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Exercise 1 : Charge Stability Diagram of a Single Quantum Dot

During the lecture, you have seen how in a quantum dot electron transport is allowed only in
very specific conditions. This is due to the fact the dot is so small that Coulomb repulsion cannot
be neglected: adding an extra electron inside the dot costs energy, because Coulomb repulsion
has to be overcome. The phenomenon for which transport is forbidden in certain regions is called
Coulomb blockade (CB). To model the CB, there is no need of quantum mechanics. A simple
capacitance model is sufficient, where the two tunneling barriers are modelled through "leaky"
capacitors C1 and C2, i.e. dielectrics which allow the charge passage, whereas the action of the
top gate, which controls the dot occupancy, through a conventional capacitor CG, as pictured in
Figure 1. N |e| is the total number of electrons inside the island. This structure, where a central
conductive island (i.e. the quantum dot) is separated from source and drain reservoirs by tunneling
barriers, is called Single Electron Transistor (SET). The basic laws of electrostatic allow to write

Figure 1: Capacitance model of the SET with a capacitor CG between the gate and the conductive
island and two capacitors C1 and C2 between the two source and drain reservoirs and the island.
From Electron transport in nanostructures and mesoscopic devices: an introduction, Ouisse Thierry.

down all the equations to describe the circuit:

QG = CG(VG − V1) (1)
Q1 = C1V1 (2)
Q2 = C2V2 (3)
VD = V1 + V2 (4)
Q1 −Q2 −QG = −N |e|. (5)
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The electrostatic energy of the dot is given by:

E =
1

2

∫
ρ(r⃗)V (r⃗)d3r⃗ =

1

2
(QGVG +Q2VD −N |e|V1 −Q1 · 0) =

1

2
(QGVG −N |e|V1 +Q2VD). (6)

Equations (1) to (5) allow to express the total electrostatic energy as a function of the different
capacitances, VG, VD and N.

OPTIONAL: Find the the total electrostatic energy as a function of the different capacitances,
VG, VD and N. The result should be the following:

Eel =
C1CGV

2
G + C1C2V

2
D + C2CG(VG − VD)

2 +N2e2

2(C1 + C2 + CG)
. (7)

1. Which is the change in electrostatic energy, referred as charging energy or addition energy
∆EC , when an extra electron is added from the source to the dot if already N electrons are
inside?

This last quantity is an important mean to understand when injecting electrons from source
to the dot is energetically favorable. However, a complete energy balance should also take
into account the energy spent by the two generators VG and VD:

∆Egen = ∆EG +∆ED = −δQGVG − δQ2VD = CGδV1VG − C2δV2VD. (8)

The ”δ” means that only the N -dependent terms remain when subtracting the two terms V1

and V2 in the N + 1 and N cases.

OPTIONAL: Express this energy in terms of the different capacitances, VG and VD.

You should get:

∆Egen = − |e|
C1 + C2 + CG

(CGVG + C2VD). (9)

2. Express the total change of charging energy when an extra electron is added from the source
to the dot.

3. For which values of VD is it energetically favorable to inject an electron from the source into
the dot? Consider just the case where VD > 0.

4. To measure a current through the dot (i.e. from source to drain), another condition must be
fulfilled: it has to be energetically favorable also for an electron to tunnel from the dot into
the drain. Which is the total change in electrostatic energy if the energy spent by the two
generators is the following?

∆Egen = ∆EG +∆ED = −δQGVG + δQDVD =
|e|

C1 + C2 + CG

(CGVG − (C1 + CG)VD). (10)

5. For which values of VD is it more favorable for an electron to tunnel from the dot into the
drain? Consider again just the case where VD > 0.

6. Draw the two expressions you just found in the previous points for VD in a VD vs VG plane.
What do you see? Focus on N = −2, ..., 2. Interpret the final result in terms of current
through the dot.
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7. So far, we have considered just the case where VD > 0, because if VD < 0 it is more ener-
getically favorable to inject an electron from the drain into the dot and from the dot into
the source, i.e. we get a negative current. If we repeat the same kind of computations of
the previous points for this case, we get two new inequalities for VD. By plotting also the
equations of these two lines in the VD vs VG plane, we finally get the "Coulomb diamonds".
Can you guess what is the dot current dependence just on VG, i.e. if you fix VD by taking
horizontal cuts in the VG vs VD plane?

8. Figure 2 shows what you should have got in the VG vs VD plot for three different values of
N. This plot is called charge stability diagram of a single quantum dot, showing the typical
Coulomb diamonds. Simply by looking at the diamonds, can you estimate how much is
the charging energy of the dot? How much is the lever arm for the gate Vgate (remind:
α = CG

Cdot
). Which is the maximum temperature in the environment in order to observe

"Coulomb Blockade" in this sample?
Hint: the expression of EC found in point 1 is N -dependent. This is not so useful if we look
at the diamonds and we do not know which value of N they represent. As a consequence,
it diffused in contemporary literature to redefine the charging energy as following, to get
something N -independent:

EC = ∆EC(N + 1)−∆EC(N) =
e2

Cdot

, (11)

being Cdot = CG + C1 + C2 .

Figure 2: Charge stability diagram of a single Ge/SiGe quantum dot fabricated and measured at
Hybrid Quantum Circuits Laboratory, EPFL. Spin Qubit 5 Conference, Pontresina 2022.
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Exercise 2 : Electron in a Magnetic Field and Electron Spin Resonance (ESR)

In the previous exercise we have seen how it is possible to trap electrons inside a quantum dot
in a semiconductor platform. We have also seen how the electron occupancy can be controlled
by tuning the voltage of the top gate. Imagine to tune VG in such a way we are inside the N=1
diamond. This means we have exactly one electron inside the dot. Now, if we apply a magnetic
field, a splitting of the energy levels occurs according to the Zeeman effect.
The Hamiltonian of an electron inside a magnetic field can be written as follows:

H = gµBB⃗ · S⃗, (12)

where B⃗ =

Bx

By

Bz

 is the magnetic field and S⃗ = 1
2

σ̂x

σ̂y

σ̂z

 the spin matrices.

1. A static magnetic field is applied in the z-direction to split the ground state energy of the
electron in two sub-levels. Express explicitly the Hamiltonian in this case and derive the two
eigenergies. Which is the energy splitting between the two states? In order to exploit this
system as a qubit, which is the constraint about this energy?
For GaAs g ≈ −0.44. Which is the minimum Bz that we have to apply? Suppose a temper-
ature of 10 mK.

2. In order to manipulate the qubit state, we need to be able to do operations which flip the
spin. In quantum mechanics, such as operations are off-diagonal elements of the Hamiltonian.
In other words, we need an alternated magnetic field perpendicular to the static magnetic
field. Let us suppose this magnetic field is in the x-direction. If the AC signal has a frequency
ω and a phase ϕ, write the new Hamiltonian, also in the matrix representation by explicitly
writing the Pauli matrices. Back to the GaAs platform, which frequency of the driving AC
signal do we choose for a static Bz = 1 T if we want to drive at resonance?

3. Now we have off-diagonal terms which are time-dependent. Applying a unitary transformation
allows us to move into a frame which rotates at the same frequency of the AC drive signal.
Following the approach you have seen in the first exercise sheet, the Hamiltonian in the
drive frame and after applying the rotating wave approximation to ignore fast rotating terms
(RWA) should look like follows:

Ĥ = −ℏ
2

(
−∆ Ωe−iϕ

Ωeiϕ ∆

)
(13)

Express ∆ and Ω as a function of g and the magnetic field components Bx and Bz. Which is
the value of Bx which allows to perform a π gate in 4 ns?
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Exercise 3 : Identifying components on a real quantum dot device

In the two previous exercises you have seen how it is possible to confine single electrons in a gate-
defined semiconducting quantum dot (QD) and how to manipulate the spin state by applying AC
microwave signals. Fig. 3 shows how in practice a spin qubit device looks like on a GaAs/AlGaAs
heterostructure.

Figure 3: Top and cross view of a real quantum dot device on a GaAs/AlGaAs heterostructure.

1. Explain how is it possible to confine electrons in a 0D structure (a quantum dot). Start by
trying to explain how a 2DEG can be formed in such a platform.

2. Identify all the components on top of the heterostructure. Which is the role of the single gate
on the bottom-right part? How can you improve its sensitivity?

3. What is missing in this picture to perform spin manipulation?
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Exercise 4 : Reflectometry technique for fast spin qubit readout

You have seen during the lecture that the readout of spin qubits relies on the spin-to-charge
conversion through a charge sensor. However, the measurement bandwidth, in practice, is limited
to 10-100 kHz by parasitic capacitances, RC filters used for the DC lines and the high resistance of
the charge sensor (∼ 100 kΩ). A way to overcome this issue and push the measurement bandwidth
up to 1-10 MHz is to embed the charge sensor in a tank resonant circuit. An off-chip inductance
L is usually soldered on the PCB and connected, for instance, to one of the ohmic contacts of
the charge sensor. The parasitic capacitance of the bonding wire and the PCB C, together with
the added inductance L, results in a resonating circuit (see Fig. 4). The idea of ohmic contact
reflectometry is to send a RF tone through the tank circuit and analyse the reflected signal. When
the charge sensor is in Coulomb blockade, its resistance is very large (≫ GΩ) and the RF signal
is almost completely reflected back because of the huge impedance mismatch. However, the value
of L is chosen so that the impedance of the tank circuit at resonance matches the 50 Ω impedance
of the transmission line when the charge sensor is parked at its most sensitive point. Here, the
charge sensor resistance can vary from RSD ∼ 10 − 500 kΩ. When this condition is matched, the
signal goes through the device and it is dissipated on the ohmic contact. As a consequence, the
reflected signal S11 shows a pronounced dip at resonance. To readout the spin state, the charge
sensor is parked at its most sensitive point (steepest point in current) and the resonator is probed
at its resonance frequency (fixed frequency tone). When a tunneling event occurs in the spin qubits
array, the chemical potential of the charge sensor changes and this kicks it out of its operating
point. Its resistance, as a consequence, changes, the matching condition is not further fulfilled and
the reflected signal changes both in magnitude and phase. By monitoring S11 when performing
the readout, its change corresponds to a tunneling event, whereas if the signal does not change, no
tunneling event happened.

Figure 4: Schematic of ohmic reflectometry setup. The RF signal (Vin) travels down to the device,
gets reflected and it is measured (Vout) after being amplified. The directional coupler makes sure the
input signal goes only down to the device and that the reflected signal goes only to the amplifier.

1. Find the matching condition, i.e. Ztank = Z0, writing Ztank as a function of L, C and RSD

only. In the end, simplify it by supposing C2R2
SD ≫ LC.

2. Suppose RSD = 100 kΩ, C = 0.6 pF and Z0 = 50 Ω. Find the L which fulfills the matching
condition and find the resonance frequency of the tank circuit.
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Exercise 5 : Creating a charge qubit from two coupled dots

When two quantum dots, a "left" and a "right" dot, are coupled capacitively, an electron can
hop from one dot to the other and vice versa. This phenomenon is the basis of semiconductor
charge qubits, where the quantum information is encoded in the excess number of electrons of the
two dots. For example, when having one more electron on the left dot (state |L⟩) is energetically
more favorable than having one more electron on the right dot (state |R⟩), we can define the qubit
states ({|0⟩ , |1⟩}) such that |0⟩ = |L⟩, and |1⟩ = |R⟩. The simplest case is when there is only one
electron in the double dot, i.e. |L⟩ = (1, 0), and |R⟩ = (0, 1), where (NL, NR) denotes the state
with NL electron on the left dot and NR electrons on the right dot.
The number of electrons on the dots can be tuned by the gate voltages of the dots, but, in contrast
to uncoupled dots, the effect of the gates are not independent. This results in a charge stability
diagram (the (NL, NR) number of electrons on the two dots in the ground state of the system
vs. gate voltages) which shows a honeycomb-like pattern instead of a chessboard pattern. In this
problem, we will numerically explore this behaviour. Note that there is an example code on Moodle
for two coupled dots, which could be useful for solving this problem.

(a) (b)

Figure 5: a) DQD simplified capacitance model. b) DQD charge stability diagram.

1. The figure above depicts two coupled dots, where each dot is coupled to a gate with capaci-
tance C, the dots are coupled to each other with capacitance CM , and the gate voltages are
VL and VR. It can be shown [Rev. Mod. Phys. 75, 1 (2002)] that the total energy of the
system is

HDQD = EC ·N2
L + EC ·N2

R + 2ECMNLNR − eVL(αNL + βNR)− eVR(βNL + αNR) (14)

where the charging energies are EC = e2 C
2(C2−C2

M )
, and ECM = e2 CM

2(C2−C2
M )

, while the coupling

constants to the gates are α = C2

C2−C2
M

, and β = CCMC

(C2−C2
M )

.
Plot the stability diagram of the system for C = 50 aF , CM = 10 aF, with gate voltages
corresponding to a few charge states (for example, eVL/R = 0...10 meV).
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2. So far, we described only the charging energy of the dot, i.e. the electron-electron interaction,
but we have not taken into account the inter-dot tunneling effects. Thus, when electrons can
jump between the two dots, we need to include an additional term in the Hamiltonian. This
term can be expressed as

Hjump = −t(|NL + 1⟩ ⟨NL| ⊗ |NR − 1⟩ ⟨NR|+ |NL − 1⟩ ⟨NL| ⊗ |NR + 1⟩ ⟨NR|) (15)

because, for example, |NL + 1⟩ ⟨NL| ⊗ |NR − 1⟩ ⟨NR| describes the event when the number
of electrons in the left dot is increased by one electron, while the number of electrons in the
right dot is decreased by one electron, i.e., the electron jumped from the right to the left dot.
Write down the Hjump operator in a matrix format in Python.
Hint: as |NL + 1⟩ ⟨NL| is an off-diagonal matrix, it is a good idea to use sparse matrices. If
you want to convert a sparse matrix M to a quitp Qobj object, use qt.Qobj(M).

3. Plot the stability diagram, when the tunneling amplitude is t = 100 µeV . If everything is
correct, you will see that some of the boundaries between different states become smooth due
to hybridization of the different charge states.

4. Plot the energy difference between the ground and the excited state, i.e. the qubit transi-
tion energy, along a line corresponding to the gate voltages that perpendicularly crosses the
boundary of (1,0) and (0,1) states, for example, eVR = 1.5 meV + ϵ, eVGL = 1.5 meV - ϵ,
where ϵ goes between −200 µeV and +200 µeV.
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