[1]:

[2]:

[3]:

ex09 solutions

April 15, 2025

Computational Quantum Physics - PHYS 463
Lecturer: Prof. G. Carleo

Assistants: alessandro.sinibaldi@epfl.ch, linda.mauron@epfl.ch, lorenzo.fioroni@epfl.ch

0.1 Solutions 09 Time-dependent variational principle

The solution of the exercises are self contained and can be run independentely from each others.

0.1.1 Exercise 9.1 - The Time Dependent Variational Principle (TDVP)

In this exercise we will use the Time Dependent Variational Principle to variationally approximate
the dynamics of a Transverse Field Ising chain. We will compare the results obtained with those
of Lesson 3.

a) Let’s start with the simple 2 qubit case

import numpy as np

from matplotlib import pyplot as plt

from scipy.linalg import solve

from scipy.sparse import csr_array, identity, kron
from scipy.sparse.linalg import eigsh

Pault matrices
sx = csr_array([[0, 1], [1, 011)
sz = csr_array([[1, 0], [0, -111)

spin_up = np.array([1, 0])
spin_down = np.array([0, 1])

def pauli_op(pauli, i, N):
left = identity(2**i)
right = identity(2 ** (N - i - 1))
mat = kron(kron(left, pauli), right)

Explicitly convert to CSR since kron likes to return COO
mat = csr_array(mat)
return mat

Function to generate a list of Pauli operators
def list_of_op(pauli, n_spins):
return [pauli_op(pauli, i, n_spins) for i in range(n_spins)]

[4]: # Generate the Ising hamiltonian
def ising_hamiltonian(sx_list, sz_list, J, gamma):
n_spins = len(sx_list)

ham = 0
for i in range(n_spins):
ham -= gamma * sx_list[i]

for i in range(n_spins - 1):
ham += J * sz_list[i] @ sz_list[i + 1]
return ham

[6]: # Observable to measure during the time evolution

def Hz(n_spins, site):
Measure sigma_z on spin site
sz = csr_array([[1, 0], [0, -1]11)
left = identity(2+**site)
right = identity(2 ** (n_spins - site - 1))
mat = kron(kron(left, sz), right)

mat = csr_array(mat)
return mat

def Mz(n_spins):
Measure the mean magnetization along the z-azis
mz = 0
for i in range(n_spins):
mz += Hz(n_spins, i)

return (1 / n_spins) * mz
[6]: # Function to measure expectation values

def measure(psi, operator):
First do M @ v, which ts faster than v @ M for CSR matriz, then do v @ v

return (psi.conj().T @ (operator @ psi)).real

For the simple variational form

[(0(t))) = e PWTFoDg(0)) with [¢(0)) =] 1) @)

the S matrix is a scalar and reads

[7]:

[8]:

[9]:

[10]:

S =2+ 200X, X,|v) — (9] X, + Xy |9)|?

while

C = i(|(X) + Xo)H|) —i(Q[(Xy + Xy)[vh) (Y| He)
So we need to measure those values and solve the equation of motion

def psi_t():
x1l = kron(sx, identity(2))
x2 = kron(identity(2), sx)
exp_op = (np.cos() * identity(4) - 1j * np.sin() * x1) @ (
np.cos() * identity(4) - 1j * np.sin() * x2

)
psiO = np.kron(spin_down, spin_down)
return exp_op @ psiO
Create operators and Hamiltonian to measure
sx_list = list_of_op(sx, 2)
sz_list = list_of_op(sz, 2)
sum_sx = sx_list[0] + sx_list[1]
prod_x1x2 = sx_list[0] @ sx_list[1]

hami = ising hamiltonian(sx_list, sz_list, J=0, gamma=1)

For every time step measure S and C and find \dot{\thetal}
T=25

nt = 100
dt =T / nt
ts = np.linspace(0, T, nt + 1) # np.linspace is defined for [start, end]

theta = 0
psit = psi_t(theta)

mz2 = Mz(2)
mz_2spin = [measure(psit, mz2)]

for step in range(nt):
2) Create S and C
S_mat = 2 + measure(psit, prod_x1x2) - measure(psit, sum_sx) ** 2
C_vec = 1j * measure(psit, sum_sx @ hami) - 1j * measure(psit, sum_sx) *
<measure (
psit, hami

[11]:

plt.
plt.
plt.
plt.
plt.
plt.

b)

3) Solve the linear system
_dot = np.imag(C_vec) / np.real(S_mat)

4) Update the parameters
theta theta + _dot * dt

5) Create the new wariational state and measure obserwvables
psit = psi_t(theta)

mz_2spin.append(measure(psit, mz2))

Plot the results
plot(ts, mz_2spin, linestyle="dashed", color="CO", marker=".", label="TDVP")

ylabel (r"M_z")

xlabel (r"t")
yticks([—l, -0.5, 0, 0.5, 11)
legend ()
show ()
1.0 —=-
TDVP Pa PN
;- : F »
P L] P
’ bH ’
0.5 # A 4
[b r
;‘ 1II1 I"
p 2 :
¢ ' i
S 0.0 A !
= ; i !
&
/ \ /
¢ |
_D.E . .F '.. 'l‘
é H &
,{ . f
[}
/ '/
—1.0 J 'od’
0 1 2 3 4 5

Now we need to create the mean-field ansatz

9 (01(0), O (1)) = [6(1)) = [0%

given the initial state

where we indicated X, = IQI®.. I®"QI®- Q1.
—_———— ~————

i—1 times N—1i times

We will define it as a list of operators acting on the state |¢(0)).

[12]: def mf_ansatz_op(n_spins, _vec):

Generate the operators associated to the mean-field ansatz

given a vector of parameters _wec
op_list = []

for i in range(len(_vec)):
left = identity(2**i)
right = identity(2 *x (N - i - 1))
mat = kron(kron(left, sx), right)

I = identity(2**N)
mat

mat = csr_array(mat)
op_list.append(mat)
return op_list

def mf_ansatz_psi(ansatz_op, psi):
for mat in ansatz_op:
psi = mat @ psi

return psi

def squared_norm(psi):
return (psi.conj().T @ psi).real

np.cos(_vec[i]) * I - 1j * np.sin(_vec[i]) * mat

Now we have to define the method to compute the S matrix and the C' vector.

For the real time evolution we will need the real part of S and the imaginary part of C.

For this simple ansatz we can explicitly calculate the derivative with respect to 6, and therefore
give the expression of S and C as expectation values calculated over the ansatz state.

Indeed, given:

[13]:

[14]:

[15]:

0 o
gg; 1V(0) = 10() = i (1))

we have

Siy = (0010,0) / (W) — (01w} (W|0;0) [(lw)? = (XX () / (Wb} — (I o) (| X5 1a) / (aplah)?

and

Cy, = —i{QI XL H[$) /(1) + i (| X [10) (Y[H)/ ([3))?

Therefore, for each time step it suffices to measure a series of expectation values of X, and H and
use those values to evaluate the derivatives of the parameters using

SEo = !
Define the simulation time
T=25
nt = 100
dt =T / nt
ts = np.linspace(0, T, nt + 1) # np.linspace is defined for [start, end]
e Case J =0
Define the system
N =10
J=20.0

Gamma = 1.0

Create the list of operators to be measured

list_of_op(sx, N)
list_of_op(sz, N)

sx_list
sz_list

sxsx_list = []
for i in range(N):
sxsx_row = []
for j in range(N):
sxsx_row.append(sx_list[i] @ sx_list[j])
sxsx_list.append(sxsx_row)

Hamiltonian
hami = ising hamiltonian(sx_list, sz_list, J, Gamma)
sx_hami_list = []
for sx_i in sx_list:
sx_hami_list.append(sx_i @ hami)

[16]: # Function to measure ezpectation values
def measure(psi, operator):
return (psi.conj().T @ (operator @ psi)).real

Now define the routine for the TDVP

[17]: def S(_vec, sx_meas, sxsx_meas, psi_norm):
nparams = len(_vec)
s_mat = np.zeros((nparams, nparams), dtype=complex)

Create the S matriz
for i in range(nparams):
for j in range(nparams):
s_mat[i, j] = sxsx_meas[i, j] / psi_norm - sx_meas[i] * sx_meas[j] /

< psi_norm**2
return s_mat
def C(_vec, hami_meas, sx_meas, sx_hami_meas, psi_norm):

nparams = len(_vec)
np.zeros (nparams, dtype=complex)

c_vec

for i in range(nparams):
c_vec[i] = -1j * sx_hami_meas[i] / psi_norm + 1j * sx_meas[i] *
~hami_meas / psi_norm**2

return c_vec

Now define all the quantities useful for the TDVP loop

[18]: # Initialise the TDVP loop
_params = np.zeros(N)

Initial state
psi0 =1
for i in range(N):
psiO = np.kron(psiO, spin_down)

And initial variational ansatz
psi_op = mf_ansatz_op(N, _params)
psi_var = mf_ansatz_psi(psi_op, psiO)
psi_norm = squared_norm(psi_var)

Observables to save
Magnetization
mz_op = Mz(N)

[19]:

[20]:

mz_tdvp = []
mz_tdvp.append (measure(psiO, mz_op))

Energy
e_tdvp = []
e_tdvp.append (measure(psiO, hami))

TDVP loop
for step in range(nt):
1) Measure all the operators to evaluate S and C
sx_meas = np.asarray([measure(psi_var, x) for x in sx_list])
Sxsx_meas = np.asarray(
[[measure(psi_var, x) for x in sxsx_row] for sxsx_row in sxsx_list]
)
energy = measure(psi_var, hami)
sx_hami_meas = np.asarray([measure(psi_var, x) for x in sx_hami_list])

2) Create S and C
S_mat = S(_params, sx_meas, sxsx_meas, psi_norm)
C_vec = C(_params, energy, sx_meas, sx_hami_meas, psi_norm)

3) Solve the linear system
_dot = solve(np.real(S_mat), np.imag(C_vec))

4) Update the parameters
_params = _params + _dot * dt

5) Create the new wariational state and measure observables
psi_op = mf_ansatz_op(N, _params)

psi_var = mf_ansatz_psi(psi_op, psiO)

psi_norm = squared_norm(psi_var)

mz_tdvp.append(measure(psi_var, mz_op))
e_tdvp.append(measure(psi_var, hami))

Plot the results

plt.plot(ts, mz_tdvp, linestyle="dashed", color="C0", marker=".", label="TDVP")
plt.ylabel(r"M_z")

plt.xlabel(r"t")

plt.yticks([-1, -0.5, 0, 0.5, 1])

plt.legend()

plt.show()

104 —=- TDVP
AN N
;- L F .
P
r
»
é
0.5 "
b
A
1
L]
\
%
= 0.0-
! \
r »
‘ \
—0.5 - ; '_.
\
1
/ ‘
L
/ '/
—1.0 -’ 'od’
T T T
0 3 3
t
[21]: # Check also the energy --— it has to rematin constant during time evolution
plt.plot(ts, e_tdvp, linestyle="dashed", color="CO", marker=".", label="TDVP")
plt.ylabel (r"Energy")
plt.xlabel (r"t")
plt.legend ()
plt.show()

~«- TDVP

0.04 1

0.02

D_GD -1 T T T T T D T T T T T T T e T T L T T e D e T L O D T T T e e e D D T T e e e e I e D D e T T e e D D R D e e I oo

Energy

—0.02 7

—0.04 1

Now we recall the time evolution algorithm from exercise session 3, to compare the results

[22] : def

def

exp_Hx(N, i, delta):

sx = csr_array([[0, 1], [1, 011)
left = identity(2**i)

right = identity(2 ** (N - i - 1))
mat = kron(kron(left, sx), right)

I = identity(2*x*N)

mat = np.cos(delta / 2) * I - 1j * np.sin(delta / 2) * mat
mat = csr_array(mat)

return mat

exp_Hzz(N, i, delta):
sz = csr_array([[1, 0], [0, -111)
left = identity(2**i)

right = identity(2 **x (N - i - 2))
mat = kron(kron(left, kron(sz, sz)), right)

10

I = identity(2*xN)

mat = np.cos(delta / 2) * I - 1j * np.sin(delta / 2) * mat
mat = csr_array(mat)

return mat

Generate all time evolution operators

def gen_exp_hams(N, J, Gamma, dt):
exp_Hxs = [exp_Hx(N, i, -Gamma * dt) for i in range(N)]
exp_Hzzs = [exp_Hzz(N, i, J * dt) for i in range(N - 1)]
exp_Hzz_halfs = [exp_Hzz(N, i, J / 2 * dt) for i in range(N - 1)]
return exp_Hxs, exp_Hzzs, exp_Hzz_halfs

[23]: def time_evol(exp_Hxs, exp_Hzzs, exp_Hzz halfs, psi, t, dt):
n_steps = round(t / dt)
for mat in exp_Hzz_halfs:
psi = mat @ psi
for mat in exp_Hxs:
psi = mat @ psi
for step in range(n_steps):
for mat in exp_Hzzs:
psi = mat @ psi
for mat in exp_Hxs:
psi = mat @ psi
for mat in exp_Hzz_halfs:
psi = mat @ psi
return psi

e Case J=0
[24]: # Hamiltontian parameters
N =10
J=20.0

Gamma = 1.0

[25]: | # Initial state
psi_ex =1
for i in range(N):

psi_ex = np.kron(psi_ex, spin_down)

Magnetization operator
mz_op = Mz(N)

[26]: # Evolve and measure the magnetization

exp_Hxs, exp_Hzzs, exp_Hzz_halfs = gen_exp_hams(N, J=J, Gamma=Gamma, dt=dt)
mz_t = np.empty(nt + 1)

11

mz_t[0] = measure(psi_ex, mz_op)

for i in range(l, nt + 1):
Every call evolves by a time-step dit

psi_ex = time_evol(exp_Hxs, exp_Hzzs, exp_Hzz halfs, psi_ex, dt, dt)

mz_t[i] = measure(psi_ex, mz_op)

[27]: # Plot the magnetization as a function of time

plt.plot(ts, mz_t, linestyle="dashed", color="black", label="Exact")

plt.plot(ts, mz_tdvp, linestyle="", color="CO", marker=".", label="TDVP")

plt.ylabel (r"M_z")
plt.xlabel(r"t")
plt.yticks([-1, -0.5, 0, 0.5, 11)
plt.legend ()

plt.show()
1.0 === Exact
« TDVP ;"’“\. ’r"'\.
’ ;! ’
‘P ‘\ ‘F
0.5 - } ' f
' \ !
.-‘ X
’ % f
! X

M

0.0 - ;]

—0.5 - ! &

104

e Case J =0.25

[28]: # Hamiltontian parameters
J =0.25

Gamma = 1.0

12

hami = ising _hamiltonian(sx_list, sz_list, J, Gamma)
[29]: | # Ezact

Initial state
psi_ex =1
for i in range(N):
psi_ex = np.kron(psi_ex, spin_down)

Magnetization operator
mz_op = Mz(N)

exp_Hxs, exp_Hzzs, exp_Hzz_halfs = gen_exp_hams(N, J=J, Gamma=Gamma, dt=dt)
mz_t = np.empty(nt + 1)

mz_t[0] = measure(psi_ex, mz_op)
e_t = [measure(psi_ex, hami)]

for i in range(l, nt + 1):
Every call evolves by a time-step dt
psi_ex = time_evol(exp_Hxs, exp_Hzzs, exp_Hzz_halfs, psi_ex, dt, dt)
mz_t[i] = measure(psi_ex, mz_op)
e_t.append(measure(psi_ex, hami))

[30]: # TDVP

Create the list of operators to be measured
sx_list = list_of_op(sx, N)
sz_list = list_of_op(sz, N)

sxsx_list = []
for i in range(N):
sxsx_row = []
for j in range(N):
sxsx_row.append(sx_list[i] @ sx_list[j])
sxsx_list.append(sxsx_row)

sx_hami_list = []
for sx_i in sx_list:
sx_hami_list.append(sx_i @ hami)
[31]: |# Initialise the TDVP loop

_params = np.zeros(N)

Initial state
spin_up = np.array([1, 0])

13

spin_down = np.array([0, 1])

psiO = 1
for i in range(N):
psiO = np.kron(psiO, spin_down)

And initial variational ansatz
psi_op = mf_ansatz_op(N, _params)
psi_var = mf_ansatz_psi(psi_op, psiO)
psi_norm = squared_norm(psi_var)

mz_op = Mz(N)
mz_tdvp = []
mz_tdvp.append (measure(psiO, mz_op))

Energy
e_tdvp = []
e_tdvp.append (measure (psiO, hami))

[32]: for step in range(nt):
1) Measure all the operators to evaluate S and C
sx_meas = np.asarray([measure(psi_var, x) for x in sx_list])
Sxsx_meas = np.asarray(
[[measure(psi_var, x) for x in sxsx_row] for sxsx_row in sxsx_list]
)
energy = measure(psi_var, hami)
sx_hami_meas = np.asarray([measure(psi_var, x) for x in sx_hami_list])

2) Create S and C
S_mat = S(_params, sx_meas, sSxsx_meas, psi_norm)
C_vec = C(_params, energy, sx_meas, sx_hami_meas, psi_norm)

3) Solve the linear system
_dot = solve(np.real(S_mat), np.imag(C_vec))

4) Update the parameters
_params = _params + _dot * dt

5) Create the new variational state and measure observables
psi_op = mf_ansatz_op(N, _params)

psi_var = mf_ansatz_psi(psi_op, psiO)

psi_norm = squared_norm(psi_var)

mz_tdvp.append (measure(psi_var, mz_op))
e_tdvp.append(measure(psi_var, hami))

14

[33]:

[34] :

Plot and compare
plot(ts, mz_t, linestyle="dashed", color="black", label="Exact")

plt.

plt

plt.

plt
plt

plt.
plt.

Now check the energy
plot(ts, e_t, linestyle="dashed", color="black", label="Exact")

plt.
plt.

plt

plt.
plt.
plt.

plot(ts, e_tdvp, linestyle="dashed", color="CO0", marker=".", label="TDVP")
.ylabel (r"$Energy$")

xlabel(r"t")
legend ()
show ()

.plot(ts, mz_tdvp, linestyle="", color="CO", marker=".", label="TDVP")
ylabel(r"M_z")
.xlabel (r"t")
.yticks([-1, -0.5, 0, 0.5, 1])
legend ()
show ()
1.0 0 ==- Exact ™ %
L] * . L]
« TDWVP P . *
T . []
l!} \a L
o b1 .
o \:i L
0.5 o e .
v % .
] . —
] - 7o
L) 1‘ . /’
d A s F
! \ L] !I
< 0.0 ! ’
f : 7
\
d sl ;
r" Y s
LY f;.
; . n\\ /.
L]
—0.5 ’ . \“.....""]
d . .
- L]
™ L]
™ L]
. -"‘
L]
—1.0 -f ﬁh-f
T T T T T T
0 1 2 3 4 5
t

15

g ————— ;e -
\ A 4 F
' 4 \ [}
| 1 \ I % &
2.0 \ i ' : 1 h ",
t 1 I] [\
] 1; » * i I b
L) I ! b ! [
| [] }]] r \
?r] b i i .
i 1]
1.5 | ! \ | . b
A S R S
& L ? g I \ f
= \] &] I
g f. I | ll' b F
o 1.0 l , b | \ '
L)]] I I I
1 » * | i r
1 I [1 I
T 1 1] b }L
1 P b 1 1
0.5 1 * i [] \ [
fl \ I 1 $
1] | i \ i
t L v b
L | & .F‘ ‘1 s - Exact
0.0 - " \J "Wt —e- TDVP
T T T T T T
0 1 2 3 4 5
t

0.1.2 Problem 8.2 Imaginary time evolution

In this exercise we will use the imaginary time evolution method to find the ground state of an
Ising spin chain and periodic boundary conditions.

[35]: import numpy as np
from matplotlib import pyplot as plt
from scipy.sparse import csr_array, identity, kron
from scipy.sparse.linalg import eigsh

[36]: # Pauli matrices
sx = csr_array([[0, 1], [1, 011)
sz = csr_array([[1, 0], [0, -111)

a) TFIM Hamiltonian as in Problem 3.1

[37]: def operator(pauli, i, N):
left = identity(2**i)
right = identity(2 ** (N - i - 1))
mat = kron(kron(left, pauli), right)

Exzplicitly convert to CSR since kron may return COO

16

mat = csr_array(mat)
return mat

[38]: def gen_hamiltonian(sx_list, sz_list, J, Gamma, pbc):
N = len(sx_list)

ham = 0
for i in range(N - 1 + pbc):
ham -= Gamma * sx_list[i]

j=@lA+1)%N
ham += J * sz_list[i] @ sz_list[j]
return ham

b) Exact diagonalization as in Problem 3.1

[39]: N = 10
J=1
Gammas = [0.5, 1, 1.5, 2]
sx_list = [operator(sx, i, N) for i in range(N)]
sz_list = [operator(sz, i, N) for i in range(N)]
Hs = []

energies_0 = []
energies_1 (]
gaps = []
for Gamma in Gammas:
H = gen_hamiltonian(sx_list, sz_list, J, Gamma, pbc=True)

If we set k=27, the Lanczos algorithm may not really converge to the two,
wsmallest eigenvectors

From my expertience it's safe to set 'k° to the double of what we need

exact = eigsh(H, k=4, which="SA", return_eigenvectors=False)

Hs.append (H)
energies_0.append(exact [-1])
energies_1.append(exact[-2])
gaps.append(exact[-2] - exact[-1])

print("E_0:", energies_0)

print("Gaps:", gaps)

E_O: [np.float64(-10.635604409347945), np.float64(-12.784906442999315),
np.float64(-16.7230249139484), np.float64(-21.271208818695968)]

Gaps: [np.float64(0.0003207266806573017), np.float64(0.15740341364924326) ,
np.float64(1.0075698441114795), np.float64(2.0006414533614176)]

¢) Implement imaginary time evolution

17

[40]: def imag_time_evol(H, psi, tau, dtauw):
n_steps = round(tau / dtau)
for step in range(n_steps):
psi -= dtau * (H @ psi)
psi /= np.sqrt(psi.conj() @ psi)
return psi

[41]: def measure(H, psi):
return (psi.conj() @ (H @ psi)).real

dtau = 1e-3
n_points = 1000
tau = 20

taus = np.linspace(0, tau, n_points + 1)
energies_ite = np.empty((len(Gammas), n_points + 1))

for k in range(len(Gammas)) :
H = Hs[k]

Random initial ps?t
psi = np.random.rand(2*+*N) + np.random.rand(2**N) * 1j
psi /= np.sqrt(psi.conj() @ psi)

energies_itel[k, 0] = measure(H, psi)

for i in range(l, n_points + 1):
psi = imag_time_evol(H, psi, tau / n_points, dtau)
energies_itel[k, i] = measure(H, psi)

d) Plot the energies

[42]: for k in range(len(Gammas)):
plt.plot(taus, energies_ite[k] - energies_O[k])
plt.xlabel ("$\\tau$")
plt.ylabel("$E - E_0$")
plt.yscale("log")
plt.title(f"Convergence of imaginary time evolution, $\\Gamma =
~{Gammas [k]}$")
plt.show()

18

E—Eq

10!
107
1071
1072
10-3
107

1077 3

Convergence of imaginary time evolution, '=0.5

0.0

T T T
2.5 5.0 7.5 10.0 12.5 15.0 17.5
T

19

T
20.0

E—Eq

107 4

1071
1072
10-3
107
1072
106

1077

Convergence of imaginary time evolution, =1

107 3

0.0

T T
2.5 5.0 7.5 10.0 12.5 15.0 17.5
T

20

T
20.0

E—Eq

Convergence of imaginary time evolution, F'=1.5

lDI} i

lD—:! i

104

lD_E i

1078 1

lD—lI} i

lD—lE i

lD—lf-l i

T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
T

21

Convergence of imaginary time evolution, =2

10—1 i

10—3 i

E—Eq

10—9 i

10—11 i

10—13 i

T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

e) Fit the convergence rates

[43]: intervals = [(6, 18), (6, 18), (4, 10), (2, 5)]

rates = []
for k in range(len(Gammas)):
gap = gaps[k]

mask = (intervals([k] [0] < taus) & (taus < intervals[k][1])

a = np.polyfit(taus[mask], np.log(energies_itel[k, mask] - energies_O[k]), 1)
rate = -a[0]

rates.append(rate)

print(gap, rate)

0.0003207266806573017 0.00063026212304085
0.15740341364924326 0.31340464088635817
1.0075698441114795 1.9847204857923895
2.0006414533614176 4.0271936035324565

22

[44] :

plt.plot(gaps, rates, marker=".", markersize=10)
plt.xlabel("$E_1 - E_0$")
plt.ylabel("Convergence rate")
plt.title("Convergence rate vs. energy gap")
plt.show()

Convergence rate vs. energy gap

4.0

3.5

3.0 A

2.5

2.0+

1.5 7

Convergence rate

1.0+

0.5

0.0 1

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
E1—Ep

When 7 is large enough and the components of |¢,) and higher excited states are decayed negligible,
but ;) is still significant, we have

(7)) = e FoT (colipg) + e 2FTey [1hy)) (1)
where AE = E, — E,,. The evolved energy is

ciE, + e 2AET2 R,

E(r) = 2 +e2A8ET2

= FE,+AEXN+0()\?), (2)

2
where A = (C—le_AET) . When fitting the exponential decay, we can find

Co
2
log (E(T) — Ey) = —2AET + log (AE;) , (3)
Co
so the convergence rate is linear in AFE.

23

	Solutions 09 Time-dependent variational principle
	Exercise 9.1 - The Time Dependent Variational Principle (TDVP)
	Problem 8.2 Imaginary time evolution

