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Chapter 1

Introduction

The fundamental laws necessary for the mathematical treatment of a
large part of physics and the whole of chemistry are thus completely known,
and the difficulty lies only in the fact that application of these laws leads to
equations that are too complex to be solved— Paul Dirac (1929)

1.1 General

As pointed out already by Dirac in the quote above, the fundamental laws governing a
large part of physics and the whole chemistry are very well known and experimentally
verified. This is at the heart of the great success of quantum mechanics in explaining
many phenomena, including the physical and chemical properties of matter.

Despite this success, however solving the fundamental equations of quantum me-
chanics is an intrinsically complex task that is unparalleled in other fields. In the vast
majority of cases, only numerical solutions of these equations are feasible and, as we will
see during this course, there are many fundamental problems that are fundamentally
hard to solve, even with the most powerful computational platforms we have available.
In those cases, only approximate solutions are feasible.

The goal of this course is to introduce you to the modern simulation techniques for
quantum physics, through lectures and practical programming exercises. We will do
a journey through several simulation approaches based both on classical and quantum
computers.

For physics students the computational quantum physics courses is a recom-
mended prerequisite for any computationally oriented semester projects, master thesis
or doctoral thesis.

For students from other curricula (for example engineering or computer science)
the computational quantum physics courses is strongly suggested for students interested
in physics-related applications.

1.1.1 Exercises

The exercises form a very important part of the course, and it’s where you will learn
how to apply the techniques presented during the theory sessions. It is imperative
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that you attend the exercise sessions regularly, so to master the necessary practical
implementations of the methods.

1.1.1.1 Programming Languages

You are free to choose any programming language you like, we will not impose any
specific programming language. It should be noticed however that solutions to the
exercises will most exclusively be given as PYTHON scripts. If you decide to use another
programming language, it would be advisable to consult with the assistants first, to
assess whether they are fluent in the language you choose, in case you need help to
debug your codes.

1.1.1.2 Computer Access

For all the exercises we will assume you have a laptop with a working internet connec-
tion.

1.1.2 Prerequisites

As a prerequisite for this course we expect knowledge of the following topics. Please
contact us if you have any doubts or questions.

1.1.2.1 Computing
e Basic knowledge of UNIX

e Good working knowledge of at least one common programming language (Python,
C, C++, Fortran, Julia...).

e Knowledge of Matlab is typically sufficient, but it is strongly advised to be famil-
iar with Python, since the exercises will be typically presented and discussed in

Python.

e Ability to produce graphical plots.

1.1.2.2 Numerical Analysis

e Numerical integration and differentiation
e Linear solvers and eigensolvers
e Root solvers and optimization

e Statistical analysis



1.1.2.3 Quantum Mechanics

Basic knowledge of quantum mechanics, at the level of the quantum mechanics taught
to computational scientists, should be sufficient to follow the course. If you feel lost at
any point, please ask the lecturer to explain whatever you do not understand. We want
you to be able to follow this course without taking an advanced quantum mechanics
class. However, immediately contact the lecturer if you feel that the material of the
first week is too advanced.

1.1.3 References

Here is a list of a few good references for the course, in addition to these lecture notes.

1. Joshua Izaac, and Jingbo Wang, Computational Quantum Mechanics , Springer
International Publishing (2018) ISBN 9783319999296.

2. J.M. Thijssen, Computational Physics, Cambridge University Press (1999) ISBN
0521575885.

3. Federico Becca, and Sandro Sorella, Quantum Monte Carlo approaches for corre-
lated systems, Cambridge University Press (2017) ISBN 9781316417041.

1.2 Overview

In this class we will learn how to simulate quantum systems, starting from the simple
one-dimensional Schrodinger equation to simulations of interacting quantum many body
problems in condensed matter physics and quantum chemistry. In particular we will
study

e The one-body Schrodinger equation and its numerical solution

The many-body Schrodinger equation and second quantization

e Approximate solutions to the many body Schrédinger equation

Path integrals and quantum Monte Carlo simulations

Numerically exact solutions to (some) many body quantum problems

Quantum algorithms and emulation of quantum computers

Machine-learning based approaches to quantum many-body problems






Chapter 2

Quantum mechanics in one hour

2.1 Introduction

The purpose of this chapter is to refresh your knowledge of quantum mechanics and
to establish notation. Depending on your background you might not be familiar with
all the material presented here. If that is the case, please ask the lecturers and we
will expand the introduction. Those students who are familiar with advanced quantum
mechanics are asked to glance over some omissions.

2.2 Basis of quantum mechanics

2.2.1 Wave functions and Hilbert spaces

Quantum mechanics is nothing but simple linear algebra, albeit in huge Hilbert spaces,
which makes the problem hard. The foundations are pretty simple though.

A pure state of a quantum system is described by a “wave function” |¥), which is
an element of a Hilbert space H:

W) e H (2.1)

Usually the wave functions are normalized:

1) || = V{¥|¥) = 1. (2.2)

Here the "bra-ket" notation

(@) (2.3)

denotes the scalar product of the two wave functions |®) and |V).

The simplest example is the spin-1/2 system, describing e.g. the two spin states
of an electron. Classically the spin S of the electron (which can be visualized as an
internal angular momentum), can point in any direction. In quantum mechanics it is
described by a two-dimensional complex Hilbert space H = C2. A common choice of
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basis vectors are the “up” and “down” spin states

M= (o) (2.4
H>=(® (2.5)

This is similar to the classical Ising model, but in contrast to a classical Ising spin
that can point only either up or down, the quantum spin can exist in any complex
superposition
) =al 1)+ 81 (2.6)
of the basis states, where the normalization condition (2.2) requires that |a|?+|3]* = 1.
For example, as we will see below the state

1
-ﬁﬁﬂﬂw) (2.7)

is a superposition that describes the spin pointing in the positive z-direction.

) =

2.2.2 Mixed states and density matrices

Unless specifically prepared in a pure state in an experiment, quantum systems in
Nature rarely exist as pure states but instead as probabilistic superpositions. The most
general state of a quantum system is then described as a density matrix p,

p = ZRN@)(‘I’@L (2.8)

describing a mixture of pure states |¥;) each of which carrying a probability P;. It is
easy to check that the density matrix has unit trace:

Trp = >3 Plelw)(Wif) (2.9)
= ZRZHIMF (2.10)
= > P, (2.11)

= 1 (2.12)
The density matrix of a pure state is just the projector onto that state
Ppure = [ V) (V. (2.13)

For example, the density matrix of a spin pointing in the positive z-direction is
L ~(1/2 1)2
%—%ﬂkﬂ—cﬂlﬂ) (2.14)

Instead of being in a coherent superposition of up and down, the system could also
be in a probabilistic mixed state, with a 50% probability of pointing up and a 50%
probability of pointing down, which would be described by the density matrix

s = (107 10)- 2.15)
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2.2.3 Observables

Any physical observable is represented by a self-adjoint linear operator acting on the
Hilbert space, which in a final dimensional Hilbert space can be represented by a Hermi-
tian matrix. For our spin-1/2 system, using the basis introduced above, the components
Sx, Qy and S, of the spin in the x-, y-, and z-directions are represented by the Pauli

matrices
S, = g&z_ g <(1) é) (2.16)
S, = gﬁy:g(? _OZ) (2.17)
S, = gﬁz— g ((1) _01) (2.18)

The spin component along an arbitrary unit vector e is the linear superposition of
the components, i.e.

ey + i€y —e,

X . . . B _
e-S=e,5 +e,5 +e.S, = 5 ( €z Ca zey) (2.19)

The fact that these observables do not commute but instead satisfy the non-trivial
commutation relations

[Am Ay] = ngy - S’ygx = ihgz, (220)
Sy, 8] = ihS,, (2.21)
15.,5,] = ihS,, (2.22)

is the root of the differences between classical and quantum mechanics .

2.2.4 The measurement process

The outcome of a measurement in a quantum system is usually intrusive and not deter-
ministic. After measuring an observable A, the new wave function of the system will be
an eigenvector of the associated operator A and the outcome of the measurement the
corresponding eigenvalue. The state of the system is thus changed by the measurement
process!

For example, if we start with a spin pointing up with wave function

) =|1) = (é) (2.23)

=5 o) (224)

and we measure the x-component of the spin S,, the resulting measurement will be
either +h/2 or —h/2, depending on whether the spin after the measurement points in

or alternatively density matrix
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the + or — z-direction, and the wave function after the measurement will be either of

1 (12

) = s+l = (1Y) (2.25)
1 (12

1 = Ssan-1m= (%) (2.26)

Either of these states will be picked with a probability given by the overlap of the initial
wave function by the individual eigenstates:

po = l(= [W)]]* =1/2 (2.27)
pe = |[( [W)]]* =1/2 (2.28)

The final state is a probabilistic superposition of these two outcomes, described by the
density matrix

p=rd e lepcd e 1= (0 ),) (229

which differs from the initial density matrix p;.

If we are not interested in the result of a particular outcome, but just in the average,
the expectation value of the measurement can easily be calculated from a wave function
|U) as A

(4) = (V][A]D) (2.30)
or from a density matrix p as
(A) = Tr(pA). (2.31)

For pure states with density matrix py = |¥)(¥| the two formulations are identical:

Tr(pu A) = Te(|0) (U] A) = (V| A] D). (2.32)

2.2.5 The uncertainty relation

If two observables A and B do not commute [A, B] # 0, they cannot be measured
simultaneously. If A is measured first, the wave function is changed to an eigenstate of
A, which changes the result of a subsequent measurement of B. As a consequence the
values of A and B in a state W cannot be simultaneously known, which is quantified by
the famous Heisenberg uncertainty relation which states that if two observables A and
B do not commute but satisfy

[A, B] = ih (2.33)

then the product of the root-mean-square deviations AA and AB of simultaneous mea-
surements of A and B has to be larger than

AAAB > 12 (2.34)

For more details about the uncertainty relation, the measurement process or the inter-
pretation of quantum mechanics we refer interested students to an advanced quantum
mechanics class or text book.
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2.2.6 The Schrodinger equation
2.2.6.1 The time-dependent Schrodinger equation

After so much introduction the Schrodinger equation is very easy to present. The wave
function |¥) of a quantum system evolves according to

e .
iho | V() = HIU(2)), (2.35)

where H is the Hamiltonian operator. This is just a first order linear differential equa-
tion.

2.2.6.2 The time-independent Schrodinger equation

The so-called time-independent Schrodinger equation is nothing but the eigenvalue
problem for the Hamiltonian operator:

H|W,) = Ey|Wy), (2:36)

where E} is the energy associated with the k—th eigen-ket |W;). A great deal of this
course will be spent solving "just" this simple eigenvalue problem!

Knowing the eigen-kets of the Hamiltonian is very useful, for example, to solve the
time-dependent Schrodinger equation, since

(U(t) = exp(—iHt/h)|¥(0)) (2.37)
= Y cpexp(—iEt/h)|¥y) (2.38)
k

where ¢, = (U,|W(0)) are the overlaps of the initial state with eigen-kets of the Hamil-
tonian.

2.2.6.3 The Schrodinger equation for the density matrix

The time evolution of a density matrix p(t) can be derived from the time evolution of
pure states, and can be written as

(1) = [, p(r) (2.39)

The proof is left as a simple exercise.

2.2.7 The thermal density matrix

Finally we want to describe a physical system not in the ground state but in thermal
equilibrium at a given inverse temperature § = 1/kgT. In a classical system each
microstate k of energy Fj is occupied with a probability given by the Boltzmann dis-
tribution

P = %GXP(_BE/%): (2.40)
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where the partition function

Z =Y exp(—BE) (2.41)

normalizes the probabilities.
In a quantum system, if we use a basis of eigenstates |¥y) with energy Fj, the
density matrix can be written analogously as

b= 7 3 exp(— BT (W] (2.42)
k

For a general basis, which is not necessarily an eigen-basis of the Hamiltonian H , the
density matrix can be obtained by diagonalizing the Hamiltonian, using the equation
above, and transforming back to the original basis. The resulting density matrix is

s =  expl(—6H) (2.43)

where the partition function now is
Z = Trexp(—SH) (2.44)

Calculating the thermal average of an observable A in a quantum system is hence
formally very easy: R )
~ TrAexp(—SH)

Trexp(—(H)
but actually evaluating this expression is a hard problem, as we will see during this
course.

(4) = Tr(Aps)

(2.45)

2.3 The spin-S problem

Before discussing solutions of the Schrodinger equation we will review two very simple
systems: a localized particle with general spin S and a free quantum particle.

In section 2.2.1 we have already seen the Hilbert space and the spin operators for the
most common case of a spin-1/2 particle. The algebra of the spin operators given by the
commutation relations (2.16)-(2.16) allows not only the two-dimensional representation
shown there, but a series of 25 + 1-dimensional representations in the Hilbert space
C2*! for all integer and half-integer values S =0, 3,1,3,2,.... The basis states {|s)}
are usually chosen as eigenstates of the S, operator

S.|s) = hsls), (2.46)

where s can take any value in the range —S5, —5S+1,-5+2,...,5—1,5. In this basis
the S, operator is diagonal, and the S, and S, operators can be constructed from the
“ladder operators”

Sils) = /S(S+1)—s(s+1)|s+1) (2.47)
S_|s) = /S(S+1)—s(s—1)|s—1) (2.48)
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which increment or decrement the S, value by 1 through

g = %(am) (2.49)
S, = 2%(&—3_). (2.50)

The Hamiltonian of the spin coupled to a magnetic field h is
H=—gugh-8, (2.51)

which introduces nontrivial dynamics since the components of S do not commute. As
a consequence the spin precesses around the magnetic field direction.

Exercise: Derive the differential equation governing the rotation of a spin starting
along the +x-direction rotating under a field in the +z-direction

2.4 A quantum particle in free space

Our second example is a single quantum particle in an n-dimensional free space. Its
Hilbert space is given by all twice-continuously differentiable complex functions over
the real space R". The wave functions |¥) are complex-valued functions ¥(x) in n-
dimensional space. In this representation the operator x, measuring the position of the
particle is simple and diagonal

X = X, (2.52)

while the momentum operator p becomes a differential operator
Po = —ihV,. (2.53)
These two operators do not commute but their commutator is
[T, Dg| = 1hda . (2.54)

The Schrédinger equation of a quantum particle in an external potential V' (x) can be
obtained from the classical Hamilton function by replacing the momentum and position
variables by the operators above. Instead of the classical Hamilton function

_pP

H(x,p) = oy T V(x) (2.55)

we use the quantum mechanical Hamiltonian operator

H= Ipl* +V(2) = —h—2V2 + V(%) (2.56)
2m 2m ’
which gives the famous form
L0U(x,t) Wy
th = —%V Y(x,t) + V(x)1(x,t) (2.57)

of the one-body Schrodinger equation.
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2.4.1 The harmonic oscillator

As a special exactly solvable case let us consider the one-dimensional quantum harmonic
oscillator with mass m and potential %xQ. Defining momentum p and position operators
Z in units where m = h = K = 1, the time-independent Schrédinger equation is given

by

Aln) = 3 + ) ln) = EuJn) (2.58)

Inserting the definition of p we obtain an eigenvalue problem of an ordinary differential
equation

1 1 1 2 _
—501(@) + 52°00(2) = Bnn(a) (2:59)

whose eigenvalues F,, = (n + 1/2) and eigenfunctions

1 1,
on(T) = WGXP (—éw ) H,(z), (2.60)

are known analytically. Here the H,, are the Hermite polynomials and n = 0,1, .. ..

Using these eigenstates as a basis sets we need to find the representation of § and
p. Performing the integrals

(m|Z|n) and (m|p|n) (2.61)

it turns out that they are nonzero only for m = n + 1 and they can be written in terms
of "ladder operators" a and a':

=
I

(@' +a) (2.62)

p = m(aT—a), (2.63)

where the raising and lowering operators a' and a only have the following nonzero
matrix elements:

(n+1la'|n) = (n|aln +1) = vn + 1. (2.64)

and commutation relations

[a,a) = [a',a'] = 0 (2.65)
[a,a'] = 1. (2.66)

It will also be useful to introduce the number operator # = a'a which is diagonal with
eigenvalue n: elements

aln) = a'aln) = v/na'ln — 1) = n||n). (2.67)
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To check this representation let us plug the definitions back into the Hamiltonian to
obtain

H =

=,
o
+
=
N

[NORINEEN NG N TN B NOl
|
—

1
(2afa+1) = n + 3 (2.68)

which has the correct spectrum. In deriving the last lines we have used the commutation
relation (2.66).
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Chapter 3

The quantum one-body problem

3.1 The time-independent 1D Schrodinger equation

We start the numerical solution of quantum problems with the time-independent one-
dimensional Schrédinger equation for a particle with mass m in a Potential V(z). In
one dimension the Schrodinger equation is just an ordinary differential equation

10%¢(x)
2 a2

+V(2)p(z) = Ey(x), (3.1)

where we have taken units in which h =m = 1.

In order to efficiently solve this problem on a computer, in the great majority of
numerical approaches it is necessary to introduce some discretization of the problem.
The simplest discretization we can perform consists in discretizing the space. We then
consider = € [zg, xp] living in a finite interval, and a discretization of the space into a
mesh of uniform spacing §. The points on the mesh are such that

Ty, = nd + X, (3.2)

where 1z is the starting point of the interval and the wave function at these points is
denoted by

In the following we will assume that the mesh contains a total of p + 1 points, thus
implying that the last point in the interval is

x, = pd + . (3.4)

3.1.1 Discretizing the Hamiltonian

The previous discussion has introduced a simple strategy to represent the wave function
as a finite-size vector of components 1,,. In order to solve Schroedinger’s equation, it is
now necessary also to have finite-sized description of the Hamiltonian. This must be a
matrix acting on the same vector space of the discretized state ¢,,. The potential energy
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term in the hamiltonian is diagonal in the position basis and it is easily discretized into
a diagonal matrix with diagonal entries V,,:

Vi) — V,=V(x,). (3.5)

The kinetic energy term is off-diagonal in the position basis and we can also expect that
its matrix representation is off diagonal. In order to find an explicit representation, we
can use a finite-difference approximation of the derivative:

D pa) = & (Flaas) = 26(0,) + Hanin)) + OF). 5)

Using this discretization, the action of the hamiltonian on the wave function is written

as
1

(zo| H|¢) = 952 (Vn-1 = 20 + Yny1) + Vb + 0(52)~ (3.7)
The right-hand side of this equation contains only linear combinations of the vector
¥, and it is thus linear operator that corresponds to the discretization of the original
Hamiltonian. It is easy to see that this linear operator is a matrix :

1
1 @ 1 01 0
R T 952 Vn—l j— 52 _Wl 01 Ce
Hs = 0 — 557 Vot 52 = (3.8)
0 0 —355 Vot 3
0 0

Notice that we explicitly omitted, for the moment, the value of the matrix on the
boundary. This is because the second-order finite difference scheme we have chosen
would act also on ¢(zg — ) = 1_; and on ¢(x, + J) = 1,41, but these are beyond the
discretized region we have chosen for the vector 1,.

In the following we will concentrate on the conceptually easy (and practically rel-
evant) case in which we have a bound state, thus the wave-function goes to zero at
infinity. In this case, we can always choose an interval [z, z,| large enough such that,
to good approximation ¢¥_; = ¥, = 0. In this case then the matrix above is exactly
tridiagonal, since it is safe to just ignore the extra-boundary points ¥_1,¢p41.

For bound states then, finding solutions to the time-independent Schroedinger equa-
tion is a simple as diagonalizing the finite-dimensional matrix Hy, and find the eigen-
vectors and eigen-energies

Hsly) = Eyly).

An interesting property of the matrix Hj is that it is tridiagonal, and it can be very
efficiently diagonalized, as you will see more in detail in the exercises.

3.2 The time-independent Schrodinger equation in
higher dimensions

In higher dimensions, in most common cases it is possible to reduce the problem to a one-
dimensional problem. This happens if the problem, because of symmetries, factorizes.
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3.2.1 Factorization along coordinate axis

A first example is a three-dimensional Schrédinger equation in a cubic box with potential
V() =V (z)+V(y) + V(z) with ¥ = (x,y, z). Using the product ansatz

() = Pu(€)hy (y) = (2) (3.9)

the Schroedinger’s equation factorizes into three one-dimensional equations which can
be solved as above.

3.2.2 Potential with spherical symmetry

Another famous trick is possible for spherically symmetric potentials with V() = V (|r])
where an ansatz using spherical harmonics

u(r
wl,m(F) = wl,m<ra 97 (b) = %ng(ea (b) (310)
can be used to reduce the three-dimensional Schrédinger equation to a one-dimensional
one for the radial wave function wu(r):

R:d*> R+ 1)

_ZW + W + V(r)| u(r) = Eu(r) (3.11)

where we have called the particle mass p (to avoid confusion with magnetic quantum
number m in the spherical harmonics). This is again a one-dimensional Schrédinger
equation, with a modified effective potential

211+ 1)

Vil = Vi) + 5o

(3.12)

and with the radial wave-function defined in the interval [0, co[. In practice, for regular
potentials we always have u(0) = u(x;) = 0 and it is always possible to find a point
x, > 1 such that, with good approximation, u(z,) = 0.

3.2.3 Finite difference methods in higher dimension

In higher dimension we can still discretize the space on a regular grid (for example,
on a square grid in two dimensions). By doing so, we obtain once more a matrix
representation of the kinetic energy. The first step is to define a suitable discretization
of the space, and and the mapping between coordinates onto an integer. For example,
for a L x L grid, we could choose:

Tn = To+0XmnmodlL (3.13)

where |...| denotes the integer part of the division. With this choice, and ignoring
boundary terms in this discussion, the Laplacian in two dimensions for example takes

19



n=12 n=13 n=14 n=15
(:L‘o, Yo + 3(5) (Q?o + 16, yo + 35) (330 + 20, yo + 35) (.To + 36, yo + 3(5)

(@] O O O
n=+38 n=+9 n =10 n =11
(o, yo + 20) (zo + 16, yo + 20) (xo + 20,f yo +29) (a0 + 39, yo + 29)
O O O O
n= n =+ 5 n =+ 6 n =—
(zo, yo +16) (w0 + 10, yo +16) (o + 20, yo + 18) (zo + 36,| yo + 10)
O O O O
’[’L::O n::l ’]’L::2 ’[’L::3
(@0, yo) (xo + 16, yo) (w0 + 26, yo) (o + 39, yo)
o o o o

Figure 3.1: A 4 x 4 lattice with coordinates (x,y) and site index n = x + 4y.

this form
VA, tn) = 5 [, Un) = 20, ) (a1, 0)] +
s [0 yner) = 260 ) + 0w )] (315)

While the resulting discretized Hamiltonian in general will not be of tridiagonal form
as in the 1d case, it is essential to realize that the matrices produced by the discretization
of the Schrodinger equation are still very sparse, meaning that only a small fraction of
the matrix entries are non zero. For these sparse systems of equations, optimized
iterative numerical algorithms exist' and are implemented in numerical libraries such
as in the EIGEN library (C++) ? or in SciPy (Python) *. To calculate bound states,
an eigenvalue problem has to be solved. For small problems, where the full matrix can
be stored in memory, Mathematica or the dsyev eigensolver in the LAPACK library
can be used. For bigger systems, sparse solvers such as the Lanczos algorithm (which
will be discussed in detail in the following lectures) are best. Again there exist efficient
implementations of iterative algorithms for sparse matrices.

'R. Barret, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C.
Romine, and H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for
Tterative Methods (STAM, 1993)

Zhttps://eigen.tuxfamily.org/

3https://docs.scipy.org/, the relevant routines are contained in scipy.sparse.linalg
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3.3 The time-dependent Schrodinger equation

We now move to the problem of solving the time-dependent Schrodinger equation

, B 10%Y(x,t)
ZE (x’t>__§ 02

with given initial condition ¥(z,ty).

+ V(x)¥(z, ), (3.16)

3.3.1 Spectral methods

By introducing a basis and solving for the complete spectrum of energy eigenstates
we can directly solve the time-dependent problem in the case of a stationary (time-
independent) Hamiltonian. This is a consequence of the linearity of the Schrédinger
equation.

To calculate the time evolution of a state |1)(ty)) from time to to t we first solve
the stationary eigenvalue problem H|¢) = E|¢) and calculate the eigenvectors |¢,) and
eigenvalues €,. Next we represent the initial wave function |1)) by a spectral decompo-
sition

[(t0)) = Y _ caldn)- (3.17)

—iH (t—tp)

Since each of the |¢,) is an eigenvector of H , the time evolution e is trivial and

we obtain at time ¢:

(1)) = caeT 710 g). (3.18)

This approach is, however, only useful for very small problems since the effort of
diagonalizing the matrix is huge. A better method is direct numerical integration,
discussed in the next subsections.

3.3.2 Direct numerical integration

If the number of basis states is too large to perform a complete diagonalization of the
Hamiltonian, or if the Hamiltonian changes over time, instead of the spectral method
it is more convenient to perform a direct integration of the Schrodinger equation. Like
other initial value problems of partial differential equations the Schrodinger equation can
be solved by the method of lines. After choosing a set of basis functions or discretizing
the spatial derivatives we obtain a set of coupled ordinary differential equations which
can be evolved for each point along the time line (hence the name) by standard ODE
solvers.

In the remainder of this chapter we use the symbol Hjy to refer the representation
of the Hamiltonian in the chosen finite basis. A simple ODE integration scheme is the
forward Euler scheme

[ (tn1)) = [ (ta)) — i6:Hslth(£0). (3.19)
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However, this method is not only numerically unstable, but it also violates the conser-
vation of the norm of the wave function (¢ (¢)[1(t)) = 1, since

N ~ N\ T ~
(1 — i6, ) (1 - iétH(;) = 1+ 82241
The exact quantum evolution

[t + 0,)) = e~ o (1)) (3.20)

is however clearly unitary and thus conserves the norm, we therefore want to look for a
unitary approximation as integrator. Instead of using the forward Euler method (3.19)
which is just a first order Taylor expansion of the exact time evolution

e — 1 — 5, Hy + O(62), (3.21)
we reformulate the time evolution operator as
. . 1 0. 0,
e N — (eZHat/Q) b emiHO2 (1 + %fﬂ) (1 - %Hd) +0(57), (3.22)

therefore
WWMM—@+?HO (1 5tt) lwtoy, (3.23)

It is possible to check that the propagation scheme defined above is unitary (for example,
showing that the two terms appearing commute with one another), thus we have a small
time-step approach that is both unitary and second-order in é;. Equivalently, we can
write it as

(1 + "ngg) W(t+6,)) = <1 - @H(;) (1)), (3.24)

which shows more explicitly that, unfortunately this is an implicit integrator, since the
value of |¢)(t+d;)) is not a simple linear combination of the wave-function values at the
previous time-steps.

3.3.2.1 Practical implementations of the implicit scheme

Despite its implicit nature, this integrator can be still be used efficiently. Concentrating
again on the 1d case, we have seen previously that if we discretize our problem on a
mesh z, = nd + ¢, that the Hamiltonian becomes a simple tridiagonal matrix. The
implicit equation 3.24 then becomes a linear system of the form Ay = b, where the
matrix A = (1 + %ﬁ(;), the right hand side is b, = (1 — %) ¥ (t) and the unknown
vector ¥, = U, (t + ;).

At each time step, one can therefore solve this linear system of equations and find
explicitly ¥, (t + 0;). Because of the tridiagonal structure, very efficient tridiagonal
solver can be used.

In higher dimensions the matrix H will no longer be simply tridiagonal but still very
sparse and we can use iterative algorithms, similar to the Lanczos algorithm for the
eigenvalue problem. For details about these algorithms we refer to the nice summary at
http://mathworld.wolfram.com/topics/Templates.html and especially the bicon-
jugate gradient (BiCG) algorithm. Implementations of this algorithm are available, e.g.
in the EIGEN Library C++4, or in SciPy, for a Python version.
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3.4 Appendix: The split operator method

An alternative to the unitary, implicit method described in the main text exists, and
we discuss it as an optional argument for the interested reader. An explicit and unitary
method is possible for a quantum particle in the real space picture with the “standard”
Schrodinger equation for non-relativistic particles in continuous space. Writing the
Hamiltonian operator as

H=T+V (3.25)
with
T L g (3.26)
ot '
= V(@) (3.27)

it is easy to see that V is diagonal in position space while T is diagonal in momentum
space.

Indeed if we consider a d-dimensional particle, its wave-function in momentum space
is obtained through the Fourier transform:

D(F) = (\/LZ_W)d /_ Zw(f)eiﬁ-wdf (3.29)

and the inverse Fourier transform yields

1 d o0 ~ = .7 —
7= — k)e®dk. 3.29
w@ = (=) [ o (3:29)
It is then easy to check that zﬁ(l;) is an eigenstate of the kinetic operator T', and
that Ty (k) = [[k|[*e(k)/2.
If we split the time evolution as

o iAH/h e—z‘AtV/2h€—iAtT/ﬁ,e—iAtV/2h, + O(Af’) (3.30)

we can perform the individual time evolutions e=*2V/2h and e=iAT/h axactly:
[e_iA*V/%W)} () = e "AV@/ 27 (3.31)
[ e_mtf/n|¢>] (k) = e—mthHE\|2/2m¢(;;’) (3.32)

in real space for the first term and momentum space for the second term.

Propagating for a time ¢t = NA;, two consecutive applications of iV /21

can

easily be combined into a propagation by a full time step e—iAV/ " resulting in the
propagation:
o—iHt/h (e—mt\?/%e—mtf/ne—mtV/%)N + O(A2)
_ iAV/2h [e—iAtT/he—z’AtV/h] N=1 oA /h =iV /21 (3.33)
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In practice, in order to obtain efficient representations of the wave-functions both
in real and momentum space we still need to discretize the real space with a suitable
mesh of size Az, for a total of P points per spatial direction. As a consequence of this
discretization, the continuous Fourier transform becomes a discrete Fourier transform
defined on the discrete set of wave-vectors k, = %P, for each spatial direction, with
n =0,1,... P — 1. Changing from real space to momentum space then requires the
application of the discrete Fourier transform and of its inverse when going back from
momentum space to real space. This can be efficiently accomplished numerically thanks
to the Fast Fourier Transform (FFT) algorithm, which performs the discrete Fourier
transform in only O(P log(P)) operations.

The discretized algorithm then starts as

P (F) = e BV @2y () (3.34)
Ui(k) = Fih(Z) (3.35)
where F denotes the Fourier transform and ! will denote the inverse Fourier trans-
form. Next we propagate in time using full time steps:

Yon(R) = e AR 2my, () (3.36)
Von(T) = F o (k) (3.37)
Vony1(T) = efmtv(f)/h%n(f) (3.38)
Vo1 (k) = Ftbonia (@) (3.39)
except that in the last step we finish with another half time step in real space:
Yoni1 (T) = e BV O ey (F) (3.40)

This is a fast and unitary integrator for the Schrodinger equation in real space. It could
be improved by replacing the locally third order splitting (3.30) by a fifth-order version
involving five instead of three terms.
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Chapter 4

Exact diagonalization of many-body
problems

4.1 Quantum spin models

After learning how to solve the 1-body Schrodinger equation, let us next generalize to
more particles. If a single body quantum problem is described by a Hilbert space H
of dimension dimH = d then N distinguishable quantum particles are described by the
tensor product of N Hilbert spaces

N
HWN) = HON = ®H (4.1)
i=1

with dimension d”.

In this Chapter we will specifically focus on quantum spin-1/2 particles. A single
spin-1/2 has a Hilbert space H = C? of dimension 2, but N spin-1/2 have a Hilbert
space HWN) = C2" of dimension 2V. This exponential scaling of the Hilbert space
dimension with the number of particles is a big challenge. The basis for N = 30 spins
is already of size 230 ~ 10°. A single complex vector needs 16 GByte of memory and
may just barely fit into the memory of your personal computer.

For small and moderately sized systems of up to about 30 spin-1/2 we can calculate
exactly the ground state, low-lying spectrum, and time evolution by direct calculations.
For more than 30 spins we cannot apply exact diagonalization techniques anymore, and
this will be the subject of several methods we will study in the next chapters.

4.1.1 Hamiltonian Matrix

As we have seen already in the previous Chapter, to perform exact diagonalization
to find eigenstates of a given Hamiltonian, H , or study its dynamics, it is important
to come up with a concrete representation of the Hamiltonian matrix that can be
efficiently manipulated on a computer. One common feature of many-body quantum
models is that the matrix representation of their hamiltonian is sparse. For example,
taking again the case of quantum spins, one can see that the total number of non-zero
elements in the matrix representation of the Hamiltonian is at most k x 2V, where k is
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typically a small value (in most cases, k ~ N). This is to be contrasted to a general,
full matrix, that instead contains O(2¥ x 2V) elements. Sparsity—a generalization of
the simple pattern of non-zero elements seen in tridiagonal matrices in the previous
Chapter— can be exploited by exact diagonalization methods in different ways, both
to find eigenvalues and eigenvectors of the Hamiltonian and to study its dynamics.
Before seeing how sparsity can be exploited, we will first analyze a few prototypical
spin models, in order to better understand where the sparse nature of the Hamiltonian
matrix comes from. In all cases we will analyze in this Chapter we will consider the
simple, and widely adopted, basis of eigenstates of ¢*. Specifically, each many-spin
state is written as a linear combination of 2%V basis states:

) = Z Csy59..5n |S152 - - SN), (4.2)
5182...5N

where
|s189...8n) = [51) ®|s2) @ ...|sNn) (4.3)
are eigen-kets of the % Pauli matrix:
07|s189...5n) = Si|sis2...sn), (4.4)

for s; = +1.

4.1.2 Example: the transverse-field Ising model

The simplest quantum spin model is probably the quantum transverse field Ising model
(TFIM), which adds a magnetic field in the z direction to a lattice of spin-1/2 particles
coupled by an Ising interaction:

H=> J;6i6;-TY o7 (4.5)
(6,5) g

Here the symbol (i, j) denotes a sum over all bonds in the lattice. In the absence of the
second term, the first term is nothing but a classical Ising model and can be solved by
your favorite method of simulating the Ising model. The second term does not exist in
classical Ising models, where the spins point only in the z direction. Considering that

the Pauli 6% matrix is
(0 1
0 = <1 O) (4.6)

we see that this term flips an 1 spin to a | spin, and thus introduces quantum fluctua-
tions to the classical Ising model.

The way of writing the hamiltonian as above is nothing but a short-hand for the
more laborious (but more precise) notation with tensor products, that in this case would
imply for example that a spin operator in the direction o = (x,y, z) and acting on spin
i is in reality the following 2V x 2V matrix:

6% = I®l®.. . leiele oI (4.7)
i —1 ti N—i ti
= 127 e @12V, (4.8)
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where I(n) are identity matrices of dimension 7, and the ® product here denotes Kro-
necker product between matrices.

We can readily verify that this Hamiltonian is sparse. For example, let’s start
computing the diagonal matrix elements in the basis specified above:

<8182...SN|H|8182...8N> = Zjij5i8j7 (49)
(4,9
which is the familiar classical Ising interaction term. Thus we have found the first 2V
(in general) non-zero matrix elements, corresponding to the diagonal of H. The off-
diagonal terms can be readily found noticing that the action of the 67 operator is just
to flip a spin:

~T
71s1...8...8N) = |s1-+—S;...5N), (4.10)
thus there is only one non-zero matrix element per 67 term:

(185 ... 8|07 18152 .. SN) = Og6 - Osimsy oo Og sy (4.11)

implying that, at fixed |s;ss2...sy), there is a total of N non zero matrix elements for
the Hamiltonian. In total, therefore, we have that the TFI Hamiltonian contains “only”
(N + 1) x 2¥ non-zero elements.

4.2 Finding Ground States

We start with the problem of finding the lowest eigenvector (and its energy) of the
Hamiltonian, the so-called ground state. This task is realized by using an iterative
matrix eigensolver. These solvers exploit the fact that computing the product of the
Hamiltonian matrix with an arbitrary vector can be done efficiently. While for a generic
matrix of size M x M a product Alv) can be computed in O(M?) time, for a matrix
M x M, in the case of Hamiltonians we are considering here this product is computable
in only O(M) = O(N® x 2V), where « is in general a small exponent (o = 1, for the
TFIM, as seen before).

4.2.1 Power Method

The power method is the simplest iterative solver we can use to find ground-states of
many-body Hamiltonians that exploits sparseness. This method generates a sequence
of P vectors k= 1,... P by repeated application of the Hamiltonian:

upyr) = (Ai-ﬁz) ), (4.12)

where A is a suitable constant, and the initial state |ug) is given as starting condition
for the algorithm. This sequence of vectors converges to the ground-state of the Hamil-
tonian under reasonable assumptions. To see this, let us formally expand the initial
vector in terms of the eigen-states of the Hamiltonian:

luo) = ZCI‘EZ>7 (4.13)

l
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with Fy < Fy < ... E), thus the last state is

lup) = (Af-.ﬁ)P|u@, (4.14)
= Y (A-E) alE), (4.15)

l

and the overlap with the ground state is
(Eolup) = (A — Eo)" c. (4.16)

We notice however that the state |up) is not normalized in general, thus the probability
amplitude of being in the ground-state after k iterations is

[(Bolup)? (A — o)™ Jeo|? (4.17)
(up|up) (A —Eo)* |2+ (A= BN ey |2+ ...
1
— . 4.18)
(A—E1)>" |1 |2 (

From this expression we can see that a suitable choice of A can force the state |up)
have a probability amplitude of being in the ground state that is exponentially close to
1. Specifically, if we impose A > E);, we have that

le ﬁ = 0, (419)
— 00 — 0

for any excited state [ such that E; > Fy. In the limit of large P we therefore have that

[(Eolup)® ,_A- E)™ o
(uplup) (A — Eg)*" |eol*’

(4.20)

and the correction can be made arbitrarily (and exponentially) small by increasing the
number of steps P. We also see that for the exponential convergence to be true we
need to have that the initial state has some finite overlap with the exact ground state,
namely |cy|? # 0. This can be achieved, for example, starting the iterations from a
random vector.

The power method is therefore a very simple, yet exponentially converging method,
to find the ground state of the Hamiltonian. If, for example, the Hamiltonian is stored
in memory as a sparse matrix, then by simple iterative applications one can find the
ground state. In practice, it is convenient to keep the state |u) normalized at each
step, to avoid an exponential increase of the coefficients appearing in the vector |uy).

4.2.2 The Lanczos Method

The Lanczos algorithm is an important improvement over the power method, that allows
to reconstruct not only the ground state wave function, but also excited states. The
Lanczos algorithm builds an orthogonal basis {vy,vs,...,vp} for the Krylov-subspace
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Kp = span{uy, uy, ..., up}, which is constructed by P iterations of the power method.
This is achieved by the following iterations:

Busilvnsn) = Hlvw) — aulva) = Bulva-1), (4.21)

where A )
an = (v |H|vy), Bn = [(vn|H|vp_1)|- (4.22)

Since the orthogonality condition
(vilv;) = 645 (4.23)

does not determine the phases of the basis vectors, the ; can be chosen to be real
and positive. It can be shown that we only need to keep three vectors of size M in
memory, which makes the Lanczos algorithm very efficient, when compared to dense
matrix eigen-solvers which require storage of order M? (see Table 4.1 for a summary of
the complexity of matrix operations).

In the Krylov basis the matrix H is approximated by the following tridiagonal matrix

ar By 0 - 0
P2 az R
T™W =10 . . - o0ol, (4.24)
Lo e By
(0 -~ 0 B, an
and it can also been shown that the eigenvalues {7,..., 7y} of T are good approxi-

mations of the eigenvalues of H. Moreover, the extreme eigenvalues converge very fast.
Thus P < M iterations are sufficient to obtain the extreme eigenvalues. Since the
Lanczos matrix is tridiagonal, we can use all the efficient computational approaches
discussed in the previous Chapter to find both its eigenvalues and eigenvectors.

In practice, the Lanczos method can be already found implemented in all lin-
ear algebra solvers for sparse matrices, for example in scipy. For Python users, we
strongly suggest to use SciPy (in particular scipy.sparse.linalg) which performs Lanc-
zos/Arnoldi calling an efficient, C-coded backend. These routines allow to diagonalize
directly sparse matrices defined within scipy. Alternatively, and in order to avoid stor-
ing the sparse matrix, one can also define its own Matrix-Vector multiplication using
scipy.sparse.linalg.LinearOperator, and then obtain the eigenvalues and eigenvectors
with a call to scipy.sparse.linalg.eigsh.

A more detailed discussion of the Lanczos algorithm and the issue of ghost eigen-
values can be found in Appendix 4.5.

4.2.3 Implementation

From the practical implementation point of view, the main requirement to use the
simple power method or the more refined Lanczos algorithm is to provide a function
that computes the product of the Hamiltonian with an arbitrary vector |v):

Hp)y = o). (4.25)



There are two main approaches to implement this efficiently. One one hand, we can
form and store the hamiltonian H as a sparse matrix. This approach is very elegant and
can be readily implemented, for example, in Python with scipy. The only requirement,
for spin hamiltonians, is to explicitly use and form the Kronecker products for spin
operators, as seen before:

6% = I(27Yws* @IV, (4.26)

and then construct interactions terms as simple products of these matrices. For example,
spin-spin interaction terms 6;'0; can be readily obtained as a sparse matrix-matrix
multiplication.

In addition of being very elegant and compactly implemented, this approach has also
the advantage that computing products of sparse matrices with vectors is a typically
highly optimized operation in dedicated software libraries, thus the resulting scheme
will be automatically highly efficient. The main drawback however is the memory
requirements, since we need to store all the non-zero matrix elements of the Hamiltonian,
and there are at least as many as N x 2V of them, as we have seen before. This memory
requirement is added to the requirements due to the necessity of storing (at least) the
vectors |v) and |v), yielding an additional 2 x 2% coefficients to be stored.

The main alternative approach is to never store the matrix H and provide instead
a function that computes the matrix-vector product “on the fly”. This allows to dras-
tically reduce the memory consumption to the bare minimum, namely to 2 x 2V, at the
expenses of, typically, a larger computational time. The latter approach is especially
suited for applications where reaching to the largest possible value of N is crucial, and
need specialized low-level implementations. In the exercises we will mostly focus on the
first approach.

4.3 Quantum Dynamics

In the previous discussion we have seen how to explicitly construct sparse represen-
tations of the Hamiltonian of quantum spin systems, and how to use them to obtain
the ground-state wave-function. We now focus on the problem of solving the time-
dependent Schrodinger equation for the many-spin system, a task which requires specific
techniques. For simplicity, we will analyze here the specific case of time-independent
Hamiltonians, and leave the straightforward extension to time-dependent Hamiltonians
as an exercise.

4.3.1 Taylor Expansion

To implement the time evolution we have to devise an efficient way to numerically
compute the matrix exponential exp(—iHt), since for a static Hamiltonian the time-
evolved state that satisfies Schrodinger equation reads :

U () =0 (0)). (4.27)

The most straightforward way to do so is to take a small time step A; and consider a
truncated Taylor expansion of the exponential, such that
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AL, AL

Taking the first s orders in the Taylor expansion guarantees a scheme locally of order
O(A}). This scheme can be efficiently implemented recalling that the Hamiltonian H
is sparse, and that we can efficiently compute products of H with a given vector:

|0') = H|T). (4.29)

A simple iterative scheme that realizes the Taylor expansion numerically is given by the
following recursion formula:

—iA; ~

Ty) = A H|Ty1) (4.30)
[Ag) = [Ap-1) +[Th), (4.31)
for Kk = 1,2,...s, up to the maximum truncation order chosen, and with zero-order

conditions |I'g) = |Ag) = |¥(¢)). Then we have
U(t+ Ay)) = |Ag). (4.32)

This scheme is particularly memory friendly, because it needs to store at most two
vectors: |Ay) and |T'y).

4.4 The Trotter-Suzuki decomposition

We now present an alternative numerical scheme which, at variance with the previous
Taylor series, explicitly preserves the unitary character of the Hamiltonian evolution.
To derive this scheme, we introduce one of the most important tools in computational
quantum physics: the Trotter-Suzuki decomposition.'

To do this we split the Hamiltonian into a sum of K non-commuting terms H =
Zszl hi. The splitting is done in such a way that the exponential of the individual
terms, ik , can be easily computed. The time evolution operator exp(—z’I:I Ay) for
a small time step 4A; is then decomposed into multiple products of the non-commuting
terms in the Hamiltonian. To first order, the Trotter-Suzuki decomposition for a small
time step A, is ) )

exp(—iHA,) = e7MBe g7 L O(A2). (4.33)

The second order version of this formula reads
A A 2 A 2 A 2 A
exp(—iHA,) = e M5 emhK T emihk S TS L O(AD). (4.34)
For the special case with K = 2 terms this expression simplifies to

exp(—z'I:IAt) — M B/2—ihalr g—ih1 Ar/2 (4.35)

'H. F. Trotter, On the product of semi-groups of operators, Proc. Amer. Math. Soc. 10, 545 (1959);
M. Suzuki, Generalized Trotter’s formula and systematic approximants of exponential operators and
inner derivations with applications to many-body problems, Commun. Math. Phys. 51, 183 (1976).
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by combining the two terms eihaAe/2g=ihale/2 jnp e—ih2de By similarly combining the
terms e~ A/ 2e=h1 A2 ariging from two adjacent time steps into e~*14¢ one ultimately
needs only one single additional terms for the full time evolution, when compared to
the first order approximation. At second order, the full time evolution for K = 2 indeed

reads

eXp(—ZHt) ~ e—zhlAt/Qe—zthte—zhlAt/2 % e—zhlAt/Qe—zthte—zhlAt/Q o (436)

e_iillAt/Q o e—iiLzAte—iﬁlAt . e_iiLQAte_iﬁlAt/z. (437)

4.4.1 Time evolution for the transverse field Ising model

To implement time evolution in the transverse field Ising model we split the Hamiltonian
into K = 2 non-commuting terms. The first one is the the transverse field term

H,=-TY o6}, (4.38)

H. = Jm6i67, (4.39)

We will now see that each of these terms can be easily exponentiated.
The transverse field term splits into N commuting terms for each of the spins:

_A o . A . AT
e iHy Ay ezAthl &t _ HezAtFal ] (44())
l

Each of the terms in the product above can be written explicitly in Kronecker product
form:

~

GO — [Ty <cos(AtF) (2) + z‘sin(AtF)c}x) ® 12V, (4.41)

The Ising term instead is diagonal, and the exponentiation is particularly simple, yield-
ing a diagonal matrix:

e A 5150 sy) = H e A ImIIn 5155 ). (4.42)

(tm)

We can further write this as a sum of Kronecker products, noticing that (the proof is
left as an exercise)

e~ = cosOI(2N) — isin 06767, (4.43)

thus each term in the product H(l,m> e~ AeJmsism can be easily applied recalling the
explicit Kronecker product form of 6; and o¢7,.

Overall, then both the diagonal and the off diagonal terms can easily be applied to
a wave function in a similar way as we did for the multiplication with the Hamiltonian
H. We will implement time evolution for the TFIM in the exercises.
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Table 4.1: Time and memory complexity for operations on sparse and dense M x M

matrices
operation time memory
storage
dense matrix — M?
sparse matrix — O(M)
matrix-vector multiplication
dense matrix O(M?) O(M?)
sparse matrix O(M) O(M)
matrix-matrix multiplication
dense matrix O(M!mT/1n2) O(N?)
sparse matrix O(M)...O(M?) | O(M)...O(M?)
all eigen values and vectors
dense matrix O(M?3) O(M?)
sparse matrix (iterative) O(M?) O(M?)
some eigen values and vectors
dense matrix (iterative) O(M?) O(M?)
sparse matrix (iterative) O(M) O(M)

4.5 Appendix: The Lanczos algorithm

Sparse matrices with only O(M) non-zero elements are very common in scientific sim-
ulations. We have seen in this Chapter that many-body quantum Hamiltonians belong
to the class of sparse matrices, and that for typical spin models one has M ~ 2V N@,
for some small power a.

The importance of sparsity becomes obvious when considering the cost of matrix
operations as listed in table 4.1. For large M the sparsity leads to memory and time
savings of several orders of magnitude.

Here we will discuss the iterative calculation of a few of the extreme eigenvalues of
a matrix by the Lanczos algorithm. Similar methods can be used to solve sparse linear
systems of equations.

4.5.1 Finding eigenvectors

While finding the eigenvectors of the tridiagonal Lanczos matrix T is a relatively easy
computational task, however these are not directly the eigenvectors of the original
matrix H, since they are given in the (much smaller) Krylov basis {vy, vs, ..., vp}. To
obtain the eigenvectors in the original basis we need to perform a basis transformation.

Due to memory constraints we usually do not store all the v;, but only the last three
vectors. To transform the eigenvector to the original basis we have to do the Lanczos
iterations a second time. Starting from the same initial vector v; we construct the
vectors v; iteratively and perform the basis transformation as we go along.
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4.5.2 Roundoff errors and ghosts in the Lanczos algorithm

In exact arithmetic the vectors {v;} are orthogonal and the Lanczos iterations stop after
at most M — 1 steps. The eigenvalues of T are then the exact eigenvalues of H.

Roundoff errors in finite precision however cause a loss of orthogonality. There are
two ways to deal with that:

e Re-orthogonalization of the vectors after every step. This requires storing all of
the vectors {v;} and is memory intensive.

e Control of the effects of roundoff.

We will discuss the second solution as it is faster and needs less memory. The main
effect of roundoff errors is that the matrix 7" contains extra spurious eigenvalues, called
“chosts”. These ghosts are not real eigenvalues of A. However they converge towards
real eigenvalues of A over time and increase their multiplicities.

A simple criterion distinguishes ghosts from real eigenvalues. Ghosts are caused by
roundoff errors. Thus they do not depend on on the starting vector v;. As a consequence
these ghosts are also eigenvalues of the matrix Q(”), which can be obtained from 7' by
deleting the first row and column:

ay B3 0 o 0
f3 az o
QWi=109 . . . 0] (4.44)
Lo B
0 - 0 Bn an

From these arguments we derive the following heuristic criterion to distinguish ghosts
from real eigenvalues:

e All multiple eigenvalues are real, but their multiplicities might be too large.

e All single eigenvalues of T which are not eigenvalues of T are also real.

4.5.3 Open-source implementations

Numerically stable and efficient implementations of the Lanczos algorithm can be ob-
tained as part of open-source packages.

For Python users, we strongly suggest to use SciPy (in particular scipy.sparse.linalg)
which performs Lanczos/Arnoldi calling an efficient, C-coded backend. These routines
allow to diagonalize directly sparse matrices defined within scipy. Alternatively, and
in order to avoid storing the sparse matrix, one can also define its own Matrix-Vector
multiplication using scipy.sparse.linalg.LinearOperator, and then obtain the eigenvalues
and eigenvectors with a call to scipy.sparse.linalg.eigsh.

For C++ users, we strongly suggest the use of the EIGEN library? in conjunction
with SPECTRA?. Both libraries are header-only, require almost no installation effort

http://eigen.tuxfamily.org/
3http://yixuan.cos.name/spectra/
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(apart from downloading it), and are very efficient. SPECTRA handles the Lanc-
zos/Arnoldi algorithm, and just needs the user to implement a function implementing
the Matrix-Vector multiplication, with minor modifications with respect to the one

previously discussed in the Lecture.
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Chapter 5

Indistinguishable particles:
fermions and bosons

5.1 Introduction

We have seen at the beginning of this course that the complete quanto-mechanical de-
scription of a single particle is given by its wave function (¢ |v) = (7)), where ¢ is
a chosen coordinate (say the position or the momentum of the particle, for example).
Single-particle wave functions live in the function space L2, which, among others, en-
sures that wave-functions are normalizable. Without loss of generality, we can pick
from this space a set of orthonormal functions ¢,(q), satisfying

[dwz@n@ = b (5.1)
> e Deald) = 87—, (5.2)

and such that any 1(q) can be written as a linear combination of those basis functions.

What happens now if we want to describe a many-particle system? We have seen in
the case of many-spins systems that we should start by considering the tensor product
of the individual Hilbert spaces. For example, a two-particle system would live in the
space L? ® L?, and its wave function

UG, &), (5.3)

D@, @) = 01(@)e1 (@) (5.4)
NG D) = 61(d@)da(D)
&

(G0 = 6(@)

This basis set, albeit completely acceptable, is not the most practical one to describe
physical systems of many-particles. The reason is that in most situations we deal with
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an indistinguishable set of particles’. For example, electrons or photons are indistin-
guishable: there is no serial number painted on the electrons that would allow us to
distinguish two electrons. As a consequence, the only physical basis states are only
those that have the correct particle-exchange symmetries. If we exchange the label of
two particles, the system must be the same as before.

For our two-body wave-function example, this means that

w((fmlﬁ) = €i¢¢((fhffz)a (5-5>

since upon exchanging the two particles the wave function needs to be identical, up to
a phase factor e’®. In three dimensions the first homotopy group is trivial and after
doing two exchanges we need to be back at the original wave function”

W1, @) = €Y@, @) = (T, B), (5.6)

and hence € = +1:
(G, ¢1) = EP(q1, B2) (5.7)

The many-body Hilbert space can thus be split into orthogonal subspaces, one in which
particles pick up a — sign and are called fermions, and the other where particles pick
up a + sign and are called bosons.

One of the major consequences of the exchange symmetry is that no two fermions
can be in the same state as a wave function. Consider for example the state

NG, B) = 61 (7)1 (D), (5.8)

which is completely symmetric with respect to particle exchange ¢; <> ¢, therefore any
attempt to anti-symmetrize leads to a vanishing state:

Antisymm[6 (@1, )] = ¢1(3)¢1(%) — d1(@)én (G) = 0. (5.9)

This is known as Pauli principle.

5.2 The Fock space

Generic elements in the tensor-product space spanned by the functions in (5.4) do not
satisfy the physical requirements of exchange symmetry. For example, the state

oSG, ) # 105 (@, @), (5.10)

and it is not physically allowed.

!There are fundamental reasons why classical and quantum particles are taken to be indistinguish-
able. One of the most striking arguments comes from the Gibbs paradox in thermodynamics: the
entropy of an ideal gas would not be extensive if particles were distinguishable.

2 As a side remark we want to mention that in two dimensions the first homotopy group is Z and non-
trivial: it matters whether we move the particles clock-wise or anti-clock wise when exchanging them,
and two clock-wise exchanges are not the identity anymore. Then more general, anyonic, statistics are
possible.
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It is therefore more convenient to work in a space where symmetrization properties
are taken into account from the very beginning. The Hilbert space describing a quantum
many-body system with NV =0, 1,..., 0o identical particles is called the Fock space. It
is the direct sum of the appropriately symmetrized N-particle Hilbert spaces (made up
from single-particle Hilbert spaces) H:

P seH=N (5.11)
N=0

where S, is the symmetrization operator used for bosons and S_ is the anti-symmetrization
operator used for fermions.

5.2.1 Fermions

For Fermions the basis wave functions have to be antisymmetric under exchange of any
two particles. If we have NV fermions and L states, a basis state for the Fock space is fully
specified by the ket of occupation numbers |n; ...ny) of the single-particle states. Since
no two fermions cannot occupy the same state the occupation numbers are restricted
to n; = 0 or 1. Moreover, since the total number of particles is conserved we must have
SEn; = N.

The wave function of the state |nq,...,np) is given by the appropriately anti-
symmetrized and normalized product of the single particle wave functions.

For example, the two-particle basis state |1, 1) has wave function

1

V2

In general, a Fermionic basis state in Fock space takes the form of a Slater determinant

(@1, 211,1) = —=[01(q1) P2(R2) — D1(G2)P2(q1)] - (5.12)

¢a1((ﬁ) ¢a1(C7N)
L ¢a2(_i) ¢a2(_’N)

<(71,...(7N|TL1,...TLL> == m . . : )
Gan (@1) -+ Pay(dN)

(5.13)

where the occupied single-particle states (also called orbitals) are 1 < a3 < ag < -+ <
ay < L, such that n,, # 0. The states |ny,...n.) are trivially anti-symmetric under
exchange of two particles, because of the property of the determinant (i.e., exchanging
two columns of the matrix leads to a factor —1).

5.2.2 Spinful fermions

Fermions, such as electrons, usually have a spin-1/2 degree of freedom in addition
to their orbital wave function. The full wave function as a function of a generalized
coordinate ¢ = (Z, o) including both position ¥ and spin o.
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5.2.3 Bosons

For Bosons instead a general basis function in Fock space needs to be symmetric under
permutations. If we have N Bosons and L states, a basis state for the Fock space is
again fully specified by the ket of occupation numbers |n; ...n.) of the single-particle
states. At variance with Fermions, however, the occupation numbers can take any
arbitrary value n; = 0,... N, provided that the total number of particles is conserved,
ie. ZZL n; = N.

The wave function of the state |ny, ..., np) is given by the appropriately symmetrized
and normalized product of the single particle wave functions.

For example, the two-particle basis state |1, 1) has wave function

1
V2

In general, a Fermionic basis state in Fock space takes the form of a matrix permanent

(@1, @1,1) = [01(q1)2(G2) + b1(q2)P2(q1)] - (5.14)

<§17 SR JN|n17 s nL> oy Peri ‘ . ) (515>

bon(@) - Gun (@)

where the occupied single-particle states arel < a; < ay < --- < ay < L, such that
ne, 7 0 and the same state can be occupied by more than a particle.

5.3 Creation and annihilation operators

Since it is very cumbersome to work with appropriately symmetrized many body wave
functions, we will mainly use the formalism of second quantization and work with
creation and annihilation operators which directly operate in Fock space.

5.3.1 Fermionic operators

Let us start introducing the creation, ¢, and annihilation, ¢, operators which add or
remove, respectively, a fermion in state 7.

The hermitian operator é'¢; first annihilates then creates a particle in state 4, and,
analogously to the harmonic oscillator case we have already seen, it counts how many
fermions occupy a given state, i.e.

We therefore have
éléng =0) = 0 (5.17)
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On the other hand, the operator é¢;' first creates than destroys a particle in state 4,
and we have

¢iéfng =0) = |n; =0) (5.19)
Giéifing =1) = 0, (5.20)

where the last relation comes from the Pauli principle. Summing the two cases, we
obtain

which leads to the identity
{é,a"y =1, (5.22)

where {a,b} = ab + ba, denotes the anti-commutator. We have thus found that the
fermionic operators anti-commute. In addition, since we cannot create nor destroy two
fermions in the same state, we have

{et. et = o (5.24)

When acting on a Fock state, say of two fermions, we have

giel|oy = |ni=1,n;=1) (5.25)
déto)y = |ny=1,n=1), (5.26)

however we know that if we exchange labels to the orbitals in the Slater determinant
the state picks a minus sign, therefore

=L =1) = —ln=1n;=1), (5.27)

and we can conclude that it must be

Glet = —¢té, (5.28)
or equivalently
{at, ¢ = o (5.29)
Moreover,
= —Glni=1,n;=1) (5.31)
and
Glaln=1) = &fl0) (5.33)
= |n; =1). (5.34)
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which again summing up the two equations leads to

{é,¢F = 0. (5.35)
All these commutation relations can be recast in the compact form
{éi, é]T} = (5,’73‘, (536)
{6, = 0, (5.37)
{et ¢ = 0. (5.38)
5.3.1.1 Normal ordering
The basis state |nq,...,n.) in the occupation number basis can easily be expressed in
terms of creation operators:
L
naome) = [J@N™10) = @Hm(@he--- (o) (5.39)
i=1

The order in which we apply the creation operators is extremely important, since
the fermionic creation operators anti-commute and, for example, ¢,7é,0) = —¢,7¢,1|0).
We thus need to agree on a specific ordering of the creation operators to define what
we mean by the state |ny,...,ng). The choice of ordering does not matter but we have
to stay consistent and use e.g. the convention in equation (5.39).

Once the normal ordering is defined, we can derive the expressions for the matrix
elements of the creation and annihilation operators in that basis. Using above normal
ordering the matrix elements are

Y=y, — 1, ng) (5.40)

éilnla-‘-unia"'7n[z> = 6711:71(
| iy, s+ L), (5.A41)

—1
éﬂnl,...,ni,...,nm = 5n 0(—1

(2]

where the minus signs come from commuting the annihilation and creation operator to
the correct position in the normal ordered product.

5.3.2 Bosonic operators

The same procedure can be carried on for Bosons, introducing creation l;ZT and annihi-
lation operators b;. The most notable difference is that in this case the Pauli principle
does not hold, and different commutation relations are found. In particular, one can
show that

(0,01 = 6, (5.42)
[bi,b;] = 0, (5.43)
bty
[b;,0]] = 0, (5.44)
and that the bosonic operators act on Fock states as
I;i|n1, ce Ny omp) = /Mgy, oo — 1,000, (5.45)
bilng,...ni...n) = Vni+1ng,...ni+1,....nz). (5.46)

42



Notice that at variance with fermions in the previous expression we have extra factors
to take into account, to guarantee the normalization of the Fock states.
A generic Fock state can be then written as

Lo ity E\n1 (BT \ne2 N7
|n1,...,nL>:H%|o>:(312_1!(\[’/22_2!---(%|0> NN

and since creation operators on different states commute, in this case we do not need
to stick to any specific normal ordering.
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5.4 Exact diagonalization

Exact diagonalization for identical particles is very similar to what we have already done
for spins. In the following we will see specific examples for fermions, which however
already contains all the necessary ingredients.

5.4.1 Bosons

Bosons are conceptually identical to spins, in the sense that in practical applications
we can think of truncating the local Hilbert space and set up a maximum occupation
number, d such that 0 < n; < d. Then, in this representation the bosonic operators
have a very simple explicit form, for example:

by = I(d)®.. [(debxI(d) ... 1(d), (5.48)
N— S—
i—1 terms L—i terms

with, for example, the destruction operator a d x d matrix:

0 V1 0
0 0 V2

0 0 0

S
I

0
0
0 , (5.49)
Do : . Wd
0O 0 0 0 0
and ZSZ is instead just the transpose of b;.
With this explicit writing of bosonic operators in terms of Kronecker products, we

can then write any bosonic Hamiltonian using the same strategy adopted for spins in
the previous Chapter.

5.4.2 Fermions

For Fermions, the situation is slightly more complicated, because we have to take into
account the normal ordering of the operators, as discussed previously. However, Jordan
and Wigner realized that fermionic operators can be mapped onto spin operators, with
a relatively simple trick. The main idea of these mappings is to identify the local
occupation numbers n; = (0,1) with the local spin numbers s; = (1, —1) in such a way
that the number operator maps onto the 6* operator:

=

ﬁi|n1,...,ni,...,nL> — 5 ’51,...787;,...,SL>, (550)
then we have that
éi|n1, NN T 77’LL> = 5ni71(_1)n1 ce (—1)”"*1|n1, N 1, cee ,TLL> (551)
— °®..0°067QI®--®1|s1,...,8,...,50)(5.52)
i1t L—it
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where we have introduced the usual raising and lowering spin operators:

. 0t EioY
O':t—

= —. 5.53
s (55)
With the prescription
G = 60°@6°...00ctelel o1, (5.54)
i—1 terms L—i terms

and analogously for its conjugate operator ég, we can therefore write an arbitrary

fermionic Hamiltonian just using Kronecker products of spin operators, and again we
can use all the techniques for sparse matrices described in the previous Chapter.

The mapping derived above is for spinless fermions, however we can also readily
generalize the discussion to the case when spin degrees of freedom are present, most
notably for operators obeying the commutation relations

{63,07 éj}d’} = 5i,j50,0" (555)

We can readily use the Kronecker product expressions found for the spinless case just
increasing the total number of local states:

Nig — N, (5.56)

with k € [1, L x d], with the d the dimension of the local spin space. For example in the
case of spin 1/2 fermions we have o =1, ] , d = 2 and we can work with the following
occupation numbers as a basis:

|nig, may .. o nLy) = NG Ny g, g ), (5.57)

and
Gr — &, (5.58)
iy — Coipq (5.59)

5.4.3 Fixing the number of particles

In most cases of interest the Hamiltonians we work with commute with the total particle
number operator,

N = ) i, (5.60)

this means that H is block-diagonal in the sectors with fixed number of particles. We
can for example exploit this symmetry of the problem to reduce the dimensionality
of the Hilbert space and diagonalize a smaller matrix. We will not describe in detail
strategies to do that in this course. A simple strategy to diagonalize the Hamiltonian
in a fixed symmetry sector consists instead in wisely choosing the initial states for our
iterative diagonalization approaches. For example, in the power method we can choose
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an initial state |ug) such that it is an eigenket of N with the desired number of particles.
For example, we could take any simple product state:

lug) = |n1) ® n2) ®...|ng), (5.61)

with random n; and such that > .n; = N. Then, the power method will yield the
lowest eigenstate of H non-orthogonal to |ug) (remember that we asked the condition
|(Eo|ug)| # 0). Since |ug) however is orthogonal to all eigenstates of the Hamiltonian
that have number of particles different from N, it follows that we will converge to the
ground state with the given fixed number of particles.

5.5 Example Fermionic models

Here we give a few examples of model fermionic Hamiltonian. The simplest case is
certainly the “tight binding” model for spinless fermions

H =Y tyéle;, (5.62)
1,J

where ¢; obey Fermi statistics and ¢;; are some arbitrary coefficients describing transi-
tions between state ¢ and state j. Notice that for the Hamiltonian to be hermitian, we
must have t;; = ¢};, which in particular implies that the diagonal term ¢;; is real. This
model is easily solvable by Fourier transforming it, as there are no interactions.

5.5.1 The Hubbard model

To include effects of electron correlations, the Hubbard model includes only the often
dominant on-site repulsion:

H=Y (tiel ¢j0 +He) + Y Usighi,. (5.63)
(i.3),0 i
The Hubbard model is a long-studied, but except for the 1D case still not completely
understood model for correlated electron systems.

In contrast to band insulators, which are insulators because all bands are either
completely filled or empty, the Hubbard model at large U is insulating at half filling,
when there is one electron per orbital. The reason is the strong Coulomb repulsion U
between the electrons, which prohibit any electron movement in the half filled case at
low temperatures.

5.5.2 The t-J model

The t-J model is the effective model for large U at low temperatures away from half-
filling. Its Hamiltonian is

H=3" [(1 — il (1— o) + H.c} + 5" T5(S0S) — iy /4). (5.64)
(i.d),0 (i.3)

As double-occupancy is prohibited in the ¢-J model there are only three instead of four
states per orbital, greatly reducing the Hilbert space size.
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Chapter 6

Electronic structure of molecules
and atoms

6.1 Introduction

In this chapter we will discuss the arguably most important quantum many body prob-
lem — the electronic structure problem — relevant to predict almost all properties of
matter at human scale. With O(10%®) atoms in a typical piece of matter, the exponen-
tial scaling of the Hilbert space dimension with the number of particles is a nightmare,
and the exact diagonalization schemes discussed previously cannot be applied. In this
Chapter we will set aside for a moment exact solutions, and introduce instead approxi-
mate methods that reduce the problem to a polynomial one, typically scaling like O(N*)
and even O(N) in modern codes that aim for a sparse matrix structure. These methods
map the problem to a single-particle problem and work only as long as correlations
between electrons are weak. This enormous reduction in complexity is however paid for
by a crude approximation of electron correlation effects. This is acceptable for normal
metals, band insulators and semi-conductors but fails in materials with strong electron
correlations, such as almost all transition metal compounds. Being able to numerically
implement approximate methods is however extremely important, since it is often the
case that a fast, qualitatively (but not quantitatively) accurate prediction is desirable.

6.1.1 The electronic structure problem

For many atoms (with the notable exception of Hydrogen and Helium which are so
light that quantum effects are important in daily life), the nuclei of atoms are so much
heavier than the electrons that we can view them as classical particles and can con-
sider them as stationary for the purpose of calculating the properties of the electrons.
This assumption, that neglects the kinetic energy of the nuclei, is known as the Born-
Oppenheimer approximation. The approximation is well justified by the fact that the
mass of a typical nucleus (or its constituent protons and neutrons) is roughly three to
four orders of magnitude larger than the mass of an electron. For example, the proton
mass is approximately 1836 times the electron mass. This large ratio implies that the
nuclei move much more slowly than the electrons, allowing the electrons to adjust al-
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most instantaneously to any change in the positions of the nuclei. Thus, the nuclei can
be regarded as fixed when solving for the electronic structure.
In this framework the electronic Hamiltonian is given by

H= Z <_h_v2 + Veu rz) Z |rz_rj| (6.1)

where the potential of the M atomic nuclei with charges Z;e at the locations R; is given
by

— —¢ Z R, _r’ (6.2)

In the following we will also adopt the followmg notation for the one-body and two-body
parts entering the Hamiltonian:

o (r) = —2h—v2 + Ven (1), (6.3)
bo(r, 1) = ’riM. (6.4)

This separation into one-body and two-body operators is crucial. The operator v (r)
encapsulates both the kinetic energy of the electrons and their interactions with the fixed
nuclei, while 0(r,r’) describes the mutual Coulomb repulsion between electrons. Such
a decomposition lays the groundwork for advanced computational methods and many-
body theories, where the complexity of electron-electron correlations can be tackled
separately from the simpler, effective one-body problems.

6.2 Hamiltonian in second quantization

We have seen in the previous lecture that the natural space for treating identical parti-
cles (like the electrons) is the Fock space. In order to operate efficiently in this space,
we need to be able to write the Hamiltonian operator (6.1) in terms of creation and
annihilation operators. Using a basis set of L orbital wave functions {¢;}, the matrix
elements of the Hamiltonian are

by = / a5 (1) ()6 (r) (6.5)
Viji = /dr/drq§ () oo (r, v ) (r) gy (). (6.6)

In second quantized notation, the Hamiltonian then reads

H th wCJU +5 Z V;Jklcw ]U’Cla’éko‘ (67)

ijo zgklaa

Notice that, mostly as a matter of convention (we like to write interactions with a +
sign in front) the order of the indices in the interaction terms (i, j, 1, k) does not follow
the same order of the indices of interaction matrix (i, 7, k,[). The explicit derivation
of the form (6.5) is straightforward yet rather tedious. We have omitted here, but the
interested reader can find it in full detail in any many-body theory book.
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6.3 Basis functions

Before attempting to solve the many body problem we will discuss suitable basis sets for
single particle wave functions. In realistic applications, using the naive discretization
of space introduced in the first lectures will not be an efficient solution, thus we need
some physical or chemical intuition to guide us in the best choice for the basis sets.
This is also why the basis functions are so tightly connected to the notion of orbital in
chemistry, since a correct choice of the single particle basis directly affects (at least in
simple molecules) the understanding of the electronic structure.

6.3.1 The electron gas

For the free electron gas (Ve, = 0) with Hamilton operator

one of the most commonly adopted basis functions are plane waves
y(r) = exp(—ik - r). (6.9)

Such plane wave basis functions are also commonly used for band structure calculations
of periodic crystals.

At low temperatures the electron gas forms a Wigner crystal. Then a better choice of
basis functions are eigenfunctions of harmonic oscillators centered around the classical
equilibrium positions.

6.3.2 Atoms and molecules

In many practical approaches, the orbitals ¢;(r) used in the evaluation of the matrix
elements

= [droie) ) 6,0), Vi = [[dv [ 1) 65 dalr) () ()
are expressed as linear combinations of atomic orbitals. In this picture, the orbitals are

constructed as
$i(r) =y f(r), (6.10)

where f;(r) denotes an atomic orbital centered on one of the nuclei and «;; are the
expansion coefficients.

A physically motivated choice for the atomic orbitals is guided by the exact solution
of the hydrogen atom. One may choose Slater-Type Orbitals (STOs) defined as

fn,l,m(r7 07 ¢> (8 Tn_le_cr}/lm(ev ¢)7 (611)

where n is the principal quantum number, [ and m are the angular momentum quantum
numbers, ¢ is a parameter controlling the radial decay, and Y;(6, ¢) are the spherical
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harmonics. The factor r"~! ensures the correct cusp behavior at the nucleus and the

exponential e~¢" reproduces the appropriate asymptotic decay.

However, when dealing with multicenter integrals—those involving atomic orbitals
centered on different nuclei—the evaluation of matrix elements becomes challenging
with STOs. For instance, one must compute integrals of the form

—Gilr—Ra| ,—¢lr—Rp|
/ dr & ¢ : (6.12)
v —r'|

where R4 and R denote the positions of two distinct nuclei. These integrals generally
do not admit closed-form solutions.
To circumvent this problem, one often adopts Gaussian-Type Orbitals (GTOs),
defined by
fimn(r) o alym e (6.13)

with nonnegative integers [, m, and n such that [ + m + n corresponds to the orbital’s
total angular momentum. Although GTOs do not capture the nuclear cusp or the
exact asymptotic decay of the electron density, they offer a significant computational
advantage. In particular, the product of two Gaussian functions centered at different
nuclei is itself a Gaussian:

e=GilrRal® =G —Rp® _ fr o~CIr-RI? (6.14)
with
G5 2
K — ¢ Gt ma Rl (6.15)
¢ = GG (6.16)
R R
GRa+ Ry (6.17)
G+ G

Moreover, the Coulomb operator can be recast as an integral over a Gaussian,

1 2 [® S
- a dt —t?|r—r
e —r| V?A ‘

which enables all multicenter integrals to be reduced to combinations of Gaussian inte-
grals that can be evaluated analytically.

| 2
)

(6.18)

6.3.3 Electrons in solids

Neither plane waves nor localized functions are ideal for electrons in solids. The core
electrons are mostly localized and would best be described by localized basis functions
as discussed in Sec. 6.3.2. The valence orbitals, on the other hand, overlap to form
delocalized bands and are better described by a plane wave basis as in Sec. 6.3.1. More
complicated bases sets, like linear augmented plane waves (LAPW), which smoothly
cross over from localized wave function behavior near the nuclei to plane waves in the
region between the atoms are used for such simulations. It is easy to imagine that a
full featured electronic structure code with such basis functions gets very complicated
to code.
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6.3.3.1 Pseudo-potentials

The electrons in inner, fully occupied shells do not contribute in the chemical bindings.
To simplify the calculations they can be replaced by pseudo-potentials, modeling the
inner shells. Only the outer shells (including the valence shells) are then modeled using
basis functions. The pseudo-potentials are chosen such that calculations for isolated
atoms are as accurate as possible.

6.3.4 Other basis sets

There is ongoing development of new basis sets, such as finite element or wavelet based
approaches. One key problem for the simulation of large molecules is that since there
are O(L*) integrals of the type (6.6), quantum chemistry calculations typically scale as
O(N*). A big goal is thus to find smart basis sets and truncation schemes to reduce the
effort to an approximately O(N) method, since the overlap of basis functions at large
distances becomes negligibly small.
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6.4 The Hartree Fock method

6.4.1 The Hartree-Fock approximation

The Hartree-Fock approximation is based on the assumption of independent electrons.
It starts from an ansatz for the N-particle wave function as a Slater determinant of N
single-particle wave functions:

1 9251(1'1701) ¢N(I'1701)
O(ry,005...;0N,08) = —— : : . (6.19)
VAl ¢r(rn,on) o On(rN,oN)

The orthogonal single particle wave functions ¢, are chosen so that the energy of the
state is minimized.

6.4.2 Spinless case

To derive the Hartree-Fock equations it will be easiest to work in a second quantized
notation. Also, for simplicity we will consider at first the spinless case, i.e.

) ¢1(r1) -+ on(r)
(I)(I‘l;...;I‘N):W ¢1<rN> ¢N(:rN> ) (620)

and then the spinful one.

6.4.2.1 Expectation value of the energy

The first goal is to compute the expectation value of the Hamiltonian operator over the
Slater determinant (6.20):

E = (D|H|D), (6.21)
using the fact that the state has the simple expression
@) = eélel.. él|o). (6.22)

In doing so, we are implicitly assuming that the orbitals ¢;(r) defining the Hartree-Fock
wave function are orthonormal, and that by construction each electron occupies the first
N orbitals. In practice, as we will see, the unoccupied orbitals (i.e. those such that
N < i < L do not play a role in the expectation of the energy, thus we can restrict our
attention only to the first occupied ones).

The second-quantized Hamiltonian (6.7) contains the one-body term:

Hy =) téele, (6.23)
ij
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whose expectation value is

(D|H,| D) Ztm (Olén ... erél e .. el o), (6.24)

from which we immediately see that we must have i = j = a , where 1 < a < N is one
of the occupied orbitals. Therefore

N
([H|®) = > taa, (6.25)
a=1
The two-body interaction term is:
= 5 Z ‘/mklcl Clcka (6.26)

zgkl

and the expectation value over the Slater determinant reads :

(®|H,| D) = vakl Olen ... erclelecel .. el o). (6.27)
z]kl

In this expression, we see again that we must have (I, k) = (a,b), where 1 < a < N and
1 < b < N two occupied orbitals with a # b. There are now two possibilities:

1. i =k =a, j =1=>b. This gives rise to the so-called direct term :

AAAAAA foat )
— g Vaban(0|Cn - - clc cbcbcacl .. CN|0) =
a;éb
_INT U e aatata an Pty —
=—= E Visap (06 . .. &18défeacnct .. el 10) =
a;éb
_INT v iae aata ata s P ) —
= — g Vavan(0|¢n - . o cacbcbc1 . EN]0) =
a;éb

1
=5 > Vb (6.28)

ab

2. 1=1=aand j =k = b . This gives rise to the so-called exchange term :

= Zvabba Ol ... eréléjcatae] .. fi]0) =
a;éb
- = ZVabba Oéw ... &éteqcleel . el|o) =
a;éb

1
=—3 > Vapa- (6.29)

a#b
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The total energy therefore simply reads :
1
E = Ztab + 5 Zb (%bab - Vabba) 9 (63())

where we have also eliminated the restriction a # b, since in that case the direct and
exchange terms sum to zero. Notice that the second quantization formalism has allowed
us to compute in a rather straightforward way this expectation value, without the
painful complications that would emerge if we had attacked the wave-function starting
from the definition of the determinant.

We can also try to grasp the physical meaning of the terms entering (6.30). Apart
from the trivial kinetic energy term ) t,q, we have that the interactions lead to the
direct (Hartree) term:

1
Eyg = §vaabab (6.31)

v — |

! 2
= 33 [ o ) (6.32)
ab

2

1 e

- 5/ drdx’p(r) p(x'), (6.33)

v — |

where p(r) is the total electron density in a given point r. This term is just the classical
electrostatic repulsion energy for the charge distribution p(r). On the other hand,
the exchange term leads to a purely quantum term, which does not have a classical
analogy, and it is exclusively due to the anti-symmetrization properties of the fermionic
wave-function.

6.4.3 Spin: Restricted Hartree Fock

We now relax the assumption that we have only spinless fermions. To simplify the dis-
cussion we assume the so-called "closed-shell" conditions, where each orbital is occupied
by both an electron with spin 1 and one with spin | as well as the restricted Hartree
Fock form for the spin-orbitals:

or(r,o) = ¢p(r) X{ (6.34)

i.e. the radial part of the orbital is independent of the spin value. The closed-shell
condition also implies that each radial orbital ¢ (r) is occupied exactly by one spin up
and one spin down. These conditions allow to enormously simplify the expression for
the energy, which becomes:

1
Erur = Z 2laq + 3 Z (2Vabab — Vabba)
a ab

The main difference with respect to the spinless case is that the both the kinetic term
and direct term have an extra factor of 2. This can be understood from the fact that
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in the expectation value of the interaction energy:
(P|Ho| @) =
5 Z ‘/z'jkl<0|éNJ,éNT CuClTCjU jg/clalékUéITégi ce éjwé;vﬂo% (635)
ijkloo’

the exchange term is obtained setting the restriction ¢ = ¢/, whereas the direct term
does not have this restriction and thus pick an extra factor of 2.

6.4.4 The Roothaan-Hall Equations

We have now found a general expression for the HF energy. However, in order to
concretely solve this equation on a computer, we need to express the orbitals in terms of
some known (and fixed) basis set. In particular we concentrate again on the Restricted
Hartree Fock case with closed shells, for which the only unknowns are the spatial parts
of the orbitals. We write those as linear combinations of some other basis orbitals we
have chosen:

k) = > Caklfs). (6.36)
B

We can then express the total energy in terms of the given orbitals |fs), for example
the one-body term reads :

23 ty; = 22 i|01|:) (6.37)
= QZZ >iCsi(fal1]|fa) (6.38)
= ZPMW (6.39)

ap

where we have introduced the so-called "density matrix"
Py = 2 Z . Clai, (6.40)

and the matrix elements of the one-body term in the chosen fixed basis tos = (fa|01]f5)-
A similar calculation for the direct and exchange terms can be carried out (left as
an Exercise) and the energy reads

1_-
EO = Zpagtaﬁ + - Z Pagpfﬂs ( ayBs — 2Va755) (641)
aﬁwi
= 3 Z (tas + Fug) Pag. (6.42)
afB

Where we have introduced the so-called Fock matrix:

1-
Fag = aﬁ + Z ( ayBs — QVO‘WW) . (643)
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Since the energy is now an explicit function of the coefficients C, 3 we can minimize
it in order to find the best possible variational approximation to the ground state wave
function. The only complication here is that we also need to impose that resulting
orbitals are orthonormal

(rldr) = Z 5 Canlfal f) (6.44)

5k;l, (6.45)

thus the energy needs to be minimized by imposing such constraints using a Lagrange
multiplier approach. By performing the minimization explicitly (a straightforward yet
tedious exercise) one finds that the matrix of coefficients have to satisfy the Equation

> (Fup — exSap)Car = 0, (6.46)
B

first derived by Roothaan and Hall in the 1950s. In this Equation we have introduced
Saﬂ = <fa’fﬁ>7 (647)
~ [tz (6.45)

the positive-definite overlap (or Gramian) matrix, which for an orthogonal basis would
simply be the identity, as well as the coefficients ¢, which are the Lagrange multipliers
resulting from imposing the orthogonality condition. A full derivation of this Equation
can be found in quantum chemistry textbooks. Here we just notice that this equation
takes the form of a generalized eigenvalue problem: A|z) = \,B|z).

Since the matrix F, s depends itself on the coefficients C' (the generalized eigen-
vectors), this equation is however intrinsically nonlinear, and cannot be solved "in one
shot". The equation is instead typically solved iteratively, using the previous value of
the coefficients C' in defining the matrix F', solving the generalized eigenvalue problem
for new values of C' etc, until convergence to a fixed point is achieved.

6.4.5 Configuration-Interaction

The approximations used in Hartree-Fock and density functional methods are based
on non-interacting electron pictures. They do not treat correlations and interactions
between electrons correctly. To improve these methods, and to allow the calculation of
excited states, often the “configuration-interaction” (CI) method is used.

Starting from the Hartree-Fock ground state

= ﬂ ¢t]0) (6.49)

one or two of the éL are replaced by other (unoccupied) orbitals ¢

o) = <1+Za de+ Y agyjjcucy) |®). (6.50)

1<J,u<v
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The energies are then minimized using this variational ansatz. In a problem with
N occupied and M empty orbitals this leads to a matrix eigenvalue problem with
dimension 1+ NM + N?M?. Using the Lanczos algorithm the low lying eigenstates can
then be calculated in O((N + M)?) steps.

Further improvements are possible by allowing more than only double-substitutions.
The optimal method treats the full quantum problem of dimension (N + M)!/NIM!.
Quantum chemists call this method “full-CI”. Physicists simplify the Hamilton operator
slightly to obtain simpler models with fewer matrix elements, and call that method
“exact diagonalization”. This method will be discussed later in the course.

6.5 Further Reading

This lecture is meant to give you an overview of the main techniques adopted (mostly)
in Chemistry to find the electronic structure of molecules. The topics we can cover
however are rather limited, and are typically the subject of extensive Quantum Chem-
istry courses, that are beyond the scope of our syllabus. The interested reader can find
most of the technical details we have omitted in this book:

e "Modern Quantum Chemistry" by Attila Szabo and Neil S. Ostlund (especially
chapter 2.4, using the second quantization formalism)
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Chapter 7

Density functional theory

In the previous lecture we have introduced the Electronic Structure problem, and dis-
cussed the Hartree-Fock approximation to solve it.

Another commonly used method, for which the Nobel prize in chemistry was awarded
to Walter Kohn, is the density functional theory. In density functional theory (DFT)
the many-body wave function living in R3"V is replaced by the electron density, which
lives just in R3. Density functional theory again reduces the many body problem to a
one-dimensional problem. In contrast to Hartree-Fock theory it has the advantage that
it could — in principle — be exact if there were not the small problem of the unknown
exchange-correlation functional.

The starting point of our analysis is again the “standard Model” in Condensed
Matter Physics, namely the Hamiltonian

A= Z (——v2 +Ven(ri)) +;ﬁ (7.1)

where we have once more made use of the Born-Oppenheimer approximation, and
considered the interaction with the nuclei as an external potential seen by the electrons,
and depending parametrically on the nuclei positions,
M
2 Zi

Ven<r) = —¢€ Zl m (7.2)

This external potential is what determines basically all the chemical and physical prop-
erties of molecules and materials, and it can be seen as a “non-universal” addition to
the electron gas Hamiltonian

A h2
Heg = rl + Z |rz - I'] (73)

1<j

= 1.+ Wee.

Goal of the DF'T is, in a nutshell, to use some universal features of the electron gas in
order to solve the full Electronic Structure problem.
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7.1 The electron density

DFT is heavily based on the electron density, defined as the expectation value of the
density operator

N
pr) = Do)
i=1
over a given fermionic state U:
N
p(r) = /drldrg coodey [W(ry, o, ... ,rN)\2 Z d(r —r;)
i=1

= N/er...drN\\Il(r,rg,...,rN)\Q,

where we have used the permutation symmetry of the wave-function, and ignored the
spin degrees of freedom (as for the Hartree-Fock, for simplicity we will derive all the
necessary equations in the spinless case). Notice also that these expressions are in first
quantization, and that the density is normalized such that [ drp(r) = N.

7.2 Variational principle for the density

The standard variational principle states that given some state ¥ and a Hamiltonian
H,

(VIH|T) > B,

where Fj is the exact ground-state energy of H, and the equal sign is obtained whenever
U = ¥y, the exact ground-state wave function. We can also state then that the wave-
function satisfies the following minimization problem:

Ey, = mq%n(\IJ]H\\IQ,

where we search for the optimal ¥ that minimizes the functional E[¥] = (U] H |¥)
among the (huge) space of all possible N—body normalized wave-functions. Kohn first
realized that the variational principle can be written in terms of an optimization pro-
cedure for the density itself, instead of the wave-function. This idea can be formulated
following Levy’s constrained-search approach.

We start writing

Ey = min (U| H |¥)

P ¥[p]

where we have separated the minimization over ¥ in a two-step process: first we fix the
density p(r), and minimize over all possible N —body states W[p] which have the density
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p. Then, we do a further minimization over the density. It is clear that this procedure is
completely equivalent to the original formulation of the optimization procedure. Then,
we notice that

(V3 V) [0) = [ deple) Vo), (7.0
= (7.5)

which follows directly from the previous definition of the density operator, and in the
last line we have made explicit that the expectation value of the one-body potential is a
functional of the density. This term indeed does not depend explicitly on ¥[p| (since all
wave-functions W[p| give the same density) and we are left only with the minimization
over the density. Putting the terms together we have

By = min[Flp] + Vaulol] (7.6)

where we have introduced the density functional

Flpl = min(U[p]|T, + Wee|¥[p]).

V(o]

This is the central object of DFT, and it is an universal quantity in the sense that it
does not depend on the external potential V,,(r).

The formulation of the variational principle (7.6) makes our life very easy: instead
of minimizing with respect to the many-body wave functions, we only have to minimize
with respect to the density (a function of just 3 spatial variables) and we obtain both
the ground state energy and the electron density in the ground state — and everything
is exact. This is a tremendous simplification with respect to the original problem of
solving for the ground-state wave-function, which lives in a much higher dimensional
space.

However, the problem is that, while the functional F' is universal, it is also unknown!
Thus for the DFT to be useful, we need to find good approximations for this universal
functional.

7.3 The Kohn-Sham scheme

Kohn and Sham proposed to decompose the density functional as

Flp] = Ex[p] + Enlp] + Evelp)]. (7.7)
The first term reads:
Exlp] = gl[ipr}l<<1>[pllfe|<1>[p]>,

where the minimization is done not all over possible many-body states W[p| at the
given density, but instead on the smaller set of single-particle (Slater determinants)
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wave-functions ®[p] at given density. The Hartree-term E},[p| has an explicit expression
and it is given by the Coulomb repulsion between two electrons:

1 e?
Bulp) = 5 [ driv'nte) ), (78)
as we have also seen in the previous lecture. The exchange- and correlation term F,.[p]
contains instead the remaining unknown contribution, and it is implicitly defined by
Equation (7.7). We will discuss how to approximate it a bit later.

A consequence of this decomposition of the density functional is that we can write
the variational minimization as:

Ey = min [Flp] + Ven[p]

p

:mmhmmm@+wm+mm+ﬁm}

P |2l
— nin i [(OIT.J0) + Volpa] + Bilpal + Eulsl]| . (79

in other words the minimization is done now on all the single-particle wave-functions
which have some density ps. Notice that here we have implicitly assumed that single-
particle wave-functions are able to represent all possible ground-state densities profiles
p(r) generated by the many-body wave-functions. This assumption is reasonable but
hard to prove rigorously.

To calculate the ground state energy (and other properties) we have to minimize
the energy functional in (7.9) with respect to the density.

solving the variational problem

0=6E[p] = / drép(r) (Vm(r) + 2 / dr" rp (_rz’ + 5£’E£/;] + 55;”(5 ]> (7.10)

subject to the constraint that the total electron number to be conserved

/ drsp(r) = 0. (7.11)

Since the minimization is carried over densities coming from single-particle Slater de-
terminant wave-functions, this variational problem is equivalent to solving the Schroedinger
equation for a non-interacting system in an external potential:

1

(- 57"+ Vis()) 0,0) = 000, (712)

where the Kohn-Sham potential of the non-interacting system is

/
Viks(r) = Veu(r) + 62/dr’|:(_rr>_/| + Vie(r), (7.13)
and the exchange-correlation potential is defined by
0 By [P]

Vie(r) = . 7.14
0 ="s (7.14)
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The Equations (7.12) are know as Kohn-Sham equations, and effectively reduce the
many-body problem to the solution of a much simpler one-body problem with an ef-
fective potential Vks(r) = Ven(r) + J(r) + Vie(r). This should be contrasted with the
Hartree-Fock approximation, which we have seen gives rise as well to a one-body prob-
lem but with an effective potential Vyp(r) = V., (r) + J(r) — K(r). Comparing the
two expressions we therefore see that V,.(r) contains both the exchange part (as per
the term /C(r)), but also all the other corrections due to the correlations between the
electrons, which are not captured by the Hartree Fock mean-field treatment.

For some given V,.(r), the non-linear equations (7.12) are solved in the same way
we solved the Hartree-Fock equations. In particular, they are solved iteratively, using
some finite basis to express the unknown Kohn-Sham orbitals ¢,,(r).

7.4 Local Density Approximation

The Kohn-Sham equations discussed so-far are in principle exact. However, the func-
tional E,.[p] and thus the potential V,.(r) is not known, and it was dubbed the stupidity
functional by Richard Feynman, in the sense that we are just moving our original igno-
rance of the many-body system to the ignorance of this functional. To proceed further
we need to introduce approximations for this functional.

The simplest approximation is the “local density approximation” (LDA), which
replaces V. by that of a uniform electron gas with the same density. Instead of taking
a functional E|[p|(r) which could be a function of p(r), Vp(r), VVp(r), ... we ignore all
the gradients and just take the local density

ELPAY) = / drp(r) E<5(p(x)), (7.15)

where E(p) is the exact exchange-correlation energy per particle of the homogeneous
electron gas, (7.3). This approximation is clearly exact for the uniform electron gas (i.e.
in the absence of any external potential) for which the density is constant, since the
total Hamiltonian is translational invariant. In the case in which we have an external
potential, this approximation is expected to work well when the electron density does
not have strong spatial variations (i.e. corrections coming from the gradients of the
density can be neglected).

To proceed further, we need an expression for the exchange-correlation energy E(p)
in the uniform electron gas. Recalling the definition (7.7), we immediately see that

E%[p] = F*[p|
= Elp] + E¥[p] + EEp),

therefore if the exact energy of the electron gas is known, E°¢(p), E%(p) can be found
just subtracting the (known) Hartree term and the kinetic energy of the non-interacting
electrons. In practice, very accurate energies E°(p) (at various values of the density p)
can be obtained from quantum Monte Carlo calculations, and explicit expressions for
E(p) are available.
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The exchange correlation potential is then found doing the functional derivative of
(7.15)

0 Eyelp]
dp(r)
= E(p(r)) + p(r)V,E(p(r)).

Putting all together, one arrives at the following explicit expression for the LDA
exchange and correlation potential:

VPir) =

4 1/3
= ap (?ﬂ p) (7.16)
LDA e (3\7°1
VEPA = —— 5 - [1 + 0.0545r, ln(l + 11.4/7"5)] , (7.17)
B s

where the numerical factors come from fitting the quantum Monte Carlo data for E°¢(p)
to a semi-empirical expression based on many-body perturbation theory.

7.5 Improved approximations

Improvements over the LDA have been an intense field of research in quantum chemistry.
I will just mention two improvements. The “local spin density approximation” (LSDA)
uses separate densities for electrons with spin 1 and |. The “generalized gradient
approximation” (GGA) and its variants use functionals depending not only on the
density, but also on its derivatives.

7.6 Program packages

As the model Hamiltonian and the types of basis sets are essentially the same for all
quantum chemistry applications flexible program packages have been written. There
is thus usually no need to write your own programs — unless you want to implement a
new algorithm.

7.7 Further Reading

Levy’s constrained search is introduced in:
e M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979)
e M. Levy, Phys. Rev. A 26, 1200 (1982)

e [. H. Lieb, Int. J. Quantum Chem. 24, 24 (1983).
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Chapter 8

Variational Monte Carlo and
Stochastic Optimization

In the previous lectures we have extensively made use of the variational principle. This
principle states that

Ey,...0u0) = (U(0y,...00) | H|U(b,,...0u)) > Eo, (8.1)

where W(0; ...0)) is some ansatz wave-function depending on a set of M parameters,
and FEj is the exact ground-state energy of the Hamiltonian H.

Apart from the very special case of mean-field-like ansatz wave-functions (like the
single determinant used in the Hartree-Fock method), it is seldom possible to compute
analytically F(6;,...60y) for a generic variational state W. The goal of this lecture is
to introduce a series of stochastic techniques that allow to obtain accurate estimates
of the variational energies for a given set of parameters p, as well as approaches to
optimize those parameters in order to obtain the best possible ground-state energy
within the given ansatz form. Albeit this approach is principle approximate (since the
chosen form of W might not contain the exact ground-state wave-function) however
modern optimization techniques, in conjunction with modern many-body variational
states encompassing thousands or more variational parameters, effectively allow to solve
for the ground-state properties with very high accuracy.

8.1 Variational Monte Carlo

The Variational Monte Carlo method is rooted into the observation that expectation
values like (8.1) can be written as statistical averages over a suitable probability distribu-
tion. Let us assume that our Hilbert space is spanned by the many-body kets |x). These
in practice depend on the system in exam. For example in the case of spins 1/2 we have
seen that one would typically have |x) = |s153...5sx), whereas for second-quantized
fermions |x) = |njny...ny), for particles in continuous space |x) = |riry...ry), etc.
The only difference is of course that in the first two cases one has a discrete set of
quantum numbers, whereas in the latter case the degrees of freedom are continuos. In
all cases we will denote sums over the Hilbert space with discrete sums, although one
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should always bear in mind that in the case of continuous variables these sums must be
interpreted as integrals. In particular we will use the closure relation > [x)(x| = I.

8.1.1 Stochastic Estimates of Properties

Using the closure relation, we can rewrite a generic quantum expectation value of some
operator O as

X|0)

(wlo|w) Zx,x/<\1f\x><xl0|x’>>< (52)

(ejw) >y (Wx) (x|
Zx,x' U (%) O ¥ (')
> ()

There can be, in general, two cases:

1. The operator O is diagonal in the computational basis, i.e. Oxx = dxxrO(X).

Then
(WO ¥, WP O o
(]T) > [P ()]
= Ep[O(x)], (8.5)
where Ep[...] denote statistical expectation values over the probability distri-

bution I(x) = [¥(x)|* /3, [¥(x)[>. In other words, in this case quantum ex-
pectation values are completely equivalent to averaging over Hilbert-space states
sampled according to the square-modulus of the wave-function.

2. The operator Ois off-diagonal in the computational basis. Then, we can define an
auxiliary diagonal operator (often called, in a somehow misleading fashion, local
operator or estimator)

Oloc<x) = ZOxx/%a (8'6>

such that it is easily seen that
(PIO[¥) 2l Oe(x)

(wjw) S [T )
= En[Ope(x)]. (8.8)

(8.7)

For any observable, then, we can always compute expectation values over arbitrary
wave-functions as statistical averages. In the case of off-diagonal operators, it should
be noticed that the sum ), Oxx/%, is extended to the tiny portion of the Hilbert
space for which x" is such that |Oxx| # 0. As we have already seen when performing
exact diagonalization, matrix elements of physical operators are typically such that they
are row/column sparse, meaning that for fixed x, the number of elements x’ such that
|Oxx'| # 0 is polynomial in the system size. In turn this implies that, for given x, the
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local estimator Ojo.(x) can always be computed in polynomial time, provided also that
computing the amplitudes (x|¥) can be done in polynomial time. In the rest of this
and of the following lectures, we will always restrict our attentions to variational wave
functions that have this property.

While the local estimator can be computed efficiently, however the summations in
S [¥(x)]? are typically not exactly doable, since one has an exponentially large number
of possible values of x on which to perform the summation, and therefore cannot be
done by brute-force. Think for example to the case in which you have |x) = |s155...5x),
a system of N spins 1/2. In that case, the summation over x implies summing over 2V
possible values, which soon becomes unfeasible as NV grows. Similarly, this exponential
grows applies to all the other many-body systems of interest.

The powerful idea of the Variational Monte Carlo (VMC) is exactly to replace these
sums over exponentially many states, with a statistical average over a large but finite
set of states sampled according to the probability distribution I1(x). We therefore have
a way to compute, stochastically, the expectation value of all the properties of interest,
provided we have a way to perform statistical averages efficiently. For example, this
strategy will allow us to compute the expectation value of 67 for a spin system, the
expectation value of éjéj for fermions, or even the expectation value of the interaction
energy We (7 ...7y) for our electronic structure problems.

8.1.1.1 Energy

An immediate corollary of the previously presented scheme, is that also the expectation
value of the Hamiltonian H (which is itself a generic off-diagonal operator) can be
computed using the estimator (8.8). Historically, the local estimator associated to the
Hamiltonian is called “local energy”:
U(x')

Ep(x) = Hyr———=. 8.9
Notice that this expression (and the equivalent above for local estimators) is strictly
valid only for discrete Hilbert spaces. A more general form valid also for continuous
Hilbert spaces is

(x|H]¥)

Eloc(x) = ) (8.10)

8.2 Stochastic Variational Optimization

The final goal we want to achieve here is to optimize the variational energy with respect
to the parameters @ = 61, ...60,;,. We have seen that the expectation value of the energy
can be written as a statistical average of the form

(H) ~ Eg[Eo(x)]- (8.11)

It is easy to show that also the gradient of the energy can be written under to form of
the expectation value of some stochastic variable. In particular, define

Dk (X) agk \If (X)
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D st V(%) Hiow W ()
> [T

89k<1£[> = an

2w WO Hae D)) D U () Di () Hro W (X)
> [T ) > [T ()
2o V) Haoe U (X) 37 W ()| (Di(x) + Di(x))

)
> V)P SN
S b Hoo Dy ()| W) 2 + B, [90)|2 o DE (X)) 52

- SHLTESk !
<H>ZX|W(X)| (Dk(X);rD*( )
> oy [P (x)]
= En[Eioc(x) Di(x)] — En[Eioc(x)]En[ D} (x)] + cc. (8.13)

We can therefore compactly write dp, (H) = En[Gy(x)], with the gradient estimator
being

Gr(x) = 2Re[(Eioc(x) — EulEioc(x)]) Di(x)]- (8.14)

8.2.1 Zero-Variance Property

One of the most interesting feature of the energy and energy-gradient estimators so-
far presented is that they have the so-called zero-variance property: their statistical
fluctuations are exactly zero when sampling from the exact ground-state wave-function.
Let us consider for example

VarH [EIOC(X)] = ]EH[EIOC< )2] - EH[EIOC(X)]2
= Z \Ij Eloc - <H>2

= Z Z Hx7xl\1j(xl) Z HX,X2\II(X2) - <H>2
= Z W(x) Z Hy x, Z Hy e, U (x3) — (H)?

= (0% —(H)*, (8.15)

where we have assumed for simplicity that the wave-function is real. Therefore the
variance of the local energy is an important physical quantity: the energy variance. It is
easy to see that if ¥ is an eigenstate of H then (H?) = (H)2? = E2, and Vary|Eiec(x)] =
0, i.e. the statistical fluctuations completely vanish. This property is very important
since it also implies that, in a sense to be specified below, the closer we get to the
ground-state, the less fluctuations we have on the quantity we want to minimize, the
energy.
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8.2.2 Stochastic Gradient Descent

The gradient descent method is the simplest optimization scheme, where at each itera-
tion ¢ the variational parameters are modified according to

oIl = 0 — oy, (H), (8.16)

where 7 is a (small) parameter called the “learning rate” in the machine learning com-
munity. An important difference with respect to the non-stochastic (deterministic)
gradient descent approach, is that now we only have stochastic averages of the gradient
which is therefore subjected to noise. Let us assume for simplicity that all the compo-
nents of the gradient are subjected to the same amount of gaussian noise with standard
deviation o, i.e.

O (H) = En[Gr(x)] + Normal (0,0), (8.17)

where the variance is due to the fact that we are estimating the gradient using a finite
number of samples, thus for the central limit theorem it will be equal to
Varp [G(x)]
2
ot = ——— 8.18

- (8.13)
We can then compare Eq. 69 to the discretized Langevin equation (for example as
found in Brownian motion):

A = - 60, B(r) + Normal (0, /25T (8.19)

where §; is a small time step, such that the particle positions r(t = 6;i) = r’ evolve in
time under the action of a conservative force (the first term) and a stochastic force, the
second term. It can be shown that the stationary distribution of the Langevin process
is the Boltzmann distribution

_E@®
e T

o = Zay

(8.20)
which in the limit 7" — 0 would converge to the ground-state of the energy potential,
i.e. to min, E(r).

To complete the analogy between stochastic gradient descend and Langevin dynam-
ics, we can identify the parameters and the particle positions, such that

E(r) — E(0) (8.21)
0, E(r) — Ep[Gr(x)] (8.22)
VT s | VenlGel) (5.24)

We therefore see that the variance of the gradient corresponds to the effective temper-
ature

nVarp[Gg(x)] ‘

S

T o (8.25)
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Since we want to find the variational ground state (that corresponds to the state with
Teg = 0 in this analogy), we should have a scheme in which the effective temperature
is gradually decreased at each optimization step, i.e. T} > Tb > T5..., as in the
simulated annealing optimization protocol. Given the form of the effective temperature,
convenient ways to reduce the temperature are either to reduce the learning rate: n(i) =
M0/v/i + 1 or to increase the number of samples N with the iteration count.

During the optimization however it often happens that if we are close enough to
the ground-state solution Varp|[Gg(x)] — 0. Indeed, we have shown before that for an
exact eigenstate the statistical fluctuations of the gradient are exactly vanishing, i.e.
Var[Gy] = 0. In practice then, even a constant number of samples and a fixed (small)
n are sufficient to converge to the ground-state, provided that one checks during the
optimization that the value of the effective temperature (8.25) is actually going to zero
as expected.

8.3 Sampling Methods

Once established this fundamental connection between variational methods, optimiza-
tion of wave functions and statistical sampling, we need an efficient way of sampling
from the probability distribution II(x) = |¥(x)|*, and compute the required expecta-
tion values. In particular the goal is to generate N, samples x( x® . x(s) such that
we can estimate expectation values as averages over those samples, for example for the
local energy:

En[Oe(x)] ~ Nisi:aoc(x@). (8.26)

8.3.1 Markov Chain and Detailed Balance

Devising strategies to sample from a given probability distribution is, in general, a
complex computational task. This task can be simplified if the probability to be sampled
from has a special structure, however in general there is a family of sampling techniques
that are rather universal, and known as Markov-Chain Monte Carlo (MCMC). Here we
review these algorithms, that you have already covered in previous courses.

A Markov chain is completely specified by the transition probability 7 (x® —
x(*1) ie. given a sample x*), we transition to the next element of the chain with
probability T'. The transition probability (as all well-defined probabilities) must always
be normalized: >, T(x — x’) = 1. We would like to devise a Markov chain process
such that II™°(x) = II(x), i.e. that the probability with which a given state x appears
in the chain is equal to desired probability we want to sample from.

An important condition for this to happen is that the probability distribution IT™°(x)
is stationary, i.e. all states along the chain should be distributed according to the same
probability, and this should not change along the chain. A sufficient condition for this
to happen is that

Ox)T(x = x) = )T — x), (8.27)
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which is called detailed balance equation. This condition basically enforces stationarity
(also called micro-reversibility) in the chain: the probability of being in a given state
x and of doing a transition to another state x’ must be equal to the reverse process,
starting from x’ and transitioning to x.

8.3.2 The Metropolis-Hastings Algorithm

There exist many possible transition probabilities that satisfy the detailed balance con-
dition (8.27), however the most famous choice is certainly the Metropolis-Hastings pre-
scription. In this case, we separate the transition process into two steps:

Tx—x) = Tx—=x)A(x — x), (8.28)

i.e. we first propose a state with some (simple) probability distribution T'(x — x’) we
can easily sample from, and then accept or reject the new state x’ as the next element
of the chain with probability A(x — x').

Using the detailed balance condition, we see that the acceptance probability must
satisfy:

Ax — x) _ II(x') y T(x" — x)
A(x! — x) (x) T(x—x)

(8.29)

A possible acceptance that satisfies this condition is:

I(x) T —x)

A(x = x') = min (1, o0 * TS X,)) . (8.30)

Notice that this acceptance probability satisfies (8.29), since if ré((’:)) X % < 1 then
g((::,)) X ;Eii:ig > 1, A(xX' = x) = 1 and (8.29) is trivially verified. The same reasoning
can be applied for the case 1111((’:)) X ;g:;’f; > 1.

The Metropolis-Hasting Algorithm can be then summarized in the following steps:

1. Generate a random state x' drawing from the (simple) transition probability
T(x® — x').

2. Compute the quantity

I(x) T —x%)
R = o] * T 5 ) (8.31)

3. Draw a uniformly distributed random number £ € [0, 1).

4. If R > €, accept the new states, i.e. x(T1) = x’. Otherwise, the following state in
the chain stays the current one: x(+1) = x(),

Notice that steps 2-4 are necessary to decide whether to accept or reject the proposed
state according to the Metropolis probability (8.30).
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8.3.3 Estimating Errors and Auto-Correlation Times

Since Markov chains are generated transitioning from a state to the next one, it is
natural to expect that adjacent points in the chain will be statistically correlated. To
quantify this notion of correlation more precisely, let us first consider the Markov chain
estimate for the expectation value of a given function:

1 &
INe = N > g (8.32)
where we have used the short-hand g; = g(x®). The law of large numbers states that
Jim gy, = T(x)g(x), (8.33)

and the central limit theorem says that gy, is a random variable normally distributed,
Prob(gy,) = Normal(g.,o), (8.34)

with expected value g, and variance o? = Var.[gy,|, where the variance is computed
over different realizations of the Markov chain. It explicitly reads

1 &
Nzgz]
1
= WZ glgj NQ ZE gz

S ’ij

— Ni (NLZ (Ec[g?] — )+ —ZS: Z cl9i9;] — [gi]Ec[gj])>

% i J=1+1

Var.[gy,] = Var,

_ Fvarc %) +zz 093] — Ee[go]Eelgs]) <1—%> (8.35)

where we assumed that the Markov chain is stationary, thus the variance is indepen-
dent on the index 4, i.e. Var.(g;) = Var.(go), and the same for the covariance. Now,
since all Markov chains we are averaging over generate samples from II(x), computing
the variance over the chains is equivalent to computing the variance over II(x), thus
Var.(go) = Varn[g(x)] and

1
Vare(gn,) = 7 Varnlg(x)]27m; (8.36)

having defined the integrated auto-correlation time as

1 - j
= G o B Bl (1) s
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We therefore see that unless the Markov chain samples are completely uncorrelated (i.e.
Eclgs9;] — Ec[gs]Ec[g;] = 0) the statistical error on the estimator g,, is increased by the
positive factor 7.

A way to correctly estimate the integrated autocorrelation time is through the cor-
relation function

o) = (9095) = (9)”
(9%) = (9)*
where (...) here denote averages over the Markov Chain. A numerically stable estimate
of the correlation time is given by

(8.38)

jcut

1 .
Tt §+;p(3), (8.39)

where jeu is chosen for numerical stability as the first j such that p(jmax) < 0. In
practice, given a sequence of estimates gy, ... g,, = g, then the correlation function can
be efficiently estimated with a sequence of Fast Fourier Transforms and its inverses:

A = FFT(g—79), (8.40)

B = AA (8.41)
_ FFT-Y(B)

LT (o (842)

8.4 Examples of spin wave functions

In the following we give two simple examples of variational wave functions for many
spins, specifically considering the Tranverse-Field Ising model, as also introduced earlier
in these lectures. Specifically, we can consider the 1-dimensional hamiltonian

N N
H=-JY 6i6;,-T)Y o (8.43)
=1 =1

8.4.1 Mean-Field Ansatz

We start considering a simple "mean-field" ansatz, that corresponds to taking a wave
function that factorizes:

W) = [B) @) .. D), (8.44)
where
(5159...sn|U) = TIN ®y(sy). (8.45)

In this case, there are M = 2N variational parameters, corresponding to the amplitudes
of the single-spin wave functions: 0y; = ®;(1) and 6y;,1 = ®;(]). Without loss of gener-
ality, since in this case the Hamiltonian is real, we can take the variational parameters
to be real valued.
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Since this wave function is very simple, sampling from it can be done even without
MCMC, by direct sampling. Most notably, we have that the probability density II(s) =
|W(s)|? factorizes:

(s) = ILL,®4(s)% (8.46)

thus a simple strategy to sample from it is to generate each spin s; = (1,]) according
to the probability:

CI)Z'(S)2
(1)? + 2i(1)*

This is nothing but a Bernoulli distribution for the variable s, and a simple algorithm
to sample from it is the following:

pi(s) (8.47)

1. Draw a uniformly distributed random number & € [0, 1)

2. Compute the quantity

e lamp
P = R EOR (8.48)

3. If p; > € then s; =T, otherwise s; =|.

By repeating this algorithm for all spins s;, and for all samples N, we will generate
samples s* = (s, s5...s%). Notice that these are all independent samples, at variance
with MCMC approaches that instead carry a correlation.

The log derivatives are also easily computed, for example

D2i(s> = 532-,?89?%8(;)7 (8'49>
_ 5S¢,T
= CI%'(T) . (8.50)

8.4.2 Jastrow Ansatz

The mean field ansatz is nice and simple, however it does capture any of the correlations
among spins, because of its factorized nature. A systematic way to improve on it is to
consider an ansatz of the Jastrow-Feenberg form

(s182...s5|¥) = exp ZJ(I (s:) +ZJ(2) (si,55)

1<j

Z Jz(f’ iy (Sis Sin - 80,) | (8.51)
'117&%27& Jip

where the variational parameters are the functions Ji(l) (si),Ji(jQ)(si, S5)ye- Jl(lp ) iy (Sivs iy« -

This expansion coincides with the mean field ansatz when p =1 (prove it for yourself,
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assuming the J parameters are not necessarily real-valued), and it is clearly an exact
description of the many-body state when p = N. The main limitation however is that
the number of variational parameters also scales exponentially with p. Nonetheless,
in practice one observes convergence to the exact ground-state much sooner, and it is
often the case that two-body correlations only are enough to very accurately describe
the ground state properties.

For this kind of wave functions, exact sampling is not possible in general, however a
good strategy is to perform MCMC. For the TFIM it is commonly chosen a symmetric
transition probability :

Ts—s) = T —s), (8.52)
such that the Metropolis Hastings ratio simply becomes

I1(s)

R ()

(8.53)

For example a common symmetric transition probability consists in picking a random
spin ¢ with uniform probability in [1, N] and then flip it, such that

s = s+ —58;...5N. (8.54)
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Chapter 9

Machine Learning Methods for
Many-Body Quantum Systems

Machine learning (ML) techniques are the modern answer to one of the most ancient
desires of humanity: devising an Artificial Intelligence capable of independent thinking
and problem solving. The applications of ML are ubiquitous, and you might have
unconsciously made use of one of those. The tasks that can be solved are for example:
language translation, face recognition, game playing. In this Chapter we will discuss
the application of machine learning techniques (ML) as a tool to solve the many-body
Schroedinger’s equation.

9.1 Artificial Neural networks: the machine

There are several pure and applied problems in which the task to be solved whose
solution can be expressed as a complex high-dimensional function. For example, let us
take the case of identifying faces in a picture. To simplify, let us assume that the picture
is monochromatic, and it can be seen, when digitalized, as a a set x = by,by...by of
bits b, = 0,1 (signaling if the given pixel should be black or white). Then, we can
ask a machine to give the probability that in a given picture a certain person exists:
this can be formulated as: find a function Fipage(X) = Pinhere(X). Analogously, other
tasks can be written in this form, like in the case of game playing, where f could be
for example the game policy: given the current set of pieces on a board, call it x, find
the optimal move that will maximize the chance to win the game. The field of ML
is mainly concerned then with the problem of finding compact approximations of such
highly-dimensional functions. This goal is achieved through several learning paradigms,
i.e. ways of using or generating relevant information to find the best functions.

In modern Deep Learning applications, artificial neural networks play a central role.
An artificial neural network is nothing but a highly-dimensional function, composition
of simple one-dimensional functions, and depending on internal parameters. Taking
inspiration from the biology of the brain, the specific functions are taken to be for
example of the logistic/sigmoidal form:



In a feed-forward neural network we would start by taking a linear combination of the
input, to define a new set of variables (which defines the first “layer” of the network):

W = g (Z O bgv) |
a

where the matrix wij) and the bias vector bg»l) are arbitrary parameters. Then, we can
feed those variables into another layer:

agg) = ¢ (Z w,(f)az(l) + b§2)> :

and so on, until we reach the final layer:

i = o (S )

7

= [F(x));

In this sense, the full function can be seen as a nested composition of non-linear vector
functions:

Fxy,20,...x5) = ¢ oW ..0¢®oW@pl) oMy, (9.1)

The size of the matrices at each layer are commonly referred to as the widths of the
neural network, whereas D is referred to as the depth.

As a consequence of the Kolmogorov-Arnold representation theorem [1], it can be
shown that it is possible to represent (almost) arbitrary high dimensional functions in
the form above, provided that the width of the first layer is large enough or that, at fixed
width, the depth L is large enough. In the worst case scenario, the width or depth of the
network can be exponentially large in NV, however in most applications it is found that
polynomially large networks constitute excellent approximations. Barron’s Theorem
further relates the number of nodes in the neural network to the Fourier properties of
the function to be approximated. The number of units is of order

02
Nunits - O(_f>7
€

where € is the desired error on the functional approximation, and C is a constant
related to the smoothness of the function to be approximated. This also shows that
if a function is smooth enough, a relatively small number of “neurons” (nodes in the
network) is sufficient.

9.2 Swupervised Learning

With the machine architecture specified by a set of parameters @ = 6,,...60, (for
example the weights and bias in the previous equations), the remaining task is to find
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a convenient strategy to numerically determine the weights and the structure of the
network. This task is the “learning” aspect of ML. The conceptually simplest approach
to learning is the so-called “supervised learning”.

In this context we assume that a collection of large, pre-existing data x;,xs, ... Xy,
exists, such that it is known in advance what the desired output of the machine should be
on those, i.e. we also know the associated labels: y; = Figea(X;). Goal of the supervised
learning is to find the best neural-network weights such as F(x;0) ~ Figea(x), where
the ideal function is known only at the points in the dataset.

In order to quantify the quality of the machine at doing his task, we can define a
“loss function”:

£O) = 1 D IF(xs0) — il (9.2

which attains a minimum value of zero for perfect reconstruction. The supervised
learning problem is therefore a conceptually simple inference problem or, alternatively,
a non-linear fitting problem.

Learning then amounts to minimizing the loss function with respect to the param-
eters 0, a task that is typically realized with iterative gradient descent techniques.

9.3 Neural-Network quantum states

Given the ability of artificial neural networks to represent complex high-dimensional
functions, in recent years the idea of using them to represent variational wave functions
has emerged. This representation is known as “Neural-Network quantum state” (NQS),
as introduced in [2].

Formally, we set:

(x|T(8)) = F(x;04,...0), (9.3)

where F'is the output of a suitably chosen artificial neural network, depending on a set
of parameters . For example, in the case of spin 1/2 particles previously introduced,
we can choose a neural-network representation W(sy, s, ...sn) = F(s1,59,...5y5). The
only requirement is that the output of the neural network is a (complex-valued, in
general) scalar. This can be achieved for example by taking complex-valued weight
matrices W and constraining the network widths in such a way that the last layer
has a single output.

In practical applications, the most commonly parameterization is not for the ampli-
tudes themselves but rather for the logarithm of the amplitudes, such that:

(x|T(0)) = explFi(x:0,...00)], (9.4)

where F}(0) is a feed-forward network.

9.3.1 The loss function

Given the problem of finding the best variational approximation for the ground state
of a given hamiltonian H, we have seen in the previous chapter that the most natural
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quantity to minimize is the expected valued of the energy, thus we can readily identify
it as the loss function:

(W(O)|H[4(8))
(¥(0)]1(8))
In the previous Chapter, we have discussed at length how this expectation value can

be estimated using Monte Carlo methods, for example Markov-Chain Monte Carlo,
generating Ny samples according to the probability density

[ (x;6)[°

E(8) (9.5)

M0 = = Tuteap 0

E(0) = En|Fic(x)] (9.7)
1 & .

~ E;EHOC(X()). (9.8)

9.4 Taking Gradients

An appealing feature of neural networks is that they can be combined with automatic
differentiation (AD) techniques. These are approaches to automatically compute (nu-
merically exact) gradients of high-dimensional functions.

9.4.1 The BackPropagation algorithm

In the case of feed-forward neural networks, this is typically achieved through the so
called "back-propagation" algorithm.
Let us recall that in a deep network

o’ =0 (=), (9.9)
zj(l) = Z ngl.)agl_l) + b;l), (9.10)
with the “boundary” conditions
AV = (9.11)
P = F(x). (9.12)

For simplicity, and since this is the case relevant for NQS, we are focusing here on
artificial neural networks with a scalar output, thus the last width is equal to 1 and the
index 7 is omitted: a§g)1 =aP).

We then define the sensitivity of the neural network output to a change in the
weighted input as

AV =

J azj(l) ’

(9.13)
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These sensitivity vectors can be efficiently computed in a recursive way, using the chain
rule:

OF

0
A; PO (9.14)
J
(1+1)
= Za—ilazk—z (9.15)
A o
_ ZAHI % (9.16)

6
A0\ £
] 7
0
(141 I+1 (I+1)
- ZA“—<(Z <+’¢<<>+b*) (9.18)
%
(1), (D) 1
= ZA g (), (9.19)
The key to the back—propagatlon algorithm is then the ability to compute these

sensitivities efficiently, which can be realized also noticing that the sensitivity in the
last layer is easy to compute:

_ ZA”” (Z w §”+b§j+”> (9.17)

OF

D) _
Z
D
= o (4"). (9.21)
Thus the algorithm works in two passes:
1. Forward pass: compute and store both a(o) 5 ). ag-D and zj(l), zj( ). z](-D) using

the feed-forward formula (9.1).

2. Backward pass: compute the sensitivities AE»D), A§D_1) e

formula (9.19)

Finally, the gradients of the neural-network output with respect to the parameters
(weights and biases) are simply related to the sensitivities, since

Ag.l) using the recursive

OF aF b 9.2
PO (z '
ob; (% 0z
0F
0z;
= AV, (9.24)
and similarly for gradients with respect to the weights:
O]
az;) B 81;) aZj<Z> (9.25)
Ow;; 0z, Qw;;
= Alg{™Y, (9.26)
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9.4.2 Computing gradients of the energy

The back-propagation algorithm can be readily combined with variational Monte Carlo.
Restricting our attention to real-valued wave function, and using the results of the
previous Chapter, we can write the gradient of the energy as

9 50) = EnlGi(x)

00
= 2IEfH [(Eloc(x) - EH [Eloc(x)]) Dk (X)] )
with

If we now take a parameterization ¥(x) = exp [Fi(x;01,...0))], then

0
Dip(x) = 8—9sz(X; 0),

thus

0 2 , d ,
—_— ~ - (7/) _ . (’l) .
20, E6) ~ N, EZ (Broc(x'") — En[Eic(x))]) 20, F(x";0),

and the last term can be estimated efficiently using the back-propagation method.
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Chapter 10

Time-Dependent Variational
Principle

10.1 Time-Dependent Variational States

The main goal of time-dependent variational methods is to find the optimal (in a sense
to be clarified in the following) description of the time evolution of a state, in terms of
a variational state. In practice, we consider a variational state whose parameters, 0(t),
explicitly depend on time ¢, and such that

[ [0@)]) (1)), (10.1)

where the state |¢(t)) is the exact solution to the time-dependent Schrédinger’s equa-
tion:

12

i lo(t)) = Hlg(r). (10.2)

Notice that here we are taking the case of a time-independent Hamiltonian for sim-
plicity, but the discussion of this Chapter can be readily generalized to time-dependent
Hamiltonians as well.

In order to make progress in this problem, we can imagine that we start our exact
dynamics at time ¢, from the current variational state, and consider a small time step:

(6t +8)) = [6() — iHo|o(t) +O(67). (10.3)
[ [0(1)]) —ifa]w [B(1)]) + O(F) (10.4)

On the other hand, since we have assumed that the variational parameters have a time
dependence, we have that

[0 (0t +6)]) = [0[B)]) +0: ) 6u(t)do, |0 (1) (10.5)

In order for the variational state to be as close as possible to the exact dynamics, we
then need that

(V[0 +0)]) = |o(t+61)) (10.6)
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There several ways to impose that Equation (10.6) is approximately verified, giving

rise to different time-dependent variational principles. In this Lecture, we consider the

variational principle due to McLachlan, that amounts to minimize the distance between

the two states appearing on the left and on the right hand side in the equation above.
We can start by considering the distance between the vector changes to the original

quantum state:

2

A = 16> 0(t)Dp, v [B(1)]) + i6, H|w())] - (10.7)

This quantity is exactly zero if the time-dependent Schroedinger equation is satisfied
exactly by the variational state. In general this is not exactly satisfied, but we can
minimize A? to obtain the best possible variational state that most closely matches the
exact dynamics. Since A? is an explicit function of ék(t), we can proceed to minimizing
it by computing its gradient:

2

A2 : R
5= > " 0k|0o,0) + iH|v) (10.8)
t k
= > Oibi (0o, 0|09, 0) — 1Y Ou(|H|Op00) + 1 Ok(Dp, 0| HIb) +
k' k k
+(W|H?|v), (10.9)
thus
0 A2 . ,
0 %:ek«agk,waekw — i (| H |, 1b) + c.c. (10.10)
with the stationary point given by
> " 0wRe [(99,1]0p, )] = —Reli(dp, | H1)] (10.11)
k,/
= Im(p ¥|H|[1). (10.12)

In addition to minimizing this distance, we should also enforce that the resulting state
conserves the normalization, since the dynamics is unitary. In practice, this can be
either done by adding a suitable Lagrange multiplier, or by considering a variational
parameter that takes into account the normalization of the state:

() = e®Dp(t)). (10.13)
I leave as an exercise to shown that this leads to
> St = Cf, (10.14)
k/

with the superscript R and I denoting the real and imaginary part, respectively, of the
following quantities:
(oW H) (D 010) (VIH[Y)
C, — _ 10.15
S T R CETT R T 019
(09,9100, 00)  (Op, 0[1)()|0p,, 1)
Sk = L Bt 10.16
* (V1) (Wlv)? (10-10)
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The latter quantity is also known in literature as the “quantum geometric tensor” and
plays a fundamental role in setting the metric of associated with variational states.

10.2 Imaginary-time evolution

Up to now, we have considered solutions to the "standard" time-dependent Schrédinger
equation, for the evolution of a quantum state in the physical time ¢. A rather important
tool in computational quantum physics is found solving the Schrodinger equation in the
so-called imaginary-time 7 = it. Let us consider again the case of static Hamiltonian,
then in this case the imaginary-time evolved quantum state reads:

10 (7)) = e A7 |W(0)) . (10.17)

We can immediately notice an important difference with respect to the real (or physical)-
time evolution: in the imaginary-time case, the evolution is no longer unitary and it can,
for example, systematically change the norm of our initial state. One of the reasons why
imaginary-time evolution is important, is that it can be used as an alternative scheme
to find the ground-state of a given hamiltonian H. To show this, we use the spectral
decomposition of the initial state in terms of the eigenstates of the Hamiltonian, |¢)
of energy Fj :

T(r) = e e |gy) . (10.18)

k

We also imagine that we have sorted the eigenstates in ascending order with respect to
the energy, such as that Ey < F; < Es..., and define the energy differences AE;, =
E, — Ey > 0. We then rewrite

() = e 57 |co o) + D e ek o) | - (10.19)

k>0

When the initial state is non-orthogonal to the exact ground-state (i.e. when |¢o| # 0),
the imaginary-time evolution converges to the exact ground state. This can be derived
immediately from the last expression, since in the limit 7 > AFEj the right-hand-side
vanished exponentially. Therefore, apart from an arbitrary normalization, we converge
to the exact ground-state of the system, namely : |¥(7)) =~ |¢o). Imaginary-time
evolution can be then used as an alternative approach to find the exact ground-state of
the system, and can be implemented using the same methods presented before for the
real-time evolution.

10.2.1 Variational Imaginary Time evolution

The discussion on the time dependent variational principle can be extended also to
the case of imaginary time dynamics, and offers an alternative approach to find the
variational ground state of a given Hamiltonian. The main difference is that the varia-
tional parameters are now taken to be dependent on the imaginary time 7and we aim
at finding optimal variational parameters derivatives, such that

[Y[0(T +0-)]) =~ [o(t+07)) (10.20)
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The optimal equation of the solved in this case is found by minimizing the distance
between these two states:

1) = [¥(6)) — 6-H[i(8)) (10.21)
[11) = |(8)) +6, > 6k(7)Ds,]1(6)), (10.22)

which yields a very similar equation of motion:

> Sfbw(r) = —Cf, (10.23)
k/

the main difference being that the right hand side now contains the real part of CY.

10.3 The Dirac-Frenkel variational principle

The time-dependent variational principle derived before (due to McLachlan) is valid for
arbitrary states containing real-valued parameters, 6(t). In the special case in which
the parameters are complex valued instead, we can still solve the equations of motions
as written before, just considering twice as many variational parameters, corresponding
to the real and imaginary part of each complex-valued parameter 0(t) = 0% +if’. In
this sense, the McLachlan variational principle is very general. However, there is an
important family of variational states that depend on complex parameters and that are
holomorphic (complex differentiable). In this context, this implies that the following
Cauchy-Riemann conditions for the wave functions amplitudes derivatives are verified:

ol(x;0) oUl(x;0)

el e (10.24)
Wi (x;0) I (x;0)
507 - (10.25)

Famous examples of holomorphic functions are polynomials, exponentials etc. In this
case, instead of considering the McLachlan equations of motion with twice as many (real-
valued) variational parameters, we can exploit holomorphicity to reduce the equations
of motion to the following form (in the real time evolution case):

> Subi(t) = —iCy. (10.26)
k./

Notice that in this case both the LHS matrix S and the vector C' are complex valued,
as well as the variational parameters derivatives. This version of the time dependent
variational principle was actually discovered significantly before than the (more general)
McLachlan case, and is traditionally attributed to Dirac and Frenkel.
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10.4 Time-Dependent Variational Monte Carlo

In order to implement the time-dependent variational principle (both in real and imagi-
nary time) with generic variational states, we can use an extension of Variational Monte
Carlo. To simplify the equations, we start noticing that we can write the variational

derivatives in terms of Dy (x;0) = 89"135((,);)9) and its associated diagonal operator Dk,
such that:
(99 W(XG)
0p, YV (x;0 = U(x; 0 10.27
U 0) = T X (x:6) (10.27)
= Dp(x;0)V¥(x;0) (10.28)
and
|00, 00(0)) = Dilw(6)). (10.29)

We therefore have that the metric tensor can be estimated as an average of operators,
and estimated as the covariance of the logarithmic derivatives over the Born distribu-
tion:
g _ (WIDLDulv)  IDLIY) (WIDul) 1030)
(¥]¥) (W) (W)
—  Eu[D}(x) Dy (x)] — En[Dj(x)|Ea[ D (x)]. (10.31)

On the other hand the vector C' can be estimated noticing that

(Do, 0| H W) > (VD) (x| H )

A/l bl A 10.32
(1) I — 102

> [ ()2 D () S
— 10.33
1) (10.3)
— EnlDi(x) Bioe(x), (10.34)

thus it also takes the form of a statistical covariance:

Ce = EulDi(x)Bioe(x)] — Eu[D(x))En|Eioe(x)). (10.35)

By comparing this with the results in the previous Lectures, we also notice that the
real part of this vector is proportional to the energy gradient:

i 1g
. EO) = 5ot (10.36)

10.4.1 Overall Algorithm

We summarize now the time-dependent Variational Monte Carlo in the general case of
McLachlan variational principle. First off, we decided wether we want to simulate real
or imaginary time dynamics. Then, the choice made, we go through the following steps:
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0. Start the time evolution by initializing the variational parameters at some given
values 0(0). For example, these could random values, or could be parameters
corresponding to a given state.

Then, at each time step:

1. Generate random samples x(V) . .. xVs) drawing from the probability density I1(x) o

[ (x; 0(1))[%.

2. Compute the quantities Sg and C} as averages over this samples using the ex-
pressions above

3. If doing real time evolution, solve the linear system:

> Shb(t) = Cf, (10.37)
kl

for the vector of unknowns 6, (t). If doing imaginary time evolution, solve instead
the linear system:

> Shbu(r) = —Cf (10.38)
k/

for the vector of unknowns ().

4. Use the time derivatives to update the parameters, for example with a simple
Euler scheme:

Ou(t +6,) = Ou(t) + 6,60(0). (10.39)

In practice, in the last step one rarely uses the simple Euler scheme, because it
would require very small time steps in order to get a stable trajectory. More often,
higher-order integration schemes such as Runge-Kutta are employed. A noticeable
exception is the case of imaginary time evolution, where it is often the case that
the simple Euler scheme is preferred, giving rise to a method known as “Stochas-
tic reconfiguration”, that is commonly adopted as an alternative to stochastic
gradient descent to find the variational ground state of a given Hamiltonian.

10.5 Example: dynamics of a mean-field variational
state

As a relatively simple example of the formalism developed above, let us consider the
case of 2 spins 1/2 on a lattice evolving according to the usual transverse-field Ising
hamiltonian:

A

H = -T'(67+0d5)—Vadjo:, (10.40)
and we consider as an initial state

9(0)) = [Di®]])e (10.41)
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This problem is small enough that it can be solved exactly, however it is instructive to
look at how variational dynamics works. We will consider a time-dependent variational
ansatz of the form

() = LOCTHE)|6(0)), (10.42)

where the variational parameter 0(t) is taken complex valued and it is to be determined
by solving the corresponding equations of motion. The explicit form of the variational
state is by construction factorized

[B(t) = |2(O)h ®[D(2))2, (10.43)
with
|D(t))r = cosh(0(t))] 4)xk + sinh(0(2))] T)«. (10.44)

Because of the simple variational form, we can also determine the variational derivatives
easily.

00(1)) = (07 +63) [¢(1))- (10.45)

Since the ansatz contains a complex parameter, §(t), and its amplitudes are holomorphic
(prove it!), we can solve the Dirac-Frenkel equations of motion, Eq. (10.26). The matrix
S in this case is then just a scalar and reads:

(Opt(1)|0et (1)) — [ ()|Opw (1)) P = 2+ 2(67)(63) — [{67) + (63)]* (10.46)
= 2—2(67)% (10.47)

Analogous equations can be derived for the vector C' (which is again just a scalar in
this case). We leave as an exercise the task of solving the equations of motion and
comparing the variational dynamics to the exact one.

In general, one can already expect that if the interactions are small, the variational
dynamics with this simple mean-field ansatz should be accurate.
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Chapter 11

Ground-State Quantum Monte
Carlo

In the previous lectures we have started our journey through Quantum Monte Carlo
methods, introducing the basis concept of stochastic sampling, as well as the Varia-
tional Monte Carlo approach. Even though Variational Monte Carlo is a very powerful
method, in principle it can recover the exact ground-state solution only if a sufficiently
general enough wave-function ansatz is used.

During this Lecture we will see how we can find, in some notable cases, the exact
ground-state solution using a different set of Quantum Monte Carlo techniques.

11.1 Imaginary-Time Evolution

In order to find an exact (and computationally useful) representation of the exact
ground-state wave-function, we start from the imaginary-time evolution of a some given
initial state:

(x[T(r)) = (xleW(0)), (11.1)

where H is the Hamiltonian, 7 is the imaginary-time, and |¥(0)) is some chosen initial
state (for example it might be the best possible variational estimate we have for the
ground-state of H ). We have seen already previously that imaginary-time evolution
converges to the exact ground-state (x|Wy) in the limit 7 > AEy = E; — Ey, provided
that the initial state is non-orthogonal to the exact one i.e. if |(¥q [U(0))|* # 0. A
complete demonstration of this statement has been given in one of the previous chapters.

Goal of today’s lecture is to devise a way to sample exactly, using Monte Carlo
methods, from |(x|¥(7))[%. If we achieve this goal, then all the properties of interest
can be measured using just statistical averages, as already discussed in the case of the
Variational Monte Carlo approach.

11.1.1 Path-Integral Representation

In order to devise a practical sampling scheme, we need to write (x| V(7)) in a way that
is more suitable for computations. The first step is to divide the total imaginary-time
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7 into P small time-steps, such that 7 = P x A,, and use the fact that

e ol (11.2)

~
P times

—rH — e—ATH

[

e

We then derive the path-integral representation of the imaginary time-evolved state as:

(x|¥(r)) = <X!€7ATH--A-€7ATH|\I’A(O)>
— Z<x|e_ATH o _ATH‘X0> (x0 |¥(0))

P times
= ZZ (e emA sy (xaem7 |xo) (o [W(0))
X0 X1 P— ltlmes

= > xle  xpoy) . (xale A xo) (x0 [W(0)),  (11.3)

X0X1...XP_1
where we have inserted P completeness relations . - [x;)(x;| = I, and thus introduced

a set of P imaginary-time dependent quantum numbers X1,Xs,...Xp. We now also
define the propagator:

GA(x,y) = (xle 2 My), (11.4)

and use the naming conventions x = xp, and (xq |[¥(0)) = ¥(xg), thus we have

<X|\I/(T)> = Z \CJAT(XP,XP,I) ...GAT(Xl,XOZ\I’(Xo). (115)
X0X1...XpP_1 Pt‘i?nes

The representation (11.5) is particularly useful because we typically know how to com-
pute controlled numerical approximations of the short-time propagators (11.4).

For example, in most applications the Hamiltonian is the sum of two non-commuting
terms H = Hy + H;, where the first term is diagonal in the chosen basis |x). We can
then use the Trotter decomposition to find:

A (x,y) = (x|e e Mgy 4 O(A2)
= A (x|~ A yy L O(A2)
e~ A GA (x y) + O(A2), (11.6)

or the symmetric second-order approximation:

HO(X)

G¥(xyy) = 77 Gi(xy)e ™

Hy(y)
2

+ O(A?). (11.7)
The important aspect of these decomposition is that, in interesting applications, it
is typically possible to compute GIAT (x,y) exactly, since the Hamiltonian H; can be

efficiently diagonalized.
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11.2 Particles in continuous space

Let us now give a specific example of the path-integral representation, and consider
a system of interacting particles in continuous space, for which we consider again the
general Hamiltonian:

. X ) ) o
H = —%gvﬁi+;%(ri)+2%(ri,rj), (11.8)

1<J

where Vi and V5, are generic one and two-body interaction potential. In this case, the
computational basis denotes all the particle positions, i.e. |x) = |, 75,...7y) and it is
therefore a vector of N 3-dimensional coordinates. On top of that, we must consider the
additional imaginary-time index, i.e. a full state in the path-integral is represented by all
the quantum numbers |x;) = |71, 7}z, ... 7jn), where for each particle we must specify
its position in space at all the discrete times j = 0,1... P. We therefore see that this
representation corresponds to effectively having N particles living in a 4-dimensional
space (with the extra dimension coming from the imaginary time direction).

11.2.1 The Propagator

For the Hamiltonian (12.16), it is easy to derive a short-time propagator using the
Trotter decomposition. In particular, call Ho(X) = >, Vi(7i) +3_,; Va(73, 7), the part

of the Hamiltonian diagonal in the computational basis, and H = —% va V%, the
non-commuting kinetic energy. We then have that the free-particle propagator is:

N P2
Gi(x,y) = (x|e? =i auly)
52
= ILY, (Fle 2 |F)
P2,
= Hﬁilng’y’z}@naﬂeimﬁWm‘)
2

P~ .
— N {x,y,z} . —-A o
= ILL I3 (Tasle™ 7 2m

Poi(n))(Pai(n)[r;)

- LiN Hi]\ilﬂtgx%z} Z e A P%irfln) e Pa?i(n> (rai=rg)
3N/2 2
m (rai —12;)
= | —— Y riew=} o | 11.9
(27rh2AT) i=a P TN 2 m (11.9)

where P, (n) = h%ﬂna are the eigenvalues of the momentum operator along the cartesian

. i Pai(n), . . . .
coordinate o, (ra;|Pai(n)) = €% "= /y/L are the corresponding eigenfunctions. Notice

that here we are assuming that we are dealing with a system having periodic boundary
conditions in a 3 dimensional box of size L x L x L, thus yielding the quantization of the
momentum P, (n). The last line in the equation above is instead obtained approximating
the discrete sum by a continuous integral, yielding the inverse Fourier transform of a
gaussian function.
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For a single, one-dimensional particle, the free propagator is the simple Gaussian:

A m V2 (z — 9)2
GlT(.Z',y) = (m) exp —m . (1110)
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11.3 Path-Integral-Ground-State Monte Carlo

We have derived a representation of the wave-function in terms of sums over a path
of configurations. Quantum Monte Carlo techniques based on this representation
aim at sampling the exact ground-state wave-function, and in particular at sampling
|(x|®¥(7)}|?, which can then be used to compute all the properties of the ground state,
with an approach similar to the Variational method. We restrict now ourselves to
real-valued wave-functions, for which we have:

<X’\IJ(T)>2 = Z \I](X(])GAT (Xo, Xl) R GAT (prl,X) X
{x;x/;}#xp
x GA(x,x'p_1) ... GO (X', X)W (x}), (11.11)

or, doubling the number of imaginary time slices:

X[U(r)? = > W(x0)G (x0,%1)... G (xp_1,Xp)X
{x;j}#xp
X GAT (Xp7 Xp+1) R GAT (Xgp_l, XQP)\I/(XQP). (1112)

11.3.1 Statistical estimators of quantum expectation values

The expression (11.12) can be immediately used to estimate expectation values of some
given observable. Let us concentrate for simplicity on diagonal observables, Oy =
dxxrO(x), for which we have

(IMIO[¥(r)) P x¥(1)*O(x)

(W(r)[¥(r)) 2 (X[¥(7))?

B Z{xj}H(XQ,...,Xgp)O(XP) 1 13)
- Z{Xj} H(Xo,...,Xgp) ’ ( ’

where we have defined

H(Xo, . 7X2p) = ‘I/<X0)GAT (Xo, Xl) c GAT (Xp_l, Xp) X
X GAT (Xp, Xp+1) c. GAT (Xgpfl, Xgp)\P(XQP). (1114)
We immediately see that if we want to interpret the quantum expectation value (11.13),

then the quantity II(xq, ..., Xop) must have the meaning of a probability density, such
that

(¥(r)[O¥ (7))
(W(r)[¥(r))

where Ep[...] denote statistical expectation values over the probability distribution
II(xo, . ..,xap) of the 2P + 1 many-body particle coordinates.

En[O(xp)], (11.15)
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An analogous expression can be derived for the estimator of the energy, using the
fact that the Hamiltonian commutes with the imaginary-time evolution:

W) (@) ()
(W(r)|¥(r)) (W(r)[¥(r)) A
D gy (0, - - ,sz)%
>y (%0, - -, Xap)
Z{xj} I(xq, . .., X2p) Eloc(X2p)
Z{Xj} (xg, . ..,X2p)
= En[Eioc(x2p)], (11.16)

where we have used the local energy, previously introduced when discussing the Varia-
tional Monte Carlo. Slightly reduced statistical fluctuations can be obtained taking the
symmetrized estimator:

()HY() 1 (@mrﬁwﬁww» . <w<f>|efﬁﬁ|\1f<o>>>
(

(W(r)|w(r)) 2 (W(r)[¥(r)) (W(r)|w(r))
= % (EH [Eloc(xo) + EIOC(XQP)]) ) (1117)

i.e. taking the averages of the local energies at the ends of the path, yielding a reduction
in the statistical error on the average of about a factor of 1/ V2.

11.3.1.1 Sign Problem

The exact ground-state properties (Eqs. 11.15,11.16) have the meaning of statistical
averages over a probability distribution whenever I1(xg...x2p) > 0 for all the possible
values of the path configurations. It is easy to show that for particles in continuous space
the sign of II(xg...xyp) is given only by the sign of the product of the wave-function
at the ends of the path: sign(Il(xg...x2p)) = sign [V(xg) X ¥(x2p)].

For bosons, it can be shown that the exact ground state wave-function satisfies
Wo(x) > 0. If we want that |(¥, [¥(0))|* # 0, this also implies that the wave function
at 7 = 0 is positive, thus sign(II(xg...x2p)) > 0. For bosons then we can find all the
exact ground-properties just sampling from the path-integral distribution I1(xg ... X2p).

For fermions, instead, the wave-function W(0) must be antisymmetric with respect to
particle permutations, if we want that [(¥o |¥(0))|* # 0. Therefore, ¥(0) obeys Fermi
statistics and can take both negative and positive values. This means that we cannot
interpret any longer Il as a probability distribution, and we cannot find the exact
ground-state properties (Eqs. 11.15,11.16) using statistical averages. This infamous
situation is known as the sign problem in Quantum Monte Carlo methods.
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11.4 Reptation Quantum Monte Carlo

If we are in the lucky situation that the path-integral density is positive definite, we can
devise a Monte Carlo procedure that samples from II(xo,...,x2p). Here I describe a
method known as “Reptation Quantum Monte Carlo” [1,2], which is one of the easiest
strategies to sample from the path integral. The method is based on Markov Chain
sampling, and therefore is fully specified by the transition probabilities T'(x — x'), of
going from a given path configuration x = Xy ...Xap to a new one X' = xj...X5p

11.4.1 Monte Carlo moves

In the Reptation Quantum Monte Carlo we have two possible moves: one is called the
“Right” move and the other one is called the “Left” move. The move then consists in
the following: first pick at random (with uniform probability) wether to move Left or
Right.

11.4.1.1 Move Right

If we pick the Right direction, the proposed configuration is x’ = x1X5 ... XopX7, Where
Xq is being discarded, and the new configuration x7 is added on the right. To generate
X7 we use as a transition probability the free propagator:

T(Xgp—>XT) = GIAT(XQP,XT), (1118)

which is a Gaussian, and therefore we can easily generate random values for x7.
The acceptance probability for this move can be now computed to be:

AR — min [1’ H(X1X2 .. -XQPXT) T(Xl — XQ) :|

H(XOX1X2 c.. Xgp) T(XQP — XT)

— min {1, igg; 5&3 exp (—%ASR)] , (11.19)

with
ASR = H(](XT> + H()(XQP) — Ho(X()) — H(](Xl).

This expression arises since most of the factors cancel out in the ratios, but for the ratio
of factors at the ends of the path.

Figure 11.1: Example of right move in the Reptation Quantum Monte Carlo. All
configurations are shifted by one position in the path integral, with the leftmost being
discarded and the rightmost being generated with the importance-sampled propagator.
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11.4.1.2 Move Left

If we pick the Left direction, the proposed configuration is X' = X7Xq...Xop_1, Where
Xop is being discarded, and the new configuration x7 is added on the left of the path.
To generate xr we use the transition probability T'(xg — xr) = GfT (xg — xr), and
the acceptance probability now reads:

A, = min |1, ‘I\ij((Z)) \P\I(j}({:’;)l) exp (—%ASL)], (11.20)

with
AS;, = Hy(xr)+ Ho(xo) — Ho(xap—1) — Ho(x2p).

XT

Figure 11.2: Example of left move in the Reptation Quantum Monte Carlo. All con-
figurations are shifted by one position in the path integral, with the rightmost being
discarded and the leftmost being generated with the importance-sampled propagator.

11.4.2 Practical aspects for the implementation

We now discuss some practical aspects useful for the implementation of the algorithm
in the case of particles in continuous space.

In particular, a trial configuration is generated assigning positions to the NV particles,
ie. xp =17,...7y, with a probability 7'(x — x7), as discussed previously.

To generate a trial configuration, starting from the configuration x = 7r,...7y
(which in practice can be either the head or the tail of the path, depending on the
chosen direction for the move), we do the following gaussian moves sampling from the
free-particle propagator:

o= T VAN (11.21)

where Y; is a vector containing 3N independent, normally distributed random numbers.

11.4.2.1 Data Structure

As for almost any algorithm, first of all we have to specify a good data structure to hold
the information we need. In particular, we want to store the path-integral configurations
X0X1Xs . .. Xgp, Where each |x;) = |Fi1,75e,...Tiy). For example in python we might
use a numpy ndarray with shape (2P + 1,N,3) such that r;;, = conf[i,j, a], where
i €1]0,2P+1),j € [0,N) and a € [0,3) is the index corresponding to the spatial
coordinate of the particle.
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11.4.2.2 Putting everything together

At the beginning of our simulation, one typically does the following:

1.

2.

3.

4.

Pick the desired number of particles N
Pick a wave-function ¥(0) for which the local energy can be easily computed
Fix the total imaginary time 7 and the number of time slices P.

Fix the total number of Monte Carlo moves to be done, Ny > 1.

A Monte Carlo move is then given by the following steps:

1.

Generate the random direction d. To do so, take a uniform number u € [0,1),
and if u < 0.5 d = LEFT, otherwise d = RIGHT.

. If d = LEFT generate a trial configuration xy with probability T'(xop — X7),

otherwise if d = RIGHT with probability T'(xsp — X7).

Compu(te th;e ratios entering the acceptance factors: if moving left computeR;, =
W(xy) ¥(xop_ A, : _ W(x) Wix) A

\Ij(xz) \I,(izp)l exp (—TASL), otherwise Rr = \Ij(x;) q/(xQTP) exp (—TASR).
Generate a uniform random number u € [0,1), if Ry > u, then update the path
configurations according to x(t1) = x’, otherwise leave the path unchanged, and

increase the Markov chain counter ¢ by one, i.e. x(+1) = x(),

Measure the quantities of interest, for example compute the local energy on the
end configuration of the path, or any other diagonal observable in the center of
the path (Equations 11.15,11.16) and store these quantities in a vector O®,

At the end of the simulation one then should:

1.

Analyze the vector of observables, computing the average value Ep[O(x)] ~
NLS >, O(x9) and the variance (possibly corrected for correlations in the Markov
chain, as explained in the previous lectures).

Further step to check the convergence to the ground-state wave-function and the effect
of the Trotter splitting are:

1.

Check that the time-step error is small enough, i.e. we can for example do another
simulation with double the number of time slices (half the time step) and see if
En[O(x)] changes significantly beyond the statistical noise.

Check that the 7 is large enough to have approached the ground-state energy.
For example plot (I:I ) computed for values of increasing 7 and see if you find
convergence. This check should be done at parity of time-step, i.e. if for example
we double the total imaginary time, we should equally double the value of P.
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11.5 Importance Sampled Propagator in continuous
space

In production codes, one rarely uses the simple form (11.18) for the transition proba-
bility. In particular, it is much more efficient to use the so-called importance-sampled
propagator, which corresponds to taking a transition probability of the form:

~ 1 \D(XT)

T(x — = ——G* — 11.22
(X XT) ’LU(X) (X’ XT) \I/(X> ) ( )
where w(x) = [ dyG*(x, y)% is a normalization factor. Considering again the case

of particles in continuous space, it can be shown that for sufficiently small time step
one can generate samples from the transition probability above T'(r — r’) by following
the prescription:

ro= T+ AV log (i, T) + VAKX, (11.23)

where Y; is a vector containing 3N independent, normally distributed random numbers.
When using the importance-sampled propagator, one has to change accordingly the
acceptance probabilities, by taking into account the modified transition probability 7.
The resulting acceptance probabilities become:

Ap = min [1, exp (—%ASR)} (11.24)
. . A, -
Ap = min [1,exp (—TASL)} , (11.25)
with, respectively,
AS’R = Eloc(XT) + E100<X2P) - Eloc(XO) - Eloc(xl) (1126)
ASL - EIOC(XT> + E10c<XO) - Eloc(XQP—l) - Eloc(X2P>‘ (1127)

Notice that the effect of taking this specific transition probability is that we have intro-
duced the local energy in the acceptance factors, instead of the diagonal Hamiltonian
Hy. This allows to have much less fluctuations in the weights entering the acceptance
factors, since typically Hy contains diverging terms coming from the Coulomb inter-
actions, that can result in rejecting most of the moves. On the contrary, if the initial
state U is close to the exact ground state, then the fluctuations of the local energy are
very small (see the discussion on the zero-variance principle in the previous lecture).
Therefore, also the fluctuations of AS will be particularly small, and the acceptance
probability very close to 1. This algorithm therefore would sample efficiently ground-
state configurations, without rejection, and correcting for the variational bias of the
initial state.

11.6 Diffusion Quantum Monte Carlo

An alternative approach to implement imaginary-time evolution is the Diffusion Quan-
tum Monte Carlo method (see Ref. [3] for a review). This method is one of the oldest
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Quantum Monte Carlo methods, and it is not based on the Metropolis algorithm. I
will not discuss it during my lecture, mostly because of time constraints. It should
also be noticed that Metropolis-based schemes, like the one discussed at length in this
lecture, are typically superior to the Diffusion Monte Carlo in terms of efficiency on
large systems.
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Chapter 12

Finite-Temperature Quantum
Monte Carlo

In the previous Lecture we have introduced our first path-integral methods. We have
seen that one can obtain an exact representation of the imaginary time evolution, and
then sample from the ground-state wave-function using Monte Carlo techniques. During
this Lecture we will see how similar ideas can be applied to study finite-temperature
properties.

12.1 Thermal Density Matrix

All the static properties of a quantum many-body system in thermal equilibrium are
obtainable from the thermal density matrix. Specifically, the expectation value of an
observable operator O is:

. Tr (Oe‘ﬂﬁ >
0O)=——F—"+ 12.1
(0) = ———7, (12.1)
where the partition function Z is the trace of the unnormalized density matrix:
Z ="Tr (exp <—BI:I>> , (12.2)

and where § = 1/kgT, with kp the Boltzmann’s constant, and 7' the temperature of
the system.

We denote the matrix elements of the unnormalized density matrix in some many-
body basis |x) as:

PP (x,y) = <x ‘exp (—ﬁﬁ) ’ y> : (12.3)

The partition function is the integral of the diagonal matrix elements over all possible
configurations:

Z(NTV)=> p’(x,x), (12.4)

and we have made explicit that in general this quantity depends on the number of parti-
cles, the temperature, and the volume V' in which we assume the particles are confined.
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Comparing Equation (12.3) with the expression for the imaginary-time propagator, in-
troduced in the previous lecture, we see that the density matrix elements coincides with
the propagator of total imaginary-time f3:

Pxy) = G(xy). (12.5)

The inverse temperature then plays here the role of an effective imaginary time. This
important connection allows us to use all the path-integral machinery we have intro-
duced in the previous Lecture.

In particular, we introduce again a small time step A, such that 5 = P x A,, and
write the density matrix in the path-integral form:

IOB(X, y) = Z gAT(Xo, Xl) LGB (Xp_l, XP)J’ (126)
X1.-Xp—1 Parrnes

where we have identified xy = x and xp = y. As explained in the previous lecture, the
representation (12.6) is useful because we typically know how to compute controlled
numerical approximations of the short-time propagators G27(x, x;). In particular, we
have seen that in several interesting applications the Hamiltonian is the sum of two
non-commuting terms, H = Hy + H,, where the first term is diagonal in the chosen
basis |x). In that case we then use the second-order Trotter approximation:

Ho 0(¥)

GA(x,y) = e BGM(x,y)e AT £ O(AY). (12.7)

Using this decomposition, we see that the trace of the density matrix (12.4) takes the
form:

Y P (xox0) = D GP(xe,x1)... G (xp_1,Xo) (12.8)
X0 X0,X1...Xp_1
= Z fo (X0, Xl)e_ATHO(XO) . GlAT (xp_1, xo)e_ATHO(XP(‘PZQ)
X0,X1..-XP—1
= ) IOEGR (i Xip e A0, (12.10)
X0,X1--XP_1
Since we have periodic boundaries in imaginary time, i.e. X, = X, then all points
in the path are equivalent. In this case we can imagine that the paths are closed rings,

whereas in the zero-temperature, ground-state Path-Integral, the paths have open ends
(reptiles with heads and tails).

12.1.1 Computing Properties

Having found an explicit path-integral expression for the thermal density matrix, we
can also express the expectation values of observables in terms of this representation.
For example, the expectation value of a diagonal operator:

Tr (Oe_ﬂﬁ )

0) = — (12.11)

>, P (X0,%0) O(x0)
Zxo p% (x0,X0)

108

(12.12)



If we introduce
(xg,X1,...xp) = IEGE (x4, x4 )e Ao, (12.13)

we can notice that the finite-temperature quantum expectation values, Eq. (12.12), can
be interpreted as statistical expectation values over the distribution II, if this is positive
definite. In the absence of a sign problem, we can therefore write

This estimator can be further improved using the periodic boundaries in the path, i.e.

we can average the estimator over all the points:

(0) = %ZEH[O(Xi)], (12.15)

which ideally leads to a factor 1/ VP improvement in the statistical uncertainty.

12.2 Continuous-Space particles

We specialize now our discussion to the case of particles in continuous space. We
consider again the Hamiltonian for a system of N particles, of coordinates 7,75 ... 7y,
and subjected to both one and two-body interactions:

. N B} L
0 = _%Zi:vﬁJrzi:%(mH;%(n,rj). (12.16)
We first assume that particles, although being identical, are distinguishable. Therefore,
we do not need to impose the Bose or Fermi restriction to the Hilbert space. In section
12.2.1 we will describe the treatment of identical particles obeying Bose statistics.
In this case, the path-integral probability density reads:

(7(3) = 750 +1))°
2A 12 /m

II(xg,X1...Xp) Hf:olﬂj-v:l exp [— e~ At - (12.17)

where we denote 7(i) the position of the j—th particle at discrete imaginary-time 4,
Le. |x;) = |7(2),7(i),...7x (7)) and, again, xp = Xq.

Note that eq. (12.17) represents the Boltzmann weight of a classical system of poly-
mers. Every polymer is a necklace of beads (particles at a given imaginary-time) inter-
acting as if they were connected by ideal springs. This harmonic interaction is due to
the kinetic density matrix. In the Trotter approximation, beads with the same imagi-
nary time index i, i.e., belonging to the same time-slice, interact with the inter-particle
potential Hy(x;). With higher order approximations one generally introduces effective
inter-particle interactions. This is the famous mapping of quantum to classical systems
introduced by Feynman to describe the properties of superfluid helium. Each quantum
particle has been substituted by a classical polymer. The size of polymers is of order
Ar = /2mh%(/m, the de Broglie thermal wave-length, and represents the indetermi-
nation on the position of the corresponding quantum particle. In the section 12.2.1
we will see how the indistinguishability of identical particles modifies the “polymer”
description of the quantum many body system.
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12.2.1 Bose symmetry

The expression (12.17) for the partition function is not symmetrical under particle
exchange, so it holds for distinguishable particles only. In the case of identical particles
satisfying the Bose symmetry, the correct expression should be symmetric under particle
exchange. This means that the physical density matrix is obtained by considering the
bosonic symmetrization:

IaBOSG = S’Eosep/\ﬁ“é’BOSe7 (1218>
here the symmetrizer operator acts on continuous-space kets |x) = |7, 75, ... Tn)
A 1
ShoseX) = 75 > IPx)), (12.19)
P

where P denotes each of the N! permutations of the particle labels; this means that
P(x) = (Fp,, Ppy, - - -, Tpy), Where P;, with ¢ = 1,2,... N, is the particle label in per-
mutation with the i-th particle. The symmetrizer operator is also a projector, hence,
besides being purely real St = S it also satisfies

S%ose = gBose- (1220)

Moreover, since the Hamiltonian is invariant under exchange of particles, we have

[SBosev }AI] = [SBOSE7 eiﬁH] - O, (1221)
thus
ﬁBose = g}goseﬁﬁgBose (1222>
= Pp5Bose (12.23)
= /5SBose- (12.24)

A convenient way to symmetrize the density matrix (12.6) is therefore to sum over
all possible permutations of the particle labels in one of the two arguments of the
unsymmetrized matrix element:

pgose <X17 XQ) = <X1|€_I8ﬁ‘§Bose |X2>
1 .
= WZ<X1|€_5H|7)(X2)> (12.25)
TP
1
= i (. Plx2)). (12.26)
TP

If we trace the symmetrized density matrix eq. (12.25) we obtain the partition function
for identical Bose particles:

1
Zoe NV,T) = 3 / dxo .. dxpTI(xg, %1 . .. xp)3(xp — P(x0)), (12.27)
P
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with the new boundary condition xp = P(xg). As a consequence of symmetrization
the necklaces constituting the polymers are not closed on themselves. The last bead of
the i-th polymer is connected to the first bead of the P;-th world-line (see Fig. 12.1 for
an example of path configuration).

At low temperatures, where the thermal wave-length Ar is comparable to the av-
erage inter-particle distance, large permutations cycles form. These are responsible for
macroscopic quantum phenomena such as superfluidity and Bose-Einstein condensation.

An exact evaluation of the N! addends summed in eq.(12.27) becomes soon unfea-
sible by increasing N. Fortunately, all terms are positive definite, then we can still
arrange a Monte Carlo procedure for the evaluation of eq. (12.27). Most notably, we
can write

(O) = Eny,.[0(x0)], (12.28)
where
HBose(XO; X1...Xp, P) = H(XQ, D G P(XO)), (1229)

were this bosonic path integral distribution contains as an extra argument to be summed
over the (discrete) permutation of the initial bead.

12.2.2 Fermi Simmetry

If we considered Fermi particles, an additional ‘4’ or ‘—’ sign would appear in front of
each term, the former for even permutations, the latter for odd permutations. Specifi-
cally,

HFermi(X07 X1...Xp, P) == <—1)PH<X0, X1... P(Xo))

A Monte Carlo evaluation of the Fermi partition function would lead to an exponentially
small signal to noise ratio going to small 7" and large N. As a consequence of this sign
problem the path-integral calculation becomes unfeasible unless one introduces some
systematic approximations.

No Exchanges One Exchange

Figure 12.1: Example of path-integral configurations for a two-particle system. In the
left path, we have two separate closed polymers (rings) one for particle 1 (red beads)
and one for particle 2 (blue beads). In the right configuration we are sampling instead
a particle exchange between particle 1 and 2. In this case the two polymers become a
single, larger one.
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12.3 Path-Integral Monte Carlo

In this section we describe the Monte Carlo procedure to sample path-integrals.

The Path-Integral Monte Carlo method is again based on Markov Chain sampling,
and therefore is fully specified by the transition probabilities T'(x — x’), of going from

a given path configuration x = x...xp to a new one x' = xj, ... Xp.

In general, we will need both moves that change the particle positions at given
imaginary times (beads), and Monte Carlo moves that sample the permutations. Here
we discuss only the essential steps to build an elementary Path-Integral algorithm. More
advanced moves can be found in Refs. [1, 2, 3] .

12.3.1 Moving a single bead

The simplest move we can imagine starts with randomly picking a discrete imaginary
time ¢, which we sample uniformly in ¢ € [0, P — 1), and a random particle index j €
[1, N]. Then we propose to randomly move the particle (at position 7()), to another
point 7;(z)’. For simplicity we pick a Gaussian transition probability 7'(7(7),7;(4)"),
such that the new particle position is generated according to 7(7)" = 7(%) +Nor1r;al(a).
Here N orrl;al(a) denotes the sum of 3 independent normal distributions, one per spatial
direction. Since in this case the transition probability is symmetric, the acceptance
ratio is just given by the ratio of the two probabilities distribution : II(x")/II(x), with
x' =x¢...X;...xp_y, and xX'; = 71(3),...7;(4)’,...7n(i). The probability to accept the
move is then:

oy [ D50 V4756 7 641))
A, = min |1, — 2, exp [, (Ho () — Ho (x,))]
s 7 WL I O N GO e e R A S 0%
eXp A,

(12.30)
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X9 X9

Figure 12.2: Example of a single-bead move in the Path-Integral Quantum Monte
Carlo. One random bead is picked (in this case bead 1) and it is displaced to a random
configuration with a normal distribution.

12.3.2 Moving multiple beads

The previously describe ‘single bead’ move becomes extremely inefficient when the num-
ber of time-slices P increases (critical slowing down), so one faces ergodicity problems.
A better approach is to reconstruct a larger segment of the path, involving a certain
number of m adjacent (in time) beads. An example of such multi-bead move is depicted
in Figure 12.3.

The most commonly adopted strategy to sample a piece of path is to fix the two
ends (in the example, xo and x4) and generate the missing beads in the middle with a
probability proportional to the free propagator. In the example shown in Figure 12.3,
the transition probability would then correspond to:

Thos (3 =5 ) = G (30, X0 G2 (x4, X3) G2 (x4, 34) G (365, ). (12.31)

This process effectively corresponds to bridging the two ends with a sequence of Gaus-
sians. Since the transition probability samples exactly the free-particle part of the
path-integral weight, it is easy to see that the acceptance probability for this move
depends only on the potential /interaction energy:

o (12.32)

App = min ll,exp

—A, (Z Hy (X)) — Ho (on+j)>]

where j is the initial bead for the bridge, and m is the number of beads that are being
changed by this move (in the example, we would have j, = 0 and m = 3. The remaining
point to be addressed is then just how to to sample points distributed according to the
general transition probability:

Tmb(x — Xl) - HTZOGlAT (X;0+j7 X;0+j+1)a (12'33)
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where we have set x) = x;, and X} |11 = Xjotmr1-

In order to solve this problem, let us for simplicity concentrate on the one-dimensional
case, and address the issue of sampling from a single point 2/, from the probability
Gfl(xA, x’)GlAE (', zp), where we take fixed end points x4 and zp, bridged by a free
propagator of time step Al on the left and a free propagator of time step A2 on the

right. Considering the explicit expressions for the free propagators, we have:

Al NAAZ L 4 —20'v + 2% 2? -2z + 2%
G (2a,2")Gy7 (2", 25) o< exp |- -

2AL 2A2
x exp [—% , (12.34)
where
o = (1/AL +1/A2)7" (12.35)
and
rap = DrTAt 05 (12.36)

Al + A2

Equation (12.34) therefore tells us that to sample a point bridging two fixed ends x4
and xp, we just need to consider a modified Gaussian, whose variance is given Eq.
(12.35) and whose mean value is given by Eq. (12.36). This procedure can be easily
used to reconstruct the full bridge. One starts from the left end (say 24 = =, and z5 =
Tjo+m+1), samples a point .T;OH at imaginary time jo+ 1 using the previously introduced
modified Gaussian, with Al = A and A? = mA,. Then, one advances the left end of
the bridge, fixing now 24 = 2 ,, and sampling 2’ |, with A = (m — 1)A,. We end
this procedure when all the points have been generated. For a complete discussion of
the algorithm we suggest to read Ref. [2] (page 152).

Figure 12.3: Example of a multi-bead move in the Path-Integral Quantum Monte Carlo.
A path segment is randomly picked (in this case from bead 1 to bead 3) and it is
reconstructed using a Gaussian bridge.
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12.3.3 Displacing entire polymers

Even if we allow for the construction of large segments of paths, one can still face
critical slowing down in the sampling. The reason is that if the number of beads
is large, then it takes many moves to significantly displace entire polymers. Let us
consider for simplicity the case in which we ignore particle exchanges. In this case,
what we can do is to pick a random closed polymer j € [1, N|, consider all the particles
in that ring: 7(i) with ¢ = 1,... P and displace them according to (i) = 7;(i) + AR;,
where AR; = Norrrfal(a) is a random variable which is identical for all the beads at
different imaginary-time (i.e. we do a rigid translation of all the polymer corresponding
to particle j). We immediately see that this move does not affect the kinetic part of the
propagator (since it depends only on position differences), but only the part containing
the potential energy. Therefore the acceptance is

Ay = min ll,exp

~A, Z (Ho (75(i) + AR;) — Hy (fj(z)))”. (12.37)

12.3.4 Sampling permutations

Apart from the moves previously described, one has also to sample all the possible
particle permutations xp = Pxy. Any path-integral Monte Carlo methods for bosons
should therefore provide a move which exchanges particles. For example this can be
done cutting two independent polymers, and then connecting them. Sampling per-
mutations with ergodic moves can be rather challenging, and only relatively recently a
powerful algorithm has introduced which efficiently samples permutations for thousands
of particles. This method is the Worm algorithm of Reference [3]. During this Lecture
we will not have the time to discuss in detail how to implement exchange moves, but
the interested student can read the paper [3], where all the several steps to implement
the Worm algorithm are described in detail. Notice that implementing the algorithm
from scratch is a nontrivial task for a beginner in the field, and might require several
weeks of coding and debugging.

12.3.5 Energy expectation value

In 12.1.1 we have seen how to recast thermal expectation values of diagonal observables
in terms of statistical expectation values over the path distribution II(xg,...xp). The
energy per particle, E/N, can be found through its thermodynamic definition. In
particular, E//N is just the S-derivative of the partition function Z:

E(N,V,) 1 0Z(N,V.8)
N  NZ B '
If we apply this derivative to the partition function defined through the path-integral

representation of Eq. (13.7), we obtain the following estimator for the energy per particle
(called thermodynamic estimator):

o d 1
N~ ESAT T 2(A) PN ZZ — 7+ 1) ZHO ()| (12:39)

(12.38)




where d is the system dimensionality. More details, and other energy estimators based
on the Virial theorem can be found in Ref. [1].
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Chapter 13

Path-Integral Monte Carlo for
Lattice Models

In the previous Lecture we have introduced the finite-temperature path-integral Monte
Carlo, and applied it to particles in continuous space. We now want to see how the
path-integral formulation is applied to lattice (spin) models, and how we can devise a
Monte Carlo algorithm to obtain finite-temperature properties.

13.1 Transverse-Field Ising model

The finite-temperature path-integral representation we have derived in the previous
Lecture is completely general, and can be readily generalized to the case of spin sys-
tems. Let us consider once more as an example the transverse-field Ising model in one
dimension:

H = TS 67—JY 6767, (13.1)

for a system of N spins and with periodic boundary conditions 63, = 6§.

As a state vector, we will use the value of the spin projections along the z direction,
le. |x) = |ofos...0%_y), exactly as we have previously done with other techniques
applied to spin models.

13.1.1 Short-Time propagator

The first thing we need to derive a useful path-integral formulation is then the propa-
gator

G (x,y) = (xle 2y, (13.2)

for which we invoke again the second-order Trotter decomposition:

Hop(x) Hy(y)

GAT(X,y) = e‘ATTGfT(X,y)e_A* 2 +(’)(Af). (13.3)
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In this expression we identify the diagonal part: Hy(x) = —) 6767, the classical
energy, and

G (x,y) = (x]er =% y)
I1; <X‘€ATF&§E ‘Y>
= ILgr (07 (x),07(y)), (13.4)

where we have first used the fact that all the different 67 commute (thus the N spin
propagator can be factorized, in the second line) and then introduced the single-spin
propagators
g7 (0%,0%) = (07| exp[AT67] |07
o [ coshT'A. sinhT'A; o
= |( sinhI’'A, coshI'A. ) o)

= 0., coshI'A. +(1—90,. .)sinhT'A,. (13.5)

z z z ¥4
0?0 o%,0

13.1.2 Path-Integral expression

We then consider the thermal density matrix of the system p°® = exp <— BH ) /7, where

B = 1/kgT, with kg the Boltzmann’s constant, and 7" the temperature of the system
and the partition function:

Z =Y p(x0,%). (13.6)

The path-integral expression for the partition function has been derived in the previous
Lecture and reads:

Z o= Y MG (kg xp)e A0, (13.7)

X0.--Xp_—1

with periodic boundaries in imaginary time, i.e. x, = X¢. In this case the path-integral
configurations are completely determined by the value of the i-th spin at each imaginary
time j = 0,... P. We call these values 07}, such that the full many-body configuration at
given imaginary-time is given by x; = 0¢;,07; ..., 0% _1;. The path-integral formulation
then maps the 1D quantum model for N spins onto the 2D classical model for N x P
effective spins.

13.1.3 Classical 2D Ising Model

We can actually do more than that and show that the 2D classical system is a simple
classical Ising model, with some specific couplings. In order to do so, we start notic-
ing that the single-spin propagator can be written as the exponential of an effective
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interaction between the spins 0% and o*:

g2 (0%,07) = exp 1 +o%0” log (coshT'A;) +

5
+ (1 e >log (sinhTA, )} (13.8)

1
2

= exp [aza'zlé [log (coshT'A;) — log (sinh FAT)]} X

1
X exp {5 [log (coshT'A;) + log (sinh FAT)]] (13.9)
— I const, (13.10)
with Jf = Llog(tanhT'A;). From this expression, it is then easy to realize that

that the quantum partition function is completely equivalent to the classical partition
function:

z = Y e (13.11)
{Uiz,j}
= > exp = ) (=A 0} 00+ T 007 00) | - (13.12)
{07} i

The classical energy is therefore simply that of a classical Ising model in 2 dimensions:

N—
E (o (A Jo} 07+ JM07 07 ,.4) (13.13)
=0 j

,_.
'"U
L

<
Il
o

where we have periodic boundary conditions both in the spatial axis (0% = o) and
in the imaginary-time axis (0 = 0¢), and the effective classical inverse temperature is
just f°T = 1. An example of configuration is shown in Figure 13.1.
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Figure 13.1: Example of path-integral configurations for the transverse-field Ising model
in one dimension. The quantum partition function is equivalent to the classical partition
function of a two-dimensional Ising model with couplings A, J along the spatial direction
(vertical axis in the Figure) and J = —Zlog(tanhI’A;) along the imaginary-time
direction (horizontal axis in the Figure). In the Figure, there are N = 3 spins and
P = 4 imaginary-time slices, with periodic boundary conditions along both directions.

13.1.4 Monte Carlo Sampling

Once established the equivalent classical partition function, Eq. (13.11), we can read-
ily devise a Markov-Chain Monte Carlo sampling strategy to generate path-integral
configurations. In particular, any classical Monte Carlo algorithm used to sample the
partition function of the Ising model can be used. One of the simplest approach (albeit
ineffective in the ferromagnetic phase) is to use single spin flip moves.

We can just pick uniformly both a spatial and a time index, respectively i € [0, N)
and j € [0, P) and propose a spin flip for the of; spin. In the new configuration we
would then have afjf o;;, and the acceptance probablhty is readily computed to be:

AS(U%%U;-ZJ{):

eXp[ A ‘]( %i— 1302, +Uw Z-Flj) +Jeﬁ( i 1013+Ulj ZJ+1)]
’eXp[ A J( Ti-1, ”—l—a” Z+13) ‘]eﬁ( Oij— lam—'_awawﬂ)]

= min [1,exp [2A,J (07, jo7,+ 07,071 ;) — 2J° (o7 0l 107+ 05004)]] - (13.14)

= min

13.1.5 Energy Estimator

An estimator for the expectation value of the energy can be immediately found using
again the thermodynamics relation (H)r = —0zlog Z. I leave as an exercise to derive
it in this case.
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13.2 Continuous-Time path integrals

The most remarkable difference between lattice and continuous-space systems is that for
lattice models we can efficiently (and exactly) take the continuous-time limit A, — 0,
whereas for systems in continuous space this is not the case. To see how we can
eventually get rid of the Trotter error, we need to introduce a different representation
of the partition function, based on a perturbative expansion.

The starting point is the Dyson series for the exponential of a matrix:

[ee]

e~AtHoTHY)  _ o—BHo Z(—l)"/dﬁ...dTnﬁl(Tn)...[:Il(Tl),

n=0 < /
0<m << <B

where H, (1) = eTHOﬁle_THO is the time-evolved H; in the so-called "interaction repre-
sentation". The Dyson series is basically the exact summation of all the contributions
in perturbation theory, of order FI? with n = 0,1...00. Notice that the imaginary
times arising in the integrals are t-ordered, ie. 0 <7 < --- <7, < 8. !

As much as we have done for the path-integral representation of the exponential,
we can derive now an expression we can sample from using Monte Carlo. In particular,
we will need now not only to sample over the spin configurations at different imaginary
times, but also over all the possible orders in perturbation theory n, and over all the
possible values of the times. Let us start by considering the first few terms, and inserting
completeness in the middle:

i E .
7 = Z<x0|e-ﬁHoyxo>—Ze—%(xﬂ/ dry (xq| Hy |x1) +
X1 0

X0

B T2 N .\
+ Z eﬁHg(xz)/ d7_2/ dTle(Tzfn)Ho(xz)<X2’Hl’X1>6(T1772)H0(x1)<X1’H1’X2> +
0 0

X1,X2

+.. (13.15)

The goal of our Monte Carlo sampling will be now to sample from the probability
distribution

et (X1 .0 Xy T« Ty ) =
_ L sHe : :
= e (—1)"Hy (X, Xn—1,Tn) - - - H1(X2, X1, 7o) H1 (X1, X, 71), (13.16)
where we have introduced the matrix elements Hy(x, %/, 7) = e™ 00 (x| H; |x/)e mHo(x),
In general, in order to sample from this probability distribution we have not include
a set of Markov-Chain moves that:

1. Change the spin configurations, x;

2. Change the perturbation order, n

1A good and self-contained derivation of the Dyson series can be found at https://en.wikipedia.
org/wiki/Dyson_series.
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3. Move the imaginary times, according to the time-ordering constraint

As a result of this extended sampling space (with respect to the standard path-integral
configurations, comprising only the set 1 in the previous list), we will have that our
simulation will not carry any time-step error!

I will now discuss an example where these moves can be seen explicitly at work.

T H,

|
n=2 *Hl

n=4 ‘IVHlf H, ¢ H, f H

1

<=

v

0 T B

Imaginary Time

Figure 13.2: Example of allowed configurations for the continuous-time path-integral
for a single spin. Different perturbative order are shown (notice that they are all
even), and vertical dashed lines denote periodic boundaries in imaginary time. In each
configuration (but for the special case n = 0) the total number of up spins must match
the total number of down spins, and each spin is followed in imaginary time by a spin
of opposite sign.

13.2.1 Example: single spin Hamiltonian

To give a concrete example, let us now examine the expressions above in the case of a
simple single-spin Hamiltonian: H= —I'6, +T'.0., and take HO I'.o., H1 —I'6,.
We therefore have that Hy(0%, 0%, 7) = (0°|H;(7)|0*) = —Tel*"=:9)(1 — §,_,) =

—(1 = 0y, 0, )Te*=77" where in the last equality we have used the fact that we need

/

o, = —o, for the matrix element to be non-vanishing. In this case the probability to

be sampled is therefore:

z z
(o7 ...00, 11 ... Th,n) =
1 _ z n -2
=_T"e IBUne2FZ i Ti0% 0(0_7 n, 7_)’
Z

(13.17)

where we have introduced a constraint on the allowed configurations:
Clo,n,7) = 6(0; # 0(j41) modn) X On2x X0(0 <71 <72 <...7, < 3).(13.18)

The first constraint comes from the fact that the matrix elements of H are purely
off-diagonal, and we must flip a spin every time we introduce a term H; in the path.
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The second constraint implies that we must have only an even number of terms Hi,
since because of the periodic boundary conditions in time this is the only way to have
a non-vanishing total weight. The third constraint comes from the t-ordered product
in the Dyson series.

Examples of allowed configurations corresponding to the continuous-time path in-
tegral are those represented in Fig. 13.2.

Let us now discuss in detail how to devise a set of moves for all the previously listed
quantities.

Ta Ty
4 ] ] L
n= Y L B
, Insert
: Move
=6 | | '
" 20 7 A~ TV
0 T 3 g
Imaginary Time
Ta Tb
" vV :
Erase
Move

o]

Il
15N
(_
—
(_
—

<

v

Aoy [P

0 T
Imaginary Time

Figure 13.3: Example of moves in the continuos-time path-integral Monte Carlo. The
left Figure shows the insertion of two spins at two random times 7, < 7, followed (if
necessary) by flipping the intermediate spins to satisfy the constraint. The right Figure
shows the inverse move, in which two random spins at times 7, and 7, are randomly
picked and deleted. This move is again followed by flipping any intermediate spin to
satisfy the constraint in the final configuration.

13.2.1.1 Inserting and erasing pair of vertexes

Since the perturbation order can change only in multiples of 2, in our Monte Carlo
sampling we should have a move that inserts/deletes pairs of terms Hy(7,)H1(7). To
this end, we generate two random times 7, € [0, 5) and 7, € [0, 3). Let us assume that
T, < 7 (if it is not the case, just exchange the labels a <> b. Now, call ne, < 7, the
first time already existing in the path on the left of 7,, and call Tygne > 7 the first time
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already existing in the path on the right of 7,. In all the discussion we always assume
periodic boundary conditions along the time direction, which also of course reflect on
the correct ordering of the times.

When inserting a spin flip at 7, we must set o; = —ojy and equally of = —07p,.
If in the existing path we had intermediate times between 7, and 7, say 7, < 7; <
Tjt1 -+ < T, then we must flip all the intermediate spins in order to satisfy the constraint
that consecutive spins in imaginary times have opposite signs. An example of this
operation is shown in Fig. 13.3.

13.3 Stochastic Series Expansion

The continuous-time formulation is not the only way of getting rid of the time-step
error. An alternative approach is baed on the Taylor series for the matrix exponential:

ey (__i{{)”, (13.19)
n=0 :

and is dubbed “Stochastic Series Expansion”?. Using this expansion, we then just insert
completeness at each order n, in a way that the partition function becomes:

7 = Z(x1|f|x1) + Z<X1| - 5f[|x1> +

X1 X1
(x1| — BH|x2) (x2| — BH|x:)
+XZX: 5 +
“+ ..., (13.20)

The probability distribution to be sampled then depends on the perturbation order and
on the path configurations:

Mage (X1 .+ . Xp, 1) X
= %<X1| — H|xa) ... (x_1| — H|xn)(xn| — H|x1). (13.21)
A Monte Carlo procedure in this case must then be able to propose changes in the
perturbation order and in the configurations at different points in the SSE path.

For the previously considered example of the single-spin Hamiltonian, the SSE paths
would not need to obey the constraint of alternating opposite spins o7 # a(zj +1) mod 1’
since the matrix elements entering the SSE weight are those of the full Hamiltonian
and not only of the off-diagonal part H. Ileave as an exercise to think about possible
ways of updating the SSE paths.

A point to be remarked here is that, albeit the sum over n in principle goes to infinity,
in practice the number of orders that need to be sampled is finite, and can be done
efficiently using Monte Carlo moves. A way to think about this is when sampling from
the probability distribution of a Normal variable Normal(x), for which in principle we

2 Anders W. Sandvik, Phys. Rev. E 68, 056701 (2003)
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should generate values in the interval € (—oo, +00), however the probability of having
very large (in modulus) values of x is exponentially suppressed, and typical samples will
lie in a finite interval. The same thing happens for the discrete variable n € [0, c0),
which in fact has a finite average value |(n)| = f(H) o NS and a finite variance
(n?) — (n)? oc NB. These two last relations can be easily derived directly considering
the definition of the expectation values, for example we have the very elegant relation:

(H)y = —Zzﬂ (x1|(—H)"H|x1) (13.22)

— __HZOXZB (1| (—H)" ) (13.23)
_ __;; i Gl A1) (13.24)
_ ;; prn (x| (—H)™[x;) (13.25)
_ _%f 1 (13.26)
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Chapter 14

Quantum computing

14.1 Quantum bits and quantum gates

In 1982 Feynman suggested that the problem of exponential complexity of simulating
a quantum system can be solved by using quantum mechanics itself for computing,
thus laying the foundation for the field of quantum computing [I]. Just as there are
many ways to build a classical computer and lots of different conventions, also quantum
computers could be designed in many different ways. Since we don’t have any large scale
quantum computer yet we are free to choose a design that is simple from a theoretical
point of view.

14.1.1 Quantum bits

The basic memory element is typically chosen as the quantum bit, or qubit for short —
a two-level system like a spin-1/2, where we associate the up spin state with the 0 bit
and the down spin state with the 1 bit:

0) = |T>=<é) (14.1)
n = 10=(3) (14.2)

Just like for quantum spin-1/2s the quantum bit can exist in an arbitrary superposition
of these two states:

) = al0) + B[1), (14.3)

where the normalization condition requires that |a|? + |3]> = 1. While such a state
needs an infinite number of classical bits to be described accurately (think of the binary
representation of a and (), a measurement will only give a single bit of information,
either 0 or 1. A register of N qubits can store the wave function of N spin-1/2s. This
gives an exponential advantage in memory use. However, since we can only do one
measurement on each qubit only N bits of information can ever be read out. This is
the first restriction we have to face when devising quantum algorithms, for which a
clever use of these quantum bits needs to be devised.
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Gate Name Symbol Matrix Form
Pauli-X (NOT)

Pauli-Y

Pauli-Z

Hadamard gate \/Li ( 1 _11 )

Phase gate ( (1) (Z)

T gate or 7/8 gate ( é 624
e—i9/2 0

Rz(0) gate — Rz(0) — ( 0 et )

Table 14.1: List of commonly used single-qubit gates

14.1.2 Quantum gates

Since quantum mechanical time evolution is unitary (apart from measurements that
collapse the wave function), we can only perform unitary operations on quantum bits
and measurements. This is the second big restriction.

Just as for classical computers it is convenient to build a quantum circuit from a set
of quantum gates that act on a limited set of qubits. Classical circuits are typically built
from a set of gates that include OR, AND, NOT, XOR and more. However, in principle
only the NAND (not-AND) gate is necessary since all other gates can be built from it.
The NAND gate is thus called universal: any classical computation can be done purely
with NAND gates, and any boolean function can be written in terms of NAND gates.
It still makes sense however to consider more types of gates when building circuits, to
make the design of circuits easier.

For quantum circuits one similarly often uses a larger set of gates than is strictly
necessary. In the following we will discuss a set of typically used one and two qubit
gates and will then discuss which ones are strictly necessary.

14.1.2.1 Single qubit gates

A few remarks may be useful. The X gate is the quantum analog of a classical NOT
gate. The Hadamard gate (H) squares to the identity and is essentially a ninety degree
rotation around the y axis, rotating a state aligned with z to . The T gate is also
called /8 gate since it can — up to an irrelevant global phase — be written as

o e—iﬂ/S 0
T=c¢ /8( 0 e ) (14.4)

The Rz gate performs a rotation around the z axis in spin space. Similar rotations
around the z and y axis are performed by the Rxr and Ry gates. For example, a
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rotation around the z axis can be performed by swapping z and x by a Hadamard gate,
performing a rotation around the z axis, and then rotating back:

—Rx(0) | — = Rz(9) (14.5)

14.1.2.2 Two-qubit gates

A set of common two-qubit gates are controlled gates, consisting of a control qubit and
a target qubit. The controlled version CU of a single qubit gate U (any of the list above)
performs the single qubit operation U on the target qubit only if the control qubit is
set to 1.

The quantum circuit for such a gate is:

— ———

—U-
Denoting the matrix representation of the gate U as U, the matrix representation
of CU in a basis |00),|01),]10),|11) is

U

(14.6)

0 0
0 0

(14.7)

o oo
o OoOl—= O

Maybe the most important two-qubit gate is the controlled-NOT-gate (CNOT),
which is the same as a controlled-X gate. It is typically drawn as:

(14.8)
—D—
its matrix representation is
100 0
. 0100
CNOT = 000 1 (14.9)
0010

Other two-qubit gates can be built from single qubit gates and the CNOT gate. For
example, the SWAP gate, which swaps the states of two qubits, can be built from three
CNOT gates as:

4D
\'

_ (14.10)
D D —X—
In matrix representation the previous circuit corresponds to:
1000 1000 1000 1 000
0100 0001 0100 0010
0 001 0010 0001 (0100 (14.11)
0010 0100 0010 0 001
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The last gate corresponds to the SWAP operation, indeed one can immediately
verify that its action corresponds to

1 0 00 Coo Coo
0010 Co1 | ¢
01 00 C10 o Co1 ’ (14 12)
0 0 01 c11 C11

14.1.2.3 Universal gate sets

Of the above gates just the Hadamard, 7 /8 and CNOT gates are sufficient to implement
any quantum circuit. All the other gates can be built from these gates, similar to the
NAND gate being universal for classical computing.

The tricky part is how to represent arbitrary rotations using a discrete gate set.
The Solovay-Kitaev algorithm allows to approximate arbitrary rotations to within any
desired accuracy ¢, with just poly(log(1/€) gates.! Better algorithms for approximation
of rotations have recently been invented and this is still an interesting field of research.

14.1.3 Measurements

Measurements in quantum circuits can be done on an arbitrary number of qubits, and
the conventional setting of quantum computing is to consider measurements of qubits in
the computational basis, thus corresponding to measuring the spin in the Z direction.
Diagrammatically, measurements are indicated as in the figure below, that shows a
measurement of the uppermost qubit:

(14.13)

with a probability of observing one of the two possible outcomes (+1 or —1) given in
this case by

P(sy=%1) = Y [{s1,5][U[0,0)" (14.14)

so—=+1

Measurements in other directions are possible after applying suitable rotations of
the spin, for example measuring in the X direction can be done by performing a rotation
through the Hadamard gate. The circuit below shows a measurement of this type:

0y — HH X

U

(14.15)

!The notation poly(x) indicates an effort that is polynomial in .
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14.1.4 Example: Creating entangled quantum states

As a first simple quantum algorithm that can be constructed using the build blocks
discussed above, we will consider the task of creating entangled quantum states. Those
can be very useful, for instance, in quantum communication tasks. One of the most
prototypical entangled states are Bell states, also called EPR pairs after the Einstein-
Podolsky-Rosen paper. These are produced by the following circuit:

) —{H —— (14.16)

= |Bwy>
ly) ————d—

Starting from an initial state |¢y) = |z) |y), where x and y are either 0 or 1 and not
in superposition, the circuit produces a final state

0,9) + (=1)*|L.7) (14.17)

|Bey) = V2 .

For pure initial states |00), |01) , [10) and |11) we obtain the four Bell states called
|B00), |Bo1), |B1o0) and |F11). The four possible outcomes are summarized in the Table
below:

In ‘ Out
01)+]10
o |00>\/§|11>
R e
01)— |10
|11) A

Table 14.2: Input-Output table for the circuit creating Bell states.
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14.2 Simulating the dynamics of quantum systems

14.2.1 Time evolution of a quantum spin model

Exponential speedup over classical computers can be obtained for the simulation of
the dynamics of quantum systems. As an example, we will consider once more the
transverse field Ising model. Notation-wise, we will adopt a calligraphic notation for
the Hamiltonian to avoid confusion with the Hadamard gate and we will also use the
notation for Pauli matrices normally adopted in quantum computing: Z: = o7, X, = or,
Y; = 67, thus our Hamiltonian is

H=-T> Xi+> J;Z:Z (14.18)
@ ()

In order to simulate the time evolution on a quantum computer we have to use a Trotter
decomposition just like in the classical case, and again have the choice between simpler
low-order approximations or more accurate high-order ones that are more complex but
also more accurate.

In this sense, the situation is entirely analogous to what we have seen when doing
exact time evolution of quantum systems in the first lectures. The big advantage of
quantum computers shows in the implementation of the individual terms of the Trot-
terized time evolution, which is now much easier. First, we need just N qubits instead
of 2V complex numbers in a classical code and requires only O(N) instead of O(2V)
operations.

The time evolution under the transverse field term e**'% is trivial to implement,
since it is just a rotation around the x axis, implemented by an RX(f) gate with an
angle § = —2A,I":

—|RX(—2A,T) (14.19)

If we the quantum hardware does not offer an RX gate, but only (for example) arbi-
trary rotations around the z directions through the RZ(#), then a basis transformation
will be needed. It is easy to convince oneself that the Hadamard gate is the unitary
matrix that transforms from the Z basis to the X basis, thus the Trotter step associated
to the dynamics a single spin under the transverse field can be written as :

RZ(—2AT) (14.20)

The Ising term is a 2-spin coupling and requires a 2-qubit gate. To implement
e *AtJii%7%7 one needs to rotate by an angle —A,J;; if the two spin values are the same
and +A.J;; if they differ. The following simple circuit can realize this operation:

1 (14.21)

j —@— RZ (2A.J;5)

D
A\

Similar circuits can be designed for other quantum models, as we will do in the
exercises for a quantum Heisenberg model.
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14.3 Quantum Phase Estimation

14.3.1 Measuring energies from phases

We now discuss an algorithm to estimate the energy of a given quantum state. The
most straightforward way of measuring the energy of a quantum state |¢) is to measure
all the terms that make up the Hamiltonian 7 and thus evaluate (|#|¢)). However,
this approach has several disadvantages. The wave function |¢)) gets destroyed with
every measurement and we get only N bits of information. As this approach is similar
to Monte Carlo sampling, we need O(e~?) measurements and thus O(e~?) preparations
of the wave function [¢) to measure the energy to an accuracy e.

An alternative is to measure the phase which a state [¢) picks up under time evo-
lution with 7. Let us first assume that |¢)) = |E,) be an eigenstate |E,) of H with
cigenvalue E,. Under time evolution e~™|y)) = ¢~*#+!|E,) the state picks up a phase
E,t. Measuring this phase would thus allow to measure the energy.

14.3.2 Quantum phase estimation algorithm

But, how do we measure the phase under time evolution? At first sight the phase
is not an observable quantity. However, we can set up an “interference experiment”
to determine the phase. We add an auxiliary qubit and perform the evolution under

A~

U = e~ only if the auxiliary qubit is on:

0) — H | H -~

(14.22)

Let us analyze step by the step what this circuit does. First, we start from |0)|¢)
and apply a Hadamard gate to the auxiliary qubit, giving

1
— (|0 + 1 14.23
\/5(| )+ 11D)]¥)) (14.23)
We then apply the evolution controlled by the auxiliary qubit:

1 N
— (|oyje) + 1)U > . 14.24
75 (1010) + [101) (14.24)
If |¢) is an eigenstate |E,) we pick up the corresponding phase ¢ = E,t

1 »
7 (I0)[w) + e 1) |¥)) . (14.25)
Measuring now would not give us any information since the phase cannot be deter-
mined from a direct measurement. However, we can interfere the two cases by another
Hadamard transform on the auxiliary qubit, obtaining

[(L+e7) [0}y + (1 —e7) [1)])] . (14.26)

DN | —
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Now we measure the auxiliary qubit and we notice that the probability of measuring
0 is (1 + cos¢)/2 = cos(¢/2)?. By repeating then this experiment many times we can
experimentally reconstruct (just counting how many times we measure 0) the probability
of measuring 0, and consequently reconstruct ¢. Quantum Phase Estimation — single-
ancilla variant

14.3.3 Single-ancilla spectroscopy with a generic initial state

In the discussion above, we introduced the elementary quantum phase—estimation (QPE)
circuit that employs a single auxiliary qubit. Up to that point we assumed the system
register to be in an eigenstate of the Hamiltonian

H,|E;) = Ey, | Ey). (14.27)

In practice we usually start from a generic superposition

2N 1
|¢> = Z Cy, ’Ef>a Z |C€‘2 = 1. (1428)
=0 J4

For an evolution time ¢; the single-ancilla experiment is

0) —{#] [~
(14.29)
) — U(;)
where U(t;) = e~
After the final Hadamard the joint state reads

1 —iEyt, —iEyt,

@@ﬁ%=§§:wﬁl+e NI0) + (1 — e )] | Er). (14.30)

¢

Thus the probability of measuring 0 on the auxiliary qubit is:
|1+ et
P()(tj) = Xe: ’C£|2T = 5 263 |Cg’2 [1 + COS(Egtj)} .

Sampling and spectral reconstruction. Choose a series of times ¢; = j x At with
j=0,...,M —1. For each t; repeat the circuit R times to estimate C'(t;) = 2Py(t;) —1
up to O(1/v/R). A discrete Fourier transform

27k

Clwn) = 30 Clty), 4, wp= 10

J=0

(14.31)

reveals peaks at wj, &~ +FE; of height o |¢]|*. The frequency resolution is §F =
27 /(M At), while Nyquist requires At < 7/ FEpax.
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14.3.4 Kitaev’s version

A more efficient version of the single-ancilla algorithm is due to Kitaev. One potential
issue is that, using the histogram method, the relevant probability can be determined to
an accuracy of 1/ VM, if M measurements are realized. Thus, one needs to go through
at least M ~ 2™ independent rounds of measurements to obtain m accurate binary
digits of ¢. We only sketch here the idea of this improved approach, that performs time
evolutions with times 2%t (k = 1,...,n), that are powers of 2, by adding n auxiliary
qubits rather than one as in the simpler approach discussed previously. One starts by
preparing the state as given by the circuit below:

o) ]
) ]

(14.32)

0) —{H] —
v — v e

This is a generalization of the case with a single auxiliary qubit, and we can readily
see that the output state of the circuit above is

\/% (I0) + e 1) @ (|0) + e ™)) ®@ -+ ® (|0> + e’i271_1¢|1>> @ ). (14.33)

We therefore end up with a register containing the Fourier transform of the phase:

2" —1

LS ek gy ) (14.34)
k=0

N

Employing an inverse quantum Fourier transform F~! (which is a unitary operation
and can be implemented efficiently on a quantum computer) we measure a binary
representation 7w /2" of the phase ¢.

The resulting algorithm is written in diagrammatic form below:

o) ] | =
0) —{#] — o H
=

) 4@_ U t— -yt —_
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The main advantage of Kitaev’s phase estimation approach is that it allows to re-
construct the phase much more accurately than using a single auxiliary qubit, since
we can determine its value “digit-by-digit” in binary form through the inverse Fourier
transform.

14.3.5 Quantum phase estimation to find the exact eigenvalues

It is especially interesting to use the quantum phase estimation algorithm in the case
when 1) is not an exact eigenstate of the Hamiltonian, but rather a generic state. We
can then expand it in the the eigenbasis of H :

2N 1

) = Y alE). (14.36)

=0

Since all the operations we have carried on in the quantum phase estimation are linear,
it is not hard to convince one-self that if we apply the controlled time evolutions to an
approximate state we get

2N _1

NoT Z a (10) + e 1)) @ (|0) + e 1)) ® - ® <|0> + e‘iQn_lElt\l)) QR |E) =

2N _19n—1

1 .
7 > > e PR K E). (14.37)
=0 k=0

Further applying the inverse Fourier transform to this state then will return frequencies
that correspond to the exact eigen-energies of the Hamiltonian! The intensity of these
peaks will be proportional to the coefficients |¢;|?. We therefore see that if we have
access to a reasonable approximation of the ground state |1)) such that its overlap with
the exact ground state is not exponentially small, then by performing quantum phase
estimation over such state will give us the exact energies of the system. In this sense,
QPE is a very powerful technique. The important caveat, however, is that in general
it is not easy to prepare a simple state |1)) that has a sizable overlap with the exact
ground state. In general, finding such an initial state is an exponentially hard task,
however we will analyze strategies to do so in the next lecture.
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Chapter 15

Variational Quantum Algorithms

15.1 Variational State Preparation

Here we describe approaches that aim at preparing a quantum state with a variational
approach on a quantum computer. This general family of algorithms is based on varia-
tional principles and intrinsically demands a hybrid classical-quantum approach, as we
will see in the following.

Generally speaking, the idea of these methods is to reformulate the task of preparing
a certain quantum state as a carefully chosen optimization problem.

In the general setting we have three main ingredients:

1. A parameterized quantum circuit (sometimes also improperly called quantum
neural networks), consisting of a sequence of unitaries parameterize by some
0 = (0;...0,). In the following we assume the form

U) = U(6))...0s(02)U1(61), (15.1)
thus preparing a family of variational states

W) = U6)0). (15.2)

2. A “loss function” that is representative of the task one wants to solve. The choice
of the loss function is problem dependent, however in several applications it takes
the form of an expectation value of an Hermitean operator B

L) = (0|UT(0)BU(6)|0), (15.3)

and the best variational approximations coincides with the set of parameters that
minimize the loss function.

3. A classical optimizer, that uses suitable measurements from the quantum com-
puter in order to find a good approximation for the minimum of the loss function,
ie.

0 = argminyL(0). (15.4)
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15.2 Loss Functions

We now present several interesting problems in physics, chemistry, and mathematics
that can be formulated through a variational approach. The main conceptual require-
ment in this phase is rewriting the specific problem at hand as a suitable optimization
problem, for which it is therefore important to:

1. Identity a suitable loss function £(6) such that, in the ideal case, the state |¥(6))
prepares the given target quantum state;

2. Make sure that the loss function is efficiently measurable on quantum hardware;

3. Make sure that sufficient progress is made in optimizing the loss.

15.2.1 Ground-State Preparation

In the context of quantum simulation, a very important task is preparing the ground
state of a given hamiltonian, H. In this case, the most natural loss function for state
preparation is the total energy of the quantum system:

E@0) = (0|U(0)HU(9)|0). (15.5)
From the variational principle of quantum mechanics we know that
E(0) = E, (15.6)

where Ej is the exact ground state energy. Thus by minimizing E(#) we seek to ap-
proximate the ground state of a given Hamiltonian using a fixed-depth quantum circuit.
This algorithm is known as the Variational Quantum Eigensolver (VQE).

In practical applications, one is interested in Hamiltonians that are sum of local
operators, most prominently taking the form of sum of “Pauli strings” :

7:[ == Z CkAAk;’lAk72 ce AkJ\[, (157)
k

with the coefficients ¢, € R and Ay, € [I,X,Y, Z]. To measure the total energy E(6)
then a simple approach is to measure the Pauli strings

Py = Ay Apy... Apn, (15.8)

in the 0% computational basis, after a suitable basis rotation.
To give a concrete example, imagine that we would like to find the ground state of
our best friend, the Transverse Field Ising Model (TFIM) :

g (4,3

In this case, to estimate the expectation value of the energy we need to measure for
example P, = Xj. This can be done noticing that

(Xx) = (0|U(0)HiZi H U (6)]0), (15.10)
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where we do a simple basis rotation through the Hadamard gate:

A 1 1 1

i= (4
In conclusion, all the terms of the energy that include the transverse field parts can be
simply measured by collecting the output of the circuit depicted in Fig. 15.1.

0) — — H &
0) — U(0) H =
10) — — H

Figure 15.1: Example of circuit to measure 3, (X)) on the variational state.

The accuracy of this estimate will depend on the number of measurements (or shots)
taken, Ny, with a statistical error decreasing like 1/+/Ns.

15.2.2 Excited States

There have been a few proposals of cost functions to find excited states of a given
Hamiltonian. It is fair to say that this is still a matter of research activity, thus we sketch
here only the conceptually simplest approach (albeit not necessarily a very efficient
one). The idea is to first prepare an approximation of the ground state, such that
|W(0y)) =~ | W), then one considers the cost function

Ev(0,7) = (0[UN(O)HU(0)|0) + A (¥ (60)|U(6)]0) [, (15.11)
where we have introduced a Lagrange multiplier A, such that the resulting state [¥(07)) =
U(67)]0) will be state of lowest energy that is also orthogonal to the given approxima-
tion of the ground state, i.e. (¥(6y)|¥(61)) = 0. The first term in this cost function can
be estimated as much as in standard VQE, whereas the second term can be estimated
noticing that

(U (00)[U B0} = [0|UT(8,)U (6)[0), (15.12)
is the probability of measuring |0) after having prepared the state
@) = U'(6o)U(6)[0), (15.13)

thus requiring a doubling of the circuit depth, as shown in Figure 15.2.
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10) — U (05) U0) 1

i

+ postselection 0

Figure 15.2: Example circuit to measure the overlap between two parameterized circuits.

15.3 Parameterized Quantum Circuits

Here we give a few example of the specific form that parameterized quantum circuits
can take, especially in the context of ground state problems. In order to get some
insight, it is useful first to recall how, at least in principle, one can prepare the ground
state of a given Hamiltonian using purely unitary time evolution.

15.3.1 Ground states through adiabatic state preparation

Adiabatic state preparation is based on the quantum adiabatic theorem. We assume
that at t = 0 we start in the ground state |¢g(¢)) of some time-dependent Hamiltonian
H(t). If we change the Hamiltonian #(¢) adiabatically slowly we will remain in the
ground state [t (t)) of H(t) for all times ¢ > 0. This opens a way to prepare the ground
state of a quantum system. Let us start at time ¢ = 0 in a Hamiltonian H, of which we
can easily compute the ground state. In order to find the ground state of an unknown
Hamiltonian % ¢ we adiabatically interpolate between H and H 7 to arrive at the desired
Hamiltonian at time ¢;:

H(t) = (1 - i) Ho + i?%f. (15.14)

Instead of this linear interpolation any other function can be chosen as long as 7:[(0) =
H, and 7:[(t 7)) = H #. If we choose t; long enough we are guaranteed to end up in the
ground state with only exponentially small errors.

What is meant by “long enough”? The quantum adiabatic theorem states that this
time should be much longer than a scale set by the minimum gap:

;>0 (mtin A(t)‘Q) , (15.15)

where the ga
o A(t) = Ey(t) — Eo(t) (15.16)

is the difference between the ground state energy FEy(t) and the energy of the first
excited state Fy(t). Since in practice we know neither the minimum gap of the unknown
quantum system, nor the constants that go into this inequality, we will have to perform
numerical experiments on our (quantum) computer to determine when the results start
to converge as a function of ;. It is important to remark that for generic physical
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hamiltonians we expect the time ¢; ~ exp(N), as a result of exponentially closing
gap during the adiabatic state preparation. There is no known classical or quantum
algorithm that can efficiently prepare the ground state of a generic physical hamiltonian
in polynomial time, and the adiabatic algorithm is no exception.

15.3.2 Quantum alternating operator

The adiabatic state preparation gives a hint at what kind of ansatz we can take to
study ground state problems. Let us consider the case in which the time-dependent
Hamiltonian takes the generic form

Ht) = > Hi(b), (15.17)

where the terms [’}:ls, 7:18/] # 0 in general but are chosen in a way that each H, contains
all terms mutually commuting. In general each term can contain both parts of H, and
Wy

In order to implement the adiabatic preparation algorithm on a quantum computer,
we need to write the time evolution induced by the Hamiltonian in terms of gates. A
simple approach would be to consider a small time step d; such that

(W(t)) == TP g (), (15.18)

Then the small time-step propagators are written in terms of a Trotter decomposition,
such that

(U(t)) o TI/Oe=eHa W) o—ibiHawdn) | o=ibiHar(vd) |y (), (15.19)

To give a concrete example, imagine that we would like to find the ground state of the
Transverse Field Ising Model :

Hy=> JyZiZi+TY X (15.20)
(i) i

In this case, we can define Ho = Iy, XZ», such that the ground state of this part,
[1)0(0)), is easily prepared as a product state.

We split the Hamiltonian into M = 2 non-commuting terms, the classical Ising
interaction

(4,5)
and the transverse field term ) )
H,=T) X (15.22)
such that
. t\ - t /o~ .
) = (1 . —) o+ — <7—l + H) (15.23)
ty ty
. t o~
AT (15.24)
ty
= Hi(t) + Ha(t). (15.25)



Each of these terms, when exponentiated, correspond to local unitaries. Since the Ising
term gives a product of two-local unitaries that are diagonal in the computational basis

o iH2(t)de _ 6*@'&% gy FiaZiZs _ H efl(éti) J”Zizj, (15.26)
The transverse field term splits into N commuting terms for each of the spins:
e—i'z‘:h(t)ét — e—iétrzi XZ _ H e—iétFXi. (1527)
i
The time evolution under the transverse field term e~®%i is trivial to implement, since

it is just a rotation around the x axis, implemented by an RX gate, depicted in Fig.
15.3.

— RX(Q(SJ‘) —

Figure 15.3: Simple rotation gate realizing e~ .

The Ising term is a 2-spin coupling and thus requires a 2-qubit gate. To implement

—i((stti)fijZiZj . .
e ! one needs to rotate by an angle ®;;(t) = —d,J;;t/ty if the two spin
values are the same and —®;;(¢) if they differ. The circuit in Fig. 15.4 can realize this
operation.

j & RZ(—Z(StJijt/tf) &
: . . *i(ét%)JijZiZj
Figure 15.4: Circuit realizing RZZ = e f :

The resulting unitary preparing [¢(t)) is then schematically shown in Figure 15.5.

7

Rzz

S
%]
7

Rzz

S
[%
7

Rzz

7

Figure 15.5: Circuit realizing the first Trotter step of adiabatic time evolution for the
Transverse-Field Ising model.
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It can be noticed that this circuit is not parametric, since all the gates are fixed. The
main idea of QAOA /Hamiltonian Variational ansatz is to make these gates parametric:

W) = Tape "0

Wo). (15.28)

A nice way of interpreting this is in terms of a time evolution that can possibly break
the adiabatic condition but that can in principle prepare the state faster (i.e. with a
short circuit, as compared with the adiabatic state preparation that would take very
deep circuits).

15.3.3 Hardware Efficient Ansatz

In addition to ansatz wave functions inspired by the adiabatic state preparation, an-
other possible (and popular) choice is to to take parameterized circuits that are not
necessarily physically motivated but that at least can be implemented efficiently on
existing quantum hardware. Typically, this family of states takes the form

(W) = TLUi(6x)Wi0), (15.29)

where the gates W, are fixed and do not carry a variational parameter to be optimized.
In several applications, for example, only single-qubit gates are parameterized and a
fixed set of two-qubit gates, Wk, are positioned on qubit edges that are consistent with
the physical connectivity of the devices.

15.4 Optimization Algorithms

Here we discuss optimization strategies based on gradients. To make our discussion
more concrete, we focus again on parameterized states

(T(0) = Ti(6)...Ua(02)T1(61)]0), (15.30)
and loss functions of the form
LO) = (W(O)|B©)). (15.31)

where B is some hermitean operator. We have seen in the previous discussion that
several of the loss functions of interest can be written in this form.

In their simplest setting, gradient-based hybrid optimization algorithms do the fol-
lowing iterative procedure do minimize the loss function:

1. At iteration i, use the quantum computer to estimate £(6%)) with the current
set of variational parameters #) and the components of the gradient, G} (0®)) =

Oy 5(9@);

k

2. Update the variational parameters according, for example, to a gradient descent

step 9](:“) = H,Ef) —nGr(09), where 7 is a small constant, known as the “learning

rate”, following standard machine learning terminology

3. Quit when converged to a minimum of the loss function.
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15.4.1 Parameter Shift Rule

For specific applications, we have already seen how to compute the loss function ef-
ficiently, using measurements in the computational basis. We now describe also an
efficient strategy, known in literature as the parameter shift rule, to estimate the gra-
dient of the loss function. More details can be bound in Ref. [2].

For simplicity, we restrict ourselves to unitaries of the form
3 —iS, 2k

where the operator Sy is taken to be involutory, i.e. satisfying S7 = I. Notice that this
family of gates is quite general and encompasses for example all single qubit rotations
generated by pauli operators, i.e. S, € (X,Y,Z) as well as several two-qubit gates
acting on qubits ¢ and j such that Sy € (X;X;,Y;Y;,...). Because of the involutory
property, it is easy to verify that

- - o O o (0N 0o (00
Uk<9k) = I - ZSkE - Esk 5 + g & 5 + ... (1533)
B L0\ 1 (6" .
= [ — 5 (5) -+ E (5 + I+ (1534)
L0 176\ 1 /6.)\°
—ZSk [E - g (3) + g (3) + (1535)

= cos (%) I —isin (%) Sy, (15.36)

we also notice that the unitary conjugation of an arbitrary operator can be written as

K(Qk) - Ag(ek)KUk(ek) (15.37)
= A+ Bcos(6),) + Csin(6y), (15.38)

where the operators fl,é, C do not depend on the parameter. This last property is
especially interesting for us, since the derivative is now easily found:

99, K(6r) = —DBsin(6;) + C cos(6y) (15.39)
_ K6+ 7/2) — K(0), — m/2) (15.40)
2

Now, let us define U (0) = VkUk(G)Wk, where the operators Vi, and W, do not depend
explicitly on the parameter ¢, but can depend on all the other parameters. With this
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definition, we can write the derivative of the loss explicitly

O L(Or, ... 0, ...0) = B (O(WITUS(6,)V BVU(6;)Wi|0) (15.41)
= O (W |UL(0k) QuUk (01) W) (15.42)
= 0, (Vi |Qr(0k) V) (15.43)

= %{<\Pk|Uk <9k + g)T QrUk <9k + g) Wp) + (15.44)

— (W | U <9k - g)T QiU <0k - g) |\I'k>} (15.45)

LOy,....00+5,...0)—L(O,....,0.—%,...0
_ L et 5 0) — L6 L 1215.46)
2
This formula is very interesting because it tells us that the gradient can be computed
just as the difference of two loss functions, thus it can be estimated just as done for the

loss function itself.

15.5 Qubits Encodings

15.5.1 Fermions

Quantum computers intrinsically operate with spin degrees of freedom, since in the
standard model of quantum computation basis states are eigenstates | 1), | |) of the o*
operator,

[T = 10) (15.47)
) = . (15.48)

In Nature however particles can obey to different statistics, most notably interacting
fermionic matter plays a crucial role in the determination of chemical and physical
properties of materials, molecules and much more.

When studying electronic problems with variational quantum algorithms, it is then
necessary to map these fermionic degrees of freedom into qubits. When doing exact
diagonalization of fermions, we have faced exactly the same problem, when me mapped
fermions onto spins. In general, we consider electronic Hamiltonians defined in terms
of the usual fermionic operators éZT and ¢; satisfying the anti-commutation relations

(el ém} = Oml. (15.49)

The Jordan-Wigner mapping is one of the main (and the oldest) strategies to “convert”
these fermionic operators into spins. This is achieved through the following transfor-
mation

o = (W32)6r (15.50)
i = (W4z) e, (15.51)



with the usual raising and lowering spin operators

X4
65 = % (15.52)
X, — Y
o = =Lt (15.53)
2
that satisfy
(67,6} = I (15.54)

It can be verified that the fermionic operators defined through the mapping satisfy the
required commutation relations, for example

{day = (W2%) 6, (232) 67} (15.55)
= (122 ) (15.56)
(Hé-lle)Q , (15.57)

and the last term is nothing but the identity, since Pauli matrices square to one, thus

2 2
-1 5 -1 (% 7
(szlzj> S i (Zj> _ ]
With this mapping at hand, it is clear that we can write arbitrary fermionic hamil-
tonians in the form of sum of Pauli strings, and we can use all the techniques discussed

above for spin/qubits hamiltonians.
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