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1 Exercises

Exercise 1 : Coupled LC resonators

Consider two LC resonators, see Fig. 1, with respective inductance, capacitance values L1, C1

and L2, C2. These resonators are capacitively coupled through a capacitance C0. The flux variable
at the i-th independent node corresponds to ϕi.

1. Write down the Lagrangian L(ϕ, ϕ̇) of the system as a quadratic function of the node flux
variables ϕi and their derivatives ϕ̇i. Introduce the capacitance matrix C and the inverse
of the inductance matrix L−1 and use the flux variables and their derivatives in the vector
representation,

ϕ⃗ =

(
ϕ1

ϕ2

)
, and ˙⃗

ϕ =

(
ϕ̇1

ϕ̇2

)
.

2. Perform the Legendre transformation analytically and extract the Hamiltonian H, as a func-
tion of the charge Qi = ∂L(ϕ, ϕ̇)/∂ϕ̇i and the flux variables ϕi. Rewrite this Hamiltonian as
a quadratic form, using C−1 and L−1.

Hint: A square 2 × 2 matrix is inverted by

A−1 =

(
a11 a12
a21 a22

)−1

=
1

det(A)

(
a22 −a12
−a21 a11

)
3. To perform quantization, first rewrite the Hamiltonian H in terms of both inductances L1, L2

and the bare (uncoupled) angular frequencies ωi with ω2
i = L−1

ii (C
−1)ii. Summarize the capac-

itive coupling in a single constant β = C0/
√

(C1 + C0)(C2 + C0). Perform the quantization
by introducing the corresponding quantum operators Q̂i and ϕ̂i which satisfy the canonical
commutation relation [Q̂i, ϕ̂j] = −iℏδij. Subsequently, use the following definition of the
charge and flux operator to write the Hamiltonian H in terms of annihilation and creation
operators, âi and â†i ,

Q̂i = −i

√
ℏ

2Liωi

(âi − â†i ), and ϕ̂i =

√
ℏLiωi

2
(âi + â†i )

4. Apply the rotating wave approximation (RWA) on the coupling term and diagonalize the
resulting quadratic Hamiltonian with a Bogoliubov transformation. Discuss the physical
interpretation of the obtained eigenenergies and eigenmodes.
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Figure 1: Circuit diagram of two capacitively coupled LC resonators.

Hint: To apply the rotating wave approximation, suppose that the Hamiltonian is driven
at a frequency ωd. Perform a unitary transformation in the frame rotating at the pump
frequency and understand which terms are fastly oscillating in time. To diagonalize the RWA
Hamiltonian, consider a Bogoliubov transformation, which consists in the following ansatz

α̂ = uâ1 + vâ2, (1)

where u and v are generally complex amplitudes. To find u and v impose [Ĥ, α̂] = −Eα̂ and
solve the corresponding 2× 2 system, and remember that [α̂, α̂†] = 1.

5. Consider now the following values for the capacitances of the two LC oscillators: C1 = C2 =
70 fF, and the following value for the inductance L1 = 10 nH. Compute

• The bare mode frequencies ω1 and ω2 as a function of L2.

• The coupled mode frequencies of the RWA Hamiltonian according to the formula you
have obtained in the previous point, supposing C0 = 10 fF.

Discuss your findings from a physical point of view.

2



Exercise 2 : Circuit Quantization

1. The goal of this exercise is to find the Lagrangian and quantized Hamiltonian of a LC resonator
capacitively coupled to a time variable voltage source (see Fig. 2a).

Figure 2: a) Equivalent circuit for an LC resonator consisting on an inductor in parallel with a
capacitor, subject to an external potential V(t). b) Equivalent circuit for a non-linear inductor (a
Josephson junction) in parallel with a capacitor, subject to an external potential V(t).

(a) First, decompose the circuit to identify the branch and node fluxes. Find the relation
between them. You should end up with only one flux variable.

(b) Find the Lagrangian of the system.

(c) With the Legendre transformation, find the associated quantized Hamiltonian.

2. The circuit in Fig. 2b models a Cooper Pair Box or equivalently, as you will see in future
sessions, a transmon qubit. It mirrors the LC resonator of the previous point, but now the
inductor has been replaced by a Josephson junction, effectively behaving as a non-linear
inductor.

(a) Find the Lagrangian of the CPB.

(b) Find the associated quantized Hamiltonian.
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Exercise 3 : Lossless transmission line

We now look into a very interesting example: a lossless transmission line (TL). A TL allows RF
signals to be transmitted without significant amount of losses thanks to its property of confining
electromagnetic fields between a central conductor and grounded outer shell (this is the case of the
well known coaxial cable, for example). A TL can be modeled with an infinite series of fundamental
cells constituted by an inductor within the inner conductor and a capacitor from the inner conductor
to ground (see Fig 3).

The inductors model the inertia against changes in the electric current while the capacitors
account for the electrostatic energy stored in the waveguide. The circuit is a discretized version of
the guide where each capacitor and inductor accounts for a small segment ∆x that is much smaller
than the guided wavelengths. The properties of these elements depend on the capacitance and
inductance per unit length:

Ci = ci∆x, Li = li∆x. (2)

The goal is again to find the Lagrangian and quantized Hamiltonian for such an equivalent circuit
describing a TL.

1. Find the Lagrangian of the system. Consider the branch fluxes along the inductors leftward
oriented, meaning ϕi+1→i = ϕi+1 − ϕi.

2. With the Legendre transformation, find the associated quantized Hamiltonian. Now, express
it also in terms of ci and li.

Figure 3: Circuit for a lossless transmission line.
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