
ex09_solutions

April 15, 2025

Computational Quantum Physics - PHYS 463

Lecturer: Prof. G. Carleo

Assistants: alessandro.sinibaldi@epfl.ch, linda.mauron@epfl.ch, lorenzo.fioroni@epfl.ch

0.1 Solutions 09 Time-dependent variational principle
The solution of the exercises are self contained and can be run independentely from each others.

0.1.1 Exercise 9.1 - The Time Dependent Variational Principle (TDVP)

In this exercise we will use the Time Dependent Variational Principle to variationally approximate
the dynamics of a Transverse Field Ising chain. We will compare the results obtained with those
of Lesson 3.

a) Let’s start with the simple 2 qubit case

[1]: import numpy as np
from matplotlib import pyplot as plt
from scipy.linalg import solve
from scipy.sparse import csr_array, identity, kron
from scipy.sparse.linalg import eigsh

[2]: # Pauli matrices
sx = csr_array([[0, 1], [1, 0]])
sz = csr_array([[1, 0], [0, -1]])

spin_up = np.array([1, 0])
spin_down = np.array([0, 1])

[3]: def pauli_op(pauli, i, N):
left = identity(2**i)
right = identity(2 ** (N - i - 1))
mat = kron(kron(left, pauli), right)

Explicitly convert to CSR since kron likes to return COO
mat = csr_array(mat)
return mat

1

Function to generate a list of Pauli operators
def list_of_op(pauli, n_spins):

return [pauli_op(pauli, i, n_spins) for i in range(n_spins)]

[4]: # Generate the Ising hamiltonian
def ising_hamiltonian(sx_list, sz_list, J, gamma):

n_spins = len(sx_list)
ham = 0
for i in range(n_spins):

ham -= gamma * sx_list[i]
for i in range(n_spins - 1):

ham += J * sz_list[i] @ sz_list[i + 1]
return ham

[5]: # Observable to measure during the time evolution

def Hz(n_spins, site):
Measure sigma_z on spin site
sz = csr_array([[1, 0], [0, -1]])
left = identity(2**site)
right = identity(2 ** (n_spins - site - 1))
mat = kron(kron(left, sz), right)

mat = csr_array(mat)
return mat

def Mz(n_spins):
Measure the mean magnetization along the z-axis
mz = 0
for i in range(n_spins):

mz += Hz(n_spins, i)

return (1 / n_spins) * mz

[6]: # Function to measure expectation values
def measure(psi, operator):

First do M @ v, which is faster than v @ M for CSR matrix, then do v @ v
return (psi.conj().T @ (operator @ psi)).real

For the simple variational form

|𝜓(𝜃(𝑡))⟩ = 𝑒−𝑖𝜃(𝑡)(𝜎𝑥
1 +𝜎𝑥

2)|𝜙(0)⟩ with |𝜙(0)⟩ = | ↓⟩ ⊗ | ↓⟩

the 𝑆 matrix is a scalar and reads

2

𝑆 = 2 + 2⟨𝜓|𝑋1𝑋2|𝜓⟩ − |⟨𝜓|𝑋1 + 𝑋2|𝜓⟩|2

while

𝐶 = 𝑖⟨𝜓|(𝑋1 + 𝑋2)𝐻|𝜓⟩ − 𝑖⟨𝜓|(𝑋1 + 𝑋2)|𝜓⟩⟨𝜓|𝐻|𝜓⟩

So we need to measure those values and solve the equation of motion

[7]: def psi_t(�):
x1 = kron(sx, identity(2))
x2 = kron(identity(2), sx)
exp_op = (np.cos(�) * identity(4) - 1j * np.sin(�) * x1) @ (

np.cos(�) * identity(4) - 1j * np.sin(�) * x2
)

psi0 = np.kron(spin_down, spin_down)

return exp_op @ psi0

[8]: # Create operators and Hamiltonian to measure
sx_list = list_of_op(sx, 2)
sz_list = list_of_op(sz, 2)

sum_sx = sx_list[0] + sx_list[1]
prod_x1x2 = sx_list[0] @ sx_list[1]
hami = ising_hamiltonian(sx_list, sz_list, J=0, gamma=1)

[9]: # For every time step measure S and C and find \dot{\theta}
T = 5
nt = 100
dt = T / nt
ts = np.linspace(0, T, nt + 1) # np.linspace is defined for [start, end]

[10]: theta = 0
psit = psi_t(theta)

mz2 = Mz(2)
mz_2spin = [measure(psit, mz2)]

for step in range(nt):
2) Create S and C
S_mat = 2 + measure(psit, prod_x1x2) - measure(psit, sum_sx) ** 2
C_vec = 1j * measure(psit, sum_sx @ hami) - 1j * measure(psit, sum_sx) *␣

↪measure(
psit, hami

)

3

3) Solve the linear system
�_dot = np.imag(C_vec) / np.real(S_mat)

4) Update the parameters
theta = theta + �_dot * dt

5) Create the new variational state and measure observables
psit = psi_t(theta)

mz_2spin.append(measure(psit, mz2))

[11]: # Plot the results
plt.plot(ts, mz_2spin, linestyle="dashed", color="C0", marker=".", label="TDVP")
plt.ylabel(r"M_z")
plt.xlabel(r"t")
plt.yticks([-1, -0.5, 0, 0.5, 1])
plt.legend()
plt.show()

b) Now we need to create the mean-field ansatz

4

|𝜓 (𝜃1(𝑡), … , 𝜃𝑁(𝑡))⟩ = |𝜓(𝑡)⟩ =
𝑁

∏
𝑖=1

𝑒𝑖𝜃𝑖(𝑡)𝑋𝑖 |𝜓(0)⟩

given the initial state

|𝜓(0)⟩ =
𝑁

⨂
𝑖=1

| ↓⟩ ,

where we indicated 𝑋𝑖 = ̂𝐼 ⊗ ̂𝐼 ⊗ … ̂𝐼⏟⏟⏟⏟⏟
𝑖−1 times

⊗𝜎̂𝑥 ⊗ ̂𝐼 ⊗ ⋯ ⊗ ̂𝐼⏟⏟⏟⏟⏟
𝑁−𝑖 times

.

We will define it as a list of operators acting on the state |𝜓(0)⟩.

[12]: def mf_ansatz_op(n_spins, �_vec):
Generate the operators associated to the mean-field ansatz
given a vector of parameters �_vec
op_list = []

for i in range(len(�_vec)):
left = identity(2**i)
right = identity(2 ** (N - i - 1))
mat = kron(kron(left, sx), right)

I = identity(2**N)
mat = np.cos(�_vec[i]) * I - 1j * np.sin(�_vec[i]) * mat
mat = csr_array(mat)
op_list.append(mat)

return op_list

def mf_ansatz_psi(ansatz_op, psi):
for mat in ansatz_op:

psi = mat @ psi

return psi

def squared_norm(psi):
return (psi.conj().T @ psi).real

Now we have to define the method to compute the 𝑆 matrix and the 𝐶 vector.

For the real time evolution we will need the real part of 𝑆 and the imaginary part of 𝐶.

For this simple ansatz we can explicitly calculate the derivative with respect to 𝜃𝑖 and therefore
give the expression of 𝑆 and 𝐶 as expectation values calculated over the ansatz state.

Indeed, given:

5

𝜕
𝜕𝜃𝑖

|𝜓(𝑡)⟩ = |𝜕𝑖𝜓(𝑡)⟩ = 𝑖𝜎𝑖
𝑥|𝜓(𝑡)⟩

we have

𝑆𝑖𝑗 = ⟨𝜕𝑖𝜓|𝜕𝑗𝜓⟩/⟨𝜓|𝜓⟩ − ⟨𝜕𝑖𝜓|𝜓⟩⟨𝜓|𝜕𝑗𝜓⟩/⟨𝜓|𝜓⟩2 = ⟨𝜓|𝑋𝑖𝑋𝑗|𝜓⟩/⟨𝜓|𝜓⟩ − ⟨𝜓|𝑋𝑖|𝜓⟩⟨𝜓|𝑋𝑗|𝜓⟩/⟨𝜓|𝜓⟩2

and

𝐶𝑘 = −𝑖⟨𝜓|𝑋𝑘𝐻|𝜓⟩/⟨𝜓|𝜓⟩ + 𝑖⟨𝜓|𝑋𝑘|𝜓⟩⟨𝜓|𝐻|𝜓⟩/⟨𝜓|𝜓⟩2

Therefore, for each time step it suffices to measure a series of expectation values of 𝑋𝑗 and 𝐻 and
use those values to evaluate the derivatives of the parameters using

𝑆𝑅 ̇𝜃 = 𝐶𝐼

[13]: # Define the simulation time
T = 5
nt = 100
dt = T / nt
ts = np.linspace(0, T, nt + 1) # np.linspace is defined for [start, end]

• Case 𝐽 = 0

[14]: # Define the system
N = 10
J = 0.0
Gamma = 1.0

[15]: # Create the list of operators to be measured
sx_list = list_of_op(sx, N)
sz_list = list_of_op(sz, N)

sxsx_list = []
for i in range(N):

sxsx_row = []
for j in range(N):

sxsx_row.append(sx_list[i] @ sx_list[j])
sxsx_list.append(sxsx_row)

Hamiltonian
hami = ising_hamiltonian(sx_list, sz_list, J, Gamma)
sx_hami_list = []
for sx_i in sx_list:

sx_hami_list.append(sx_i @ hami)

6

[16]: # Function to measure expectation values
def measure(psi, operator):

return (psi.conj().T @ (operator @ psi)).real

Now define the routine for the TDVP

[17]: def S(�_vec, sx_meas, sxsx_meas, psi_norm):
nparams = len(�_vec)
s_mat = np.zeros((nparams, nparams), dtype=complex)

Create the S matrix
for i in range(nparams):

for j in range(nparams):
s_mat[i, j] = sxsx_meas[i, j] / psi_norm - sx_meas[i] * sx_meas[j] /

↪ psi_norm**2

return s_mat

def C(�_vec, hami_meas, sx_meas, sx_hami_meas, psi_norm):
nparams = len(�_vec)
c_vec = np.zeros(nparams, dtype=complex)

for i in range(nparams):
c_vec[i] = -1j * sx_hami_meas[i] / psi_norm + 1j * sx_meas[i] *␣

↪hami_meas / psi_norm**2

return c_vec

Now define all the quantities useful for the TDVP loop

[18]: # Initialise the TDVP loop

�_params = np.zeros(N)

Initial state
psi0 = 1
for i in range(N):

psi0 = np.kron(psi0, spin_down)

And initial variational ansatz
psi_op = mf_ansatz_op(N, �_params)
psi_var = mf_ansatz_psi(psi_op, psi0)
psi_norm = squared_norm(psi_var)

Observables to save
Magnetization
mz_op = Mz(N)

7

mz_tdvp = []
mz_tdvp.append(measure(psi0, mz_op))

Energy
e_tdvp = []
e_tdvp.append(measure(psi0, hami))

TDVP loop
[19]: for step in range(nt):

1) Measure all the operators to evaluate S and C
sx_meas = np.asarray([measure(psi_var, x) for x in sx_list])
sxsx_meas = np.asarray(

[[measure(psi_var, x) for x in sxsx_row] for sxsx_row in sxsx_list]
)
energy = measure(psi_var, hami)
sx_hami_meas = np.asarray([measure(psi_var, x) for x in sx_hami_list])

2) Create S and C
S_mat = S(�_params, sx_meas, sxsx_meas, psi_norm)
C_vec = C(�_params, energy, sx_meas, sx_hami_meas, psi_norm)

3) Solve the linear system
�_dot = solve(np.real(S_mat), np.imag(C_vec))

4) Update the parameters
�_params = �_params + �_dot * dt

5) Create the new variational state and measure observables
psi_op = mf_ansatz_op(N, �_params)
psi_var = mf_ansatz_psi(psi_op, psi0)
psi_norm = squared_norm(psi_var)

mz_tdvp.append(measure(psi_var, mz_op))
e_tdvp.append(measure(psi_var, hami))

[20]: # Plot the results
plt.plot(ts, mz_tdvp, linestyle="dashed", color="C0", marker=".", label="TDVP")
plt.ylabel(r"M_z")
plt.xlabel(r"t")
plt.yticks([-1, -0.5, 0, 0.5, 1])
plt.legend()
plt.show()

8

[21]: # Check also the energy --- it has to remain constant during time evolution
plt.plot(ts, e_tdvp, linestyle="dashed", color="C0", marker=".", label="TDVP")
plt.ylabel(r"Energy")
plt.xlabel(r"t")
plt.legend()
plt.show()

9

Now we recall the time evolution algorithm from exercise session 3, to compare the results

[22]: def exp_Hx(N, i, delta):
sx = csr_array([[0, 1], [1, 0]])
left = identity(2**i)
right = identity(2 ** (N - i - 1))
mat = kron(kron(left, sx), right)

I = identity(2**N)
mat = np.cos(delta / 2) * I - 1j * np.sin(delta / 2) * mat
mat = csr_array(mat)
return mat

def exp_Hzz(N, i, delta):
sz = csr_array([[1, 0], [0, -1]])

left = identity(2**i)
right = identity(2 ** (N - i - 2))
mat = kron(kron(left, kron(sz, sz)), right)

10

I = identity(2**N)
mat = np.cos(delta / 2) * I - 1j * np.sin(delta / 2) * mat
mat = csr_array(mat)
return mat

Generate all time evolution operators
def gen_exp_hams(N, J, Gamma, dt):

exp_Hxs = [exp_Hx(N, i, -Gamma * dt) for i in range(N)]
exp_Hzzs = [exp_Hzz(N, i, J * dt) for i in range(N - 1)]
exp_Hzz_halfs = [exp_Hzz(N, i, J / 2 * dt) for i in range(N - 1)]
return exp_Hxs, exp_Hzzs, exp_Hzz_halfs

[23]: def time_evol(exp_Hxs, exp_Hzzs, exp_Hzz_halfs, psi, t, dt):
n_steps = round(t / dt)
for mat in exp_Hzz_halfs:

psi = mat @ psi
for mat in exp_Hxs:

psi = mat @ psi
for step in range(n_steps):

for mat in exp_Hzzs:
psi = mat @ psi

for mat in exp_Hxs:
psi = mat @ psi

for mat in exp_Hzz_halfs:
psi = mat @ psi

return psi

• Case 𝐽 = 0

[24]: # Hamiltonian parameters
N = 10
J = 0.0
Gamma = 1.0

[25]: # Initial state
psi_ex = 1
for i in range(N):

psi_ex = np.kron(psi_ex, spin_down)

Magnetization operator
mz_op = Mz(N)

[26]: # Evolve and measure the magnetization

exp_Hxs, exp_Hzzs, exp_Hzz_halfs = gen_exp_hams(N, J=J, Gamma=Gamma, dt=dt)
mz_t = np.empty(nt + 1)

11

mz_t[0] = measure(psi_ex, mz_op)

for i in range(1, nt + 1):
Every call evolves by a time-step dt
psi_ex = time_evol(exp_Hxs, exp_Hzzs, exp_Hzz_halfs, psi_ex, dt, dt)
mz_t[i] = measure(psi_ex, mz_op)

[27]: # Plot the magnetization as a function of time
plt.plot(ts, mz_t, linestyle="dashed", color="black", label="Exact")
plt.plot(ts, mz_tdvp, linestyle="", color="C0", marker=".", label="TDVP")
plt.ylabel(r"M_z")
plt.xlabel(r"t")
plt.yticks([-1, -0.5, 0, 0.5, 1])
plt.legend()
plt.show()

• Case 𝐽 = 0.25

[28]: # Hamiltonian parameters
J = 0.25
Gamma = 1.0

12

hami = ising_hamiltonian(sx_list, sz_list, J, Gamma)

[29]: # Exact

Initial state
psi_ex = 1
for i in range(N):

psi_ex = np.kron(psi_ex, spin_down)

Magnetization operator
mz_op = Mz(N)

exp_Hxs, exp_Hzzs, exp_Hzz_halfs = gen_exp_hams(N, J=J, Gamma=Gamma, dt=dt)
mz_t = np.empty(nt + 1)

mz_t[0] = measure(psi_ex, mz_op)
e_t = [measure(psi_ex, hami)]

for i in range(1, nt + 1):
Every call evolves by a time-step dt
psi_ex = time_evol(exp_Hxs, exp_Hzzs, exp_Hzz_halfs, psi_ex, dt, dt)
mz_t[i] = measure(psi_ex, mz_op)
e_t.append(measure(psi_ex, hami))

[30]: # TDVP

Create the list of operators to be measured
sx_list = list_of_op(sx, N)
sz_list = list_of_op(sz, N)

sxsx_list = []
for i in range(N):

sxsx_row = []
for j in range(N):

sxsx_row.append(sx_list[i] @ sx_list[j])
sxsx_list.append(sxsx_row)

sx_hami_list = []
for sx_i in sx_list:

sx_hami_list.append(sx_i @ hami)

[31]: # Initialise the TDVP loop

�_params = np.zeros(N)

Initial state
spin_up = np.array([1, 0])

13

spin_down = np.array([0, 1])

psi0 = 1
for i in range(N):

psi0 = np.kron(psi0, spin_down)

And initial variational ansatz
psi_op = mf_ansatz_op(N, �_params)
psi_var = mf_ansatz_psi(psi_op, psi0)
psi_norm = squared_norm(psi_var)

mz_op = Mz(N)
mz_tdvp = []
mz_tdvp.append(measure(psi0, mz_op))

Energy
e_tdvp = []
e_tdvp.append(measure(psi0, hami))

[32]: for step in range(nt):
1) Measure all the operators to evaluate S and C
sx_meas = np.asarray([measure(psi_var, x) for x in sx_list])
sxsx_meas = np.asarray(

[[measure(psi_var, x) for x in sxsx_row] for sxsx_row in sxsx_list]
)
energy = measure(psi_var, hami)
sx_hami_meas = np.asarray([measure(psi_var, x) for x in sx_hami_list])

2) Create S and C
S_mat = S(�_params, sx_meas, sxsx_meas, psi_norm)
C_vec = C(�_params, energy, sx_meas, sx_hami_meas, psi_norm)

3) Solve the linear system
�_dot = solve(np.real(S_mat), np.imag(C_vec))

4) Update the parameters
�_params = �_params + �_dot * dt

5) Create the new variational state and measure observables
psi_op = mf_ansatz_op(N, �_params)
psi_var = mf_ansatz_psi(psi_op, psi0)
psi_norm = squared_norm(psi_var)

mz_tdvp.append(measure(psi_var, mz_op))
e_tdvp.append(measure(psi_var, hami))

14

[33]: # Plot and compare
plt.plot(ts, mz_t, linestyle="dashed", color="black", label="Exact")
plt.plot(ts, mz_tdvp, linestyle="", color="C0", marker=".", label="TDVP")
plt.ylabel(r"M_z")
plt.xlabel(r"t")
plt.yticks([-1, -0.5, 0, 0.5, 1])
plt.legend()
plt.show()

[34]: # Now check the energy
plt.plot(ts, e_t, linestyle="dashed", color="black", label="Exact")
plt.plot(ts, e_tdvp, linestyle="dashed", color="C0", marker=".", label="TDVP")
plt.ylabel(r"$Energy$")
plt.xlabel(r"t")
plt.legend()
plt.show()

15

0.1.2 Problem 8.2 Imaginary time evolution

In this exercise we will use the imaginary time evolution method to find the ground state of an
Ising spin chain and periodic boundary conditions.

[35]: import numpy as np
from matplotlib import pyplot as plt
from scipy.sparse import csr_array, identity, kron
from scipy.sparse.linalg import eigsh

[36]: # Pauli matrices
sx = csr_array([[0, 1], [1, 0]])
sz = csr_array([[1, 0], [0, -1]])

a) TFIM Hamiltonian as in Problem 3.1

[37]: def operator(pauli, i, N):
left = identity(2**i)
right = identity(2 ** (N - i - 1))
mat = kron(kron(left, pauli), right)

Explicitly convert to CSR since kron may return COO

16

mat = csr_array(mat)
return mat

[38]: def gen_hamiltonian(sx_list, sz_list, J, Gamma, pbc):
N = len(sx_list)
ham = 0
for i in range(N - 1 + pbc):

ham -= Gamma * sx_list[i]
j = (i + 1) % N
ham += J * sz_list[i] @ sz_list[j]

return ham

b) Exact diagonalization as in Problem 3.1

[39]: N = 10
J = 1
Gammas = [0.5, 1, 1.5, 2]
sx_list = [operator(sx, i, N) for i in range(N)]
sz_list = [operator(sz, i, N) for i in range(N)]

Hs = []
energies_0 = []
energies_1 = []
gaps = []
for Gamma in Gammas:

H = gen_hamiltonian(sx_list, sz_list, J, Gamma, pbc=True)

If we set `k=2`, the Lanczos algorithm may not really converge to the two␣
↪smallest eigenvectors

From my experience it's safe to set `k` to the double of what we need
exact = eigsh(H, k=4, which="SA", return_eigenvectors=False)

Hs.append(H)
energies_0.append(exact[-1])
energies_1.append(exact[-2])
gaps.append(exact[-2] - exact[-1])

print("E_0:", energies_0)
print("Gaps:", gaps)

E_0: [np.float64(-10.635604409347945), np.float64(-12.784906442999315),
np.float64(-16.7230249139484), np.float64(-21.271208818695968)]
Gaps: [np.float64(0.0003207266806573017), np.float64(0.15740341364924326),
np.float64(1.0075698441114795), np.float64(2.0006414533614176)]

c) Implement imaginary time evolution

17

[40]: def imag_time_evol(H, psi, tau, dtau):
n_steps = round(tau / dtau)
for step in range(n_steps):

psi -= dtau * (H @ psi)
psi /= np.sqrt(psi.conj() @ psi)

return psi

[41]: def measure(H, psi):
return (psi.conj() @ (H @ psi)).real

dtau = 1e-3
n_points = 1000
tau = 20

taus = np.linspace(0, tau, n_points + 1)
energies_ite = np.empty((len(Gammas), n_points + 1))

for k in range(len(Gammas)):
H = Hs[k]

Random initial psi
psi = np.random.rand(2**N) + np.random.rand(2**N) * 1j
psi /= np.sqrt(psi.conj() @ psi)

energies_ite[k, 0] = measure(H, psi)
for i in range(1, n_points + 1):

psi = imag_time_evol(H, psi, tau / n_points, dtau)
energies_ite[k, i] = measure(H, psi)

d) Plot the energies

[42]: for k in range(len(Gammas)):
plt.plot(taus, energies_ite[k] - energies_0[k])
plt.xlabel("$\\tau$")
plt.ylabel("$E - E_0$")
plt.yscale("log")
plt.title(f"Convergence of imaginary time evolution, $\\Gamma =␣

↪{Gammas[k]}$")
plt.show()

18

19

20

21

e) Fit the convergence rates

[43]: intervals = [(6, 18), (6, 18), (4, 10), (2, 5)]

rates = []
for k in range(len(Gammas)):

gap = gaps[k]

mask = (intervals[k][0] < taus) & (taus < intervals[k][1])
a = np.polyfit(taus[mask], np.log(energies_ite[k, mask] - energies_0[k]), 1)
rate = -a[0]
rates.append(rate)

print(gap, rate)

0.0003207266806573017 0.00063026212304085
0.15740341364924326 0.31340464088635817
1.0075698441114795 1.9847204857923895
2.0006414533614176 4.0271936035324565

22

[44]: plt.plot(gaps, rates, marker=".", markersize=10)
plt.xlabel("$E_1 - E_0$")
plt.ylabel("Convergence rate")
plt.title("Convergence rate vs. energy gap")
plt.show()

When 𝜏 is large enough and the components of |𝜓2⟩ and higher excited states are decayed negligible,
but |𝜓1⟩ is still significant, we have

|𝜓(𝜏)⟩ = e−𝐸0𝜏 (𝑐0|𝜓0⟩ + e−Δ𝐸𝜏𝑐1|𝜓1⟩) , (1)

where Δ𝐸 = 𝐸1 − 𝐸0. The evolved energy is

𝐸(𝜏) = 𝑐2
0𝐸0 + e−2Δ𝐸𝜏𝑐2

1𝐸1
𝑐2

0 + e−2Δ𝐸𝜏𝑐2
1

= 𝐸0 + Δ𝐸𝜆 + 𝑂(𝜆2), (2)

where 𝜆 = (𝑐1
𝑐0

e−Δ𝐸𝜏)2
. When fitting the exponential decay, we can find

log (𝐸(𝜏) − 𝐸0) = −2Δ𝐸𝜏 + log (Δ𝐸 𝑐2
1

𝑐2
0

) , (3)

so the convergence rate is linear in Δ𝐸.

23

	Solutions 09 Time-dependent variational principle
	Exercise 9.1 - The Time Dependent Variational Principle (TDVP)
	Problem 8.2 Imaginary time evolution

