input-output equations to account for the presence of the external drive. Derive the
transmission coefficient S1,L(ω) in terms of the eigenvectors and eigenvalues of M. Plot
S1,L(ω) as a function of the drive frequency ω for chains of L = 10 and L = 50 resonators.
Use the following parameters: ω0/2π = 6 GHz, κint/2π = 100 kHz, κext/2π = 10 MHz,
g/2π = 200 MHz.
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Exercise 4 : Superconducting loops

In the superconducting state of a metal, the electrons close to the Fermi energy pair up with
opposite spin and momentum to form Cooper pairs. All the Cooper pairs will have the same
energy and they realize a macroscopic quantum state across the entire piece of the superconductor.
Because this superconducting condensate is a coherent quantum state, it can be described by a
wavefunction, which takes the form of

ψ(r) =
√
nse

iφ(r) (5)

where r is the position inside the superconductor, ns is the density of the superconducting Cooper
pairs and φ(r) is the phase of the wavefunction. While inside the superconductor the amplitude
of the wavefunction

√
ns is constant, the phase φ(r) can change as a function of position. In this

problem, we investigate how the phase behaves in a cylindrical superconductor in magnetic field.

1. In class, we saw that the change in phase with a current flowing in a superconductor from a
point X to Y was defined as:

φXY =
1

ℏ

∫ Y

X

p(r) · dr (6)

where p = 2mv + 2eA in a magnetic field B, with A being the vector potential respecting
the relation ∇ × A = B. We consider a thin cylindrical superconductor with radius R
and long axis oriented along the z direction (see Fig. 5). The external magnetic field also
points along the z axis, and has a magnitude of B0 such that B = (0, 0, B0) in the Cartesian
x− y− z coordinate system. Importantly, the choice of the vector potential A is not unique;
as long as it satisfies that B = ∇×A, the vector potential describes correctly the system.
Consequently, the phase of the superconductor is also not unique, which is not surprising
because the phase of a wavefunction is not an observable quantity. In general, the vector
potential can be changed by a gauge transformation such that

A′ = A+∇χ, (7)

Figure 5: Top view of the cylindrical superconductor.
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where χ is a scalar function. Here, we consider the Coulomb gauge, i.e. ∇χ = 0, so that
A = (−yB0/2, xB0/2, 0).

Knowing that the current density J is given by J = 2ensv, write the phase difference as a
function of J and A. Then show that the magnetic flux through the loop is quantized, by
integrating over a closed loop and using the fact that the superconducting phase is periodic.

2. Now, let us consider a superconducting loop that contains two Josephson junctions (JJs), as
depicted in Fig. 6, which is called a superconducting quantum interference device (SQUID).
The current through a JJ can be described by the first Josephson equation:

I(δ) = I0 sin(δ), (8)

where I0 is the critical current of the junction, which depends on its geometry, and δ is the
phase difference between the superconductors before and after the junction.

Figure 6: SQUID loop.

(a) Assuming that both JJs have the same critical current, what is the total current through
the SQUID as a function of the phase differences δ1 and δ2 across JJs 1 and 2, respec-
tively?

(b) Now we want to investigate the phase across the loop. In question 1., the gauge choice
for A did not matter, since the contribution of χ vanishes when integrating over a
closed loop. Since we now have two JJs in the loop, we cannot take a closed loop
integral through the superconductor anymore. Therefore, we have to redefine the phase
difference δ such that it becomes gauge invariant:

δ = φY − φX − 2π

Φ0

∫ Y

X

A(r)dr, (9)

where φX and φY are the superconducting phases before and after the JJ, respectively.
Calculate the phase change across the SQUID by splitting the integral into four parts,
two parts through the superconductor and one part across each JJ.
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(c) Using the result from a) and b), write the current total current through the SQUID as
a function of the magnetic flux through the loop. Discuss how this result can be used to
tune SQUIDs in a real device.

8


