ex(07 solution

April 2, 2025

Computational Quantum Physics - PHYS 463
Lecturer: Prof. G. Carleo

Assistants: alessandro.sinibaldi@epfl.ch, linda.mauron@epfl.ch, lorenzo.fioroni@epfl.ch

0.1 Solution 07 - Variational Monte Carlo (VMC)

[1]: | import numpy as np
import matplotlib.pyplot as plt
from functools import partial

try:

from tqdm.auto import tqdm # progressbar
except ImportError:

tqdm = lambda x: x

[2]: | # analytical solution for the ground state energy of the TFI in 1D with pbc

def isingld_energy(L, Gamma):
Gamma is in units of the interaction strength J
def Epsilon(k,h):
eps = 1 + h*x2 + 2 * h * np.cos(k)
return 2 * np.sqrt(eps)

i = np.arange(L)

k =np.pi * (2 *x1i+ 1)/L
energy = Epsilon(k,Gamma) .sum()
return -0.5*energy

[3]: def err_rel(x, y):
""relative error"""
return np.abs((x-y)/y)

[4]:|N = 16 # number of spins
Ns = 512 # number of samples
N_discard = 128 # how many samples to discard

[6]: # throughout this exercise we work with basis states in the 2z bastis
represented by arrays containing the quantum numbers -1 and +1

the following function generates random basis states (uniformly sampled)

def random_states(N, size=1):
return np.random.choice(np.array([-1,1]), size=(size, N))

random_states(N, 3)

[5]: array(l[1, -1, 1, ¢, 1, 1, 21, 1, 1, -1, 1, 1, 1, 1, 1, 1],
[19 _1: 19 _1: 1, 1: 1, _1’ _19 1’ _13 1: 1: 19 _1: 1]9
[-1

, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 111)

0.2 Exercise 7.1 : Mean-field Ansatz
0.2.1 a) Ansatz

[6]: def logpsi_mf(params, s):
"""Mean-field Ansatz"""

Ns, N = s.shape

d = params[:N]
u = params|[N:]
return ((s == -1) * d + (s == +1) * u).sum(axis=-1)

def random_params_mf (N, stddev=0.1):
return np.random.normal (0, stddev, size=(2*N))

[7]: # test it
x = random_states(N, 5)
params = random_params_mf (N)
logpsi_mf (params, x)

[7]: array([0.17967098, 0.20652151, 0.17270972, 0.08493403, -0.0767841])

[8]: # check the shape
assert logpsi_mf(params, x).shape == (len(x),)

0.2.2 b) Gradient

[9]: def grad_logpsi_mf(params, s):
Ns, N = s.shape
g = np.zeros((Ns,) + params.shape)
gl:, :N] = (s == -1)
gl:, N:] = (s == +1)
return g

[10]: grad_logpsi_mf (params, x)

[10]: array([[1., 1., 0., 1., 0., 0., 1., 0., 1., 1., 1., 1., 1., 0.
0., 0., 1., 0.,1t.,1t,0.,1.,0., 0., O., 0., O., 1.
(t., 0., 1., 1., 1., 1., 0., 0., 1., 1., 0., 1., 1., 1.
0., 1., 0., 0., 0., 0., 1., 1., 0., 0., 1., 0., 0., 0.
(0., ¢+, 1., 1., 0., 0., 1., 0., 0., 0., 0., 1., 0., 1.
1., 0.,0.,0.,1., 1., 0., 1., 1., 1., 1., 0., 1., 0.
(0., 0., 1., 0., 1., 1., 0., 1., 0., 0., 1., 1., 1., 1.
t.,1.,0.,1.,0.,0.,1.,0.,1., 1., 0., 0., 0., O.
(t., 0., 0., 0., 0., 0., 1., 1., 1., 0., 0., 0., 1., O.
o.,1.,1.,1.,1.,1,0.,0.,60.,1.,1., 1., 0., 1.

[11]: assert grad_logpsi_mf (params, x).shape == (len(x),)+params.shape

0.2.3 c¢) Direct sampling

[12]: def sample_direct_mf(logpsi, params, N, N_samples):
assert logpsi == logpsi_mf
p_down = np.exp(2 * params[:N])
p_up = np.exp(2 * params[N:])
pdf = p_up / (p_up + p_down)

= np.random.uniform(size=(N_samples, N))

samples = (pdf>) * (+1) + (1 - (pdf>)) * (-1)
return samples

[13]: samples_direct = sample_direct_mf (logpsi_mf, params, N, Ns)
samples_direct

[13]: array([[1, 1, -1, .., -1, -1, -1],
(-1, 1, 1, .., -1, 1, -17,
[1

) 13 _1,) _19 1, 1])
1, -1, -1, .., -1, -1, -1],
1, -1, 1, ., 1, -1, -1],
1, 1, 1, ., -1, 1, 1]])

[14]: assert samples_direct.shape == (Ns, N)

0.2.4 d) Monte Carlo Sampling

P O RFr OFr OO kKL B+~» O

R O, OO K, =, OO -
_ . _ o _ . —_ .
- - - -

— .
—_
N

[15]: # we need a funtion to do the update move to obtain new configurations

we will use this as propose_fn below

def single_spin_flip(x):
assert x.ndim == 1
N, = x.shape

x.copy()
i = np.random.randint (0, N)
x[i] *= -1

return x

X

[16]: s = np.array([-1,1,1,-11)

print(s)
print(single_spin_flip(s))

-1 1 1 -1]
-1 1 1 1]

[17]: def sample_step(logpsi, params, x, logpsi_x, propose_fn):
One sampling step of Monte Carlo Markov Chain.
logpsi: function giving the log wave-funtion of a batch of sample given ay,
~set of parametes
(params,z) -> log((x))
params: parameters of the ansatz
z: sample on which to do a step (shape (N,))
logpsi_z: log-value of the wave-function for z
propose_fn: update move

nimnn

if logpsi_x is Nome:
for the sampling we work with a single sample
but our ansatz only supports batches
so we add a dummy batch dimension here
logpsi_x = logpsi(params, np.expand_dims(x, 0))[0]

propose a new state
x_proposed = propose_fn(x) # this function samples from T(z -> z')
logpsi_x_proposed = logpsi(params, np.expand_dims(x_proposed, 0)) [0]

R = np.exp(2 * (logpsi_x_proposed - logpsi_x))
u = np.random.uniform()
accept =R > u

if accept:

return x_proposed, logpsi_x_proposed
else:

return x, logpsi_x

[18]: def sample_mcmc(logpsi, params, N, N_samples, N_discard, x0=None,
~propose_fn=single_spin_flip):

nimnn

Monte Carlo Markov Chains sampling. Given an ansatz, i1t samples randomly,,
<N_samples.

logpsi: function giving the log wave-funtion of a batch of sample given ay,
~set of parametes

(params,z) -> log((z))

params: parameters of the ansatz

N: number of sites

N_samples: number of samples to generate

N_discard: number of initial samples to discard (thermalization)

z0: initial configuration

(if None, a random sample is drawn from the Hilbert space)

propose_fn: update move
mnimnn

Inittalization
if x0 is None:
x0 = random_states(N, 1) [0]

x = x0
logpsi_x = None

Thermalization : we don't keep the samples
for i in range(N_discard):
x, logpsi_x = sample_step(logpsi, params, x, logpsi_x, propose_fn)

MCMC

samples = []

for i in range(N_samples):
X, logpsi_x = sample_step(logpsi, params, x, logpsi_x, propose_fn)
samples. append (x)

return np.vstack(samples)

[19]: samples_mcmc = sample_mcmc(logpsi_mf, params, N, Ns, N_discard)
samples_mcmc

[19]: array([[-1, -1, 1, ., -1, 1, -1],
-1, 1, 1, ., -1, 1, -11,
[_1’ 11 19) _1’ 1; -1])
[-1, 1: -1,) -1, 1: -1],
[_1’ 1’ _1:) _1: 1’ _1]’
[_1, 1: _1, s _1, 1: _1]])
[20]: assert samples_mcmc.shape == (Ns, N)

0.2.5 e) Connected Elements

[21]: def ising hamiltonian(x, I'=1, J=1):
TFI hamiltonian in 1D with pbc. Given a configuration = compute the ally,
<wconnected ' and matrixz elements Hxx' s.t. Hxxz' != 0

nimnn

= 1s again a batch of samples:
n_samples, n_sites = x.shape

there are n_sites + 1 connected states
n_conn = n_sites + 1

intitalize arrays
x_prime = np.zeros((n_samples, n_conn, n_sites), dtype=x.dtype)
mels = np.zeros((n_samples, n_conn))

states

diagonal: we take the first row to be the diagonal where z==z'

(this ts arbitrary, we could have picked any other order)

x_prime[:, 0] = x

off-diagonal:

the remaining rows are the off-diagonal terms

We have to flip one spin each, we do this in order

flip_mask = np.eye(n_sites, dtype=int) # where to flip

x_prime[:, 1:] = (1-flip_mask) * np.expand_dims(x, 1) + flip_mask * (- np.
~expand_dims(x, 1))

matrixz elements

diagonal
mels[:, 0] = J * (x * np.roll(x, 1, axis=-1)).sum(axis=-1)

off-diagonal
mels[:, 1:] = -T

return x_prime, mels
[22]: xp, mels = ising hamiltonian(x, 1, 1)
[23]: xp

[23]: array([[[-1, -1, 1, .., 1, 1, -1],
L+, -1, 1, .., 1, 1, -1],

1, -1, -1],

-1, -1,

[_1, _1:

-1, -1, 11,

-, -1, -1,

-1,
1, -1,

[l-1,

11,

L1,

11,
) _1, -1’ _1]]1

1, -1, ., -1,

(-1,
(-1,

-1,

1, -11,
13 _1]s
1, -11,

w, —1,

(t1, -1, -1,

H

w, —1,

-1, -1, -1,

(1,

1, -1,

1, -1],

w, —1, -1, -11,

L1, -1, -1,
L1, -1, -1,
L1, -1, -1,

1117,

. -1,

1, -1, ., -1, 11,

(C 1,

-1, -1, 11,

(-1,

17,
1, -111,

1, -1, ., -1, -1,

(1,
(1,

_1,

_1,

1, 1],

1,

1, 11,

1,

1, -1111D

1,

mels

[24]:

array([[0., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1.,

[24] :

-1., -1., -1., -1.1,

[-4., -1., -1., -1., -1., -1., -1., 1., -1., -1., -1., -1., -1.,

-1., -1., -1., -1.1,
(o., -¢t., -12., -1., -t., -t., -1., -1., -1., -1., -1., -1., -1.,

[25]:

[26] :

[27]:

[28]:

[29]:

[30]:
[30]:
[31]:

[31]:

[32]:

-1., -1., -1., -1.1,
(4., -1., -1., -1., -1., -1., 1., -1., -1., -1., -1., -1., -1.,
-1., -1., -1., -1.1)

assert xp.shape == (len(x), N+1, N)
assert mels.shape == (len(x), N+1)

0.2.6 f) Local operator

def compute_eloc(operator, logpsi, params, Xx):
Ns, N = x.shape
xp, mels = operator(x)
logpsi_x = logpsi(params, x)
logpsi can only take batches of samples (with one single batch dimension)
so we have to flatten the input and unflatten the output
logpsi_xp = logpsi(params, xp.reshape(-1, N)).reshape(xp.shapel[:-1])
eloc = (mels * np.exp(logpsi_xp-np.expand_dims(logpsi_x, -1))).sum(axis=-1)
return eloc

eloc = compute_eloc(ising_hamiltonian, logpsi_mf, params, Xx)

assert eloc.shape == (len(x),)

0.2.7 g-+h) Stochastic estimates

def expect(operator, logpsi, params, x):
"compute the expectation value of an operator given a batch of samples"
eloc = compute_eloc(operator, logpsi, params, Xx)
E = eloc.mean()
return E

expect(ising_hamiltonian, logpsi_mf, params, samples_direct)
-15.965010091574
expect(ising_hamiltonian, logpsi_mf, params, samples_mcmc)

-15.920906915118627

0.2.8 i) Gradient descent

def expect_and_grad(operator, logpsi, grad_logpsi, params, Xx):

eloc = compute_eloc(operator, logpsi, params, Xx)

E = eloc.mean()

Dk = grad_logpsi(params, x)

delta_eloc = eloc - eloc.mean(axis=0, keepdims=True)

Gk = 2 * np.expand_dims(delta_eloc, 1) * Dk
grad = Gk.mean(axis=0)
return E, grad

[33]: _, g = expect_and_grad(ising_hamiltonian, logpsi_mf, grad_logpsi_mf, params, x)
assert g.shape == params.shape

[34]: # we will pass this as opt_fn to the vmc function below
def sgd(params, grad,):
return params - * grad

[35]: def vmc(operator, sample_fn, opt_fn, logpsi, grad_logpsi, params, N, nsteps):
energies = []
for i in tgqdm(range(nsteps)):

sample

x = sample_fn(logpsi, params, N)

estimate energy and gradients

E, grad = expect_and_grad(operator, logpsi, grad_logpsi, params, x)
energies.append (E)

compute updated parameters

params = opt_fn(params, grad)

E = expect(operator, logpsi, params, Xx)
energies.append(E)

return params, energies

Mean-field Ansatz with direct sampling
[36]: # setup the direct sampler fizing the number of samples
sa = partial(sample_direct_mf, N_samples=Ns)

set up the optimizer by fixzing the learning rate
opt = partial(sgd, =0.01)

#set up the operator
ha = partial(ising_hamiltonian, I'=1, J=1)

lpsi = logpsi_mf

glpsi = grad_logpsi_mf

set up the initial guess for the parameters
par = random_params_mf(N, 0.1)

_, energies = vmc(ha, sa, opt, lpsi, glpsi, par, N, 1000)
plt.figure()

plt.plot(energies)

EO_analytical = isingld_energy(N, 1)

plt.plot ([0, len(energies)], [EO_analytical,]#*2, color='k')
plt.xlabel('step')

plt.ylabel(('Energy'))
print('relative error: {:0.2e}'.format(err_rel(EO_analytical, energies[-1])))

plt.show()

0%l | 0/1000 [00:00<7, ?7it/s]

relative error: 1.15e-01

_16 -

_1? -

_18 -

Energy

_19 -

_zﬂ -

T T T T T
0 200 400 600 800 1000
step

Mean-field with MCMC sampling

[37]: sa = partial(sample_mcmc, N_samples=Ns, N_discard=N_discard)
opt = partial(sgd, =0.01)
ha = partial(ising_hamiltonian, I'=1, J=1)

lpsi = logpsi_mf

glpsi = grad_logpsi_mf
par = random_params_mf(N, 0.1)

10

_, energies = vmc(ha, sa, opt, lpsi, glpsi, par, N, 1000)

plt.figure()

plt.plot(energies)

EO_analytical = isingld_energy(N, 1)

plt.plot([0, 1len(energies)], [EO_analytical,]*2, color='k')
plt.xlabel('step')

plt.ylabel(('Energy'))

print('relative error: {:0.2e}'.format(err_rel(EO_analytical, energies[-1])))

plt.show()

0%l | 0/1000 [00:00<7, ?7it/s]

relative error: 3.22e-02

_15 -

_16 -

=17 T

_18 -

Energy

_19 -

=20 7

T T T T
0 200 400 600 800 1000
step

0.2.9 j) Auto-correlation time (bonus)

11

[38]: def corr_fn_fft(g):
n = len(g)
A = np.fft.rfft(g - g.mean(axis=0), n=2%n)
B=A=x* A conjO / len(g)
return np.fft.irfft(B) [:n] / ((g**2) .mean(axis=0) - g.mean(axis=0)**2)

[39]: par_mf = random_params_mf (N, 0.1)
x = sample_mcmc(logpsi_mf, par_mf, N_samples=Ns, N=N, N_discard=N_discard)
eloc = compute_eloc(ising_hamiltonian, logpsi_mf, par_mf, x)

[40]: = corr_fn_fft(eloc)
plt.figure()
plt.plot()
plt.show()

1.0+

0.8

0.6

0.4 1

0.2 1

0.0 1

—0.2

T T T T T
0 100 200 300 400 500

[41]: jcut = np.argmin(> 0)
= 0.5 + ([:jcut]).sum()

[41]: 8.19596157065558

12

[42] :

[43] :

[44] :

0.3 Exercise 7.2

0.3.1 a) Nearest-neighbour Jastrow

def logpsi_jastrow_nearest(params, s):
Ns, N = s.shape
J1 = params
return J1 * (s * np.roll(s, -1, axis=-1)).sum(axis=-1) # nearest neighbors,
< (pbe)

def grad_logpsi_jastrow_nearest(params, s):
Ns, N = s.shape
return (s * np.roll(s, -1, axis=-1)).sum(axis=-1, keepdims=True) # nearest,
sneighbors (pbc)

def random_params_jastrow_nearest(N, stddev=0.1):
return np.random.normal (0, stddev, size=1)

check
params_jastrow = random_params_jastrow_nearest(N, 0.1)
assert logpsi_jastrow_nearest(params_jastrow, x).shape == (len(x),)

assert grad_logpsi_jastrow_nearest(params_jastrow, x).shape ==
< (len(x),len(params_jastrow))

sa = partial(sample_mcmc, N_samples=Ns, N_discard=N_discard)
opt = partial(sgd, =0.001) # needs a fatirly small learning rate
ha = partial(ising_hamiltonian, I'=1, J=1)

lpsi = logpsi_jastrow_nearest
glpsi = grad_logpsi_jastrow_nearest
par = random_params_jastrow_nearest(N, 0.1)

_, energies = vmc(ha, sa, opt, lpsi, glpsi, par, N, 300)

plt.figure()

plt.plot(energies)

EO_analytical = isingld_energy(N, 1)

plt.plot([0, 1len(energies)], [EO_analytical,]*2, color='k')
plt.xlabel('step')

plt.ylabel(('Energy'))

print('relative error: {:0.2e}'.format(err_rel(EO_analytical, energies[-1])))
plt.show()

0%l | 0/300 [00:00<?7, 7it/s]

relative error: 2.63e-02

13

_12 -
_14 -
>
o —16 -
=
Ll
_18 -
_zﬂ -
)
T T T T T T T
0 50 100 150 200 250 300
step

0.3.2 b) Nearest+next-nearest-neighbour Jastrow

[45]: def logpsi_jastrow_next_nearest(params, s):
Ns, N = s.shape
J1 = params[0]
J2 = params[1]
resl = logpsi_jastrow_nearest(J1, s)
res2 = J2 * (s * np.roll(s, -2, axis=-1)).sum(axis=-1) # next-nearest,

neighbors (pbc)
return resl+res2

def grad_logpsi_jastrow_next_nearest(params, s):
Ns, N = s.shape
J1 = params[0]
J2 = params[1]
gl = grad_logpsi_jastrow_nearest(J1, s)
g2 = (s * np.roll(s, -2, axis=-1)).sum(axis=-1, keepdims=True) #,
wnext-nearest neighbors (pbc)
return np.concatenate([gl,g2], axis=1)

def random_params_jastrow_next_nearest (N, stddev=0.1):

14

return np.random.normal (0, stddev, size=2)

[46] : sa = partial(sample_mcmc, N_samples=Ns, N_discard=N_discard)
opt = partial(sgd, =0.001)
ha = partial(ising_hamiltonian, I'=1, J=1)

lpsi = logpsi_jastrow_next_nearest
glpsi = grad_logpsi_jastrow_next_nearest
par = random_params_jastrow_next_nearest(N, 0.1)

_, energies = vmc(ha, sa, opt, lpsi, glpsi, par, N, 300)

plt.figure()

plt.plot(energies)

EO_analytical = isingld_energy(N, 1)

plt.plot([0, 1len(energies)], [EO_analytical,]*2, color='k')
plt.xlabel('step')

plt.ylabel(('Energy'))

print('relative error: {:0.2e}'.format(err_rel(EO_analytical, energies[-1])))

plt.show()

0%l | 0/300 [00:00<?7, 7it/s]

relative error: 6.54e-03

—16

_1? -

_18 -

Energy

_19 -

_zﬂ -

T T T T T
0 50 100 150 200 250 300
step

15

0.3.3 c¢) Arbitrary n-neighbours Jastrow

[47]: def logpsi_jastrow_n_neighbours(params, s):
Ns, N = s.shape
n = params.shape[0]

res = 0
for i in range(n):
res += params[i]*(s * np.roll(s, -(i+l1), axis=-1)).sum(axis=-1)

return res

def grad_logpsi_jastrow_n_neighbours(params, s):
Ns, N = s.shape
n = params.shape[0]

g =[]
for i in range(n):
g.append((s * np.roll(s, -(i+1), axis=-1)).sum(axis=-1, keepdims=True)

<)
return np.concatenate(g, axis=1)

def random_params_jastrow_n_neighbours(N, n=1, stddev=0.1):
assert n>=1 and n<N
return np.random.normal (0, stddev, size=n)

[48]: sa = partial(sample_mcmc, N_samples=Ns, N_discard=N_discard)
opt = partial(sgd, =0.001)
ha = partial(ising_hamiltonian, I'=1, J=1)

EO_analytical = isingld_energy(N, 1)

E_converged = []

delta_E = []

for n in range(1,N//2+1): #<- we only go up to N//2 since we have pbcs
lpsi = logpsi_jastrow_n_neighbours
glpsi = grad_logpsi_jastrow_n_neighbours
par = random_params_jastrow_n_neighbours(N, n, 0.1)

_, energies = vmc(ha, sa, opt, lpsi, glpsi, par, N, 300)

E_converged.append(energies[-1])
delta_E.append(err_rel(EO_analytical, energies[-1]))

16

0%l | 0/300 [00:00<?7, 7it/s]

0%l | 0/300 [00:00<?, ?it/s]
A | 0/300 [00:00<?, ?it/s]
0%l | 0/300 [00:00<?, 7it/s]
0% | 0/300 [00:00<?, ?it/s]
0%l | 0/300 [00:00<?, ?it/s]
0% | 0/300 [00:00<?, ?it/s]
0%l | 0/300 [00:00<?, ?it/s]

[49]: plt.figure()
plt.plot(np.arange(1,N//2+1), E_converged)
plt.plot([0,N//2+1], [EO_analytical,EO_analyticall)
plt.xlabel('Number of neighbours')
plt.ylabel('Final Energy')

plt.show()

—20.0 A
—20.1 A

>

>

£ —20.2

L

I

E

[
_2{].3 | A /\ /
—20.4 4 \// \}f \u/
_2{].5 T T T T T

0 2 4 6 8
Number of neighbours

17

	Solution 07 - Variational Monte Carlo (VMC)
	Exercise 7.1 : Mean-field Ansatz
	a) Ansatz
	b) Gradient
	c) Direct sampling
	d) Monte Carlo Sampling
	e) Connected Elements
	f) Local operator
	g+h) Stochastic estimates
	i) Gradient descent
	j) Auto-correlation time (bonus)

	Exercise 7.2
	a) Nearest-neighbour Jastrow
	b) Nearest+next-nearest-neighbour Jastrow
	c) Arbitrary n-neighbours Jastrow

