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Exercise 1 : Effective Hamiltonian for the exchange interaction

It is often convenient to work with effective Hamiltonians, which are simpler than the total
Hamiltonian of the system, but describe the relevant effects. An example of such an effective
Hamiltonian is the exchange interaction term:

Hex = Js⃗(1) · s⃗(2) = J
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The superscripts in parentheses refer to the first and second particle. The operator s⃗ is a spin
operator (the factor ℏ is omitted for simplicity) and σ⃗ is the vector of Pauli matrices. The quantity
J is usually called the "exchange energy".

1. Write Hex in an explicit matrix form, using the basis states |↑↑⟩ =
∣∣↑(1)〉 ⊗

∣∣↑(2)〉, |↑↓⟩ =∣∣↑(1)〉⊗ ∣∣↓(2)〉, |↓↑⟩ =
∣∣↓(1)〉⊗ ∣∣↑(2)〉 and |↓↓⟩ =

∣∣↓(1)〉⊗ ∣∣↓(2)〉 in the order given here.

2. Find the eigenenergies and corresponding eigenstates of Hex. You should find the well-known
singlet and the three-degenerate (at zero magnetic field) triplet states.

Exercise 2 : Qubits in double quantum dots: Hund-Mulliken approach

A double quantum dot (DQD) can host two single-spin qubits or, for example, a singlet-triplet
qubit. The low-energy spectrum of two electrons in a DQD is often described with a Hund-
Mulliken model. Neglecting magnetic field gradients, spin-orbit interaction, and other mechanisms,
the Hund-Mulliken approach leads to the simple low-energy Hamiltonian:

H =


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√
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−
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0 0 0 gµBBz 0 0
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0 0 0 0 0 0

 . (2)

Here, the basis states are (in order, from 1 to 6) |SLL⟩, |SRR⟩, |S0⟩, |T↑↑⟩, |T↓↓⟩ and |T0⟩, where
|SLL⟩ (|SRR⟩) denotes the state where both electrons are in the left (right) dot with anti-parallel
spin (a singlet), |S0⟩ the singlet state when the two electrons are delocalized one per dot, |T↑↑⟩
and |T↑↑⟩ the spin-polarized triplet states with one electron per dot and, lastly, |T0⟩ is the triplet
state when the two electrons are delocalized one per dot. Please notice that the triplet states
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(|TLL⟩ and |TRR⟩, both polarized or anti-parallel) are much higher in energy and for this reason are
ignored. Back to the Hamiltonian, U is the charging energy (i.e. the coulomb repulsion between
two electrons when they share the same dot), ε is the DQD detuning (i.e. the difference between
the electro-chemical potential in the two dots), t is the tunneling coupling between the two dots
and Bz is an external applied magnetic field.

1. The triplet state |T0⟩ is an eigenstate of H. The global offset in Eq. (2) was chosen so that
the eigenenergy of |T0⟩ is 0. The exchange splitting J between the energetically lowest singlet
state and |T0⟩ is a very important quantity, because it can be used to implement quantum
gates. Assuming that |ε| < U and

√
2t ≪ U ± ε, which normally applies to DQDs when

detuning is relatively small, show that the formula:

J ≈ 4t2U

U2 − ε2
(3)

can be derived via Schrieffer-Wolff transformation.

Hint: One block of the Hamiltonian is already diagonal, so diagonalize only the remaining one.
Reminder about Schrieffer-Wolff transformation: Consider a quantum system evolving under the
perturbed Hamiltonian H = H0 + V , where H0 is purely diagonal in some basis and V is purely
off-diagonal in the same basis. The Schrieffer-Wolff transformation is a unitary transformation,
which puts the Hamiltonian H into the basis where it is diagonal up to the second order of the
perturbation parameter. In other words, we transform H into:

H ′ = eSHe−S = H + [S,H] +
1

2
[S, [S,H]] + ..., (4)

where we chose S to satisfy V + [S,H0] = 0. Hence, we get:

H ′ = H0 +
1

2
[S, V ] +O(V 3). (5)

As was already mentioned, H ′ computed this way will be diagonal up to the second order in
perturbation parameter. Consequently, we get the approximate exchange splitting J from looking
at H ′ diagonal.
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