
ex07_solution

April 2, 2025

Computational Quantum Physics - PHYS 463

Lecturer: Prof. G. Carleo

Assistants: alessandro.sinibaldi@epfl.ch, linda.mauron@epfl.ch, lorenzo.fioroni@epfl.ch

0.1 Solution 07 - Variational Monte Carlo (VMC)

[1]: import numpy as np
import matplotlib.pyplot as plt
from functools import partial

try:
from tqdm.auto import tqdm # progressbar

except ImportError:
tqdm = lambda x: x

[2]: # analytical solution for the ground state energy of the TFI in 1D with pbc

def ising1d_energy(L, Gamma):
Gamma is in units of the interaction strength J
def Epsilon(k,h):

eps = 1 + h**2 + 2 * h * np.cos(k)
return 2 * np.sqrt(eps)

i = np.arange(L)
k = np.pi * (2 * i + 1)/L
energy = Epsilon(k,Gamma).sum()
return -0.5*energy

[3]: def err_rel(x, y):
"""relative error"""
return np.abs((x-y)/y)

[4]: N = 16 # number of spins
Ns = 512 # number of samples
N_discard = 128 # how many samples to discard

1

[5]: # throughout this exercise we work with basis states in the �z basis
represented by arrays containing the quantum numbers -1 and +1

the following function generates random basis states (uniformly sampled)

def random_states(N, size=1):
return np.random.choice(np.array([-1,1]), size=(size, N))

random_states(N, 3)

[5]: array([[1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1],
[1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, 1],
[-1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, 1]])

0.2 Exercise 7.1 : Mean-field Ansatz
0.2.1 a) Ansatz

[6]: def logpsi_mf(params, s):
"""Mean-field Ansatz"""
Ns, N = s.shape
d = params[:N]
u = params[N:]
return ((s == -1) * d + (s == +1) * u).sum(axis=-1)

def random_params_mf(N, stddev=0.1):

return np.random.normal(0, stddev, size=(2*N))

[7]: # test it
x = random_states(N, 5)
params = random_params_mf(N)
logpsi_mf(params, x)

[7]: array([0.17967098, 0.20652151, 0.17270972, 0.08493403, -0.0767841])

[8]: # check the shape
assert logpsi_mf(params, x).shape == (len(x),)

0.2.2 b) Gradient

[9]: def grad_logpsi_mf(params, s):
Ns, N = s.shape
g = np.zeros((Ns,) + params.shape)
g[:, :N] = (s == -1)
g[:, N:] = (s == +1)
return g

2

[10]: grad_logpsi_mf(params, x)

[10]: array([[1., 1., 0., 1., 0., 0., 1., 0., 1., 1., 1., 1., 1., 0., 0., 1.,
0., 0., 1., 0., 1., 1., 0., 1., 0., 0., 0., 0., 0., 1., 1., 0.],
[1., 0., 1., 1., 1., 1., 0., 0., 1., 1., 0., 1., 1., 1., 1., 0.,
0., 1., 0., 0., 0., 0., 1., 1., 0., 0., 1., 0., 0., 0., 0., 1.],
[0., 1., 1., 1., 0., 0., 1., 0., 0., 0., 0., 1., 0., 1., 0., 1.,
1., 0., 0., 0., 1., 1., 0., 1., 1., 1., 1., 0., 1., 0., 1., 0.],
[0., 0., 1., 0., 1., 1., 0., 1., 0., 0., 1., 1., 1., 1., 0., 0.,
1., 1., 0., 1., 0., 0., 1., 0., 1., 1., 0., 0., 0., 0., 1., 1.],
[1., 0., 0., 0., 0., 0., 1., 1., 1., 0., 0., 0., 1., 0., 0., 0.,
0., 1., 1., 1., 1., 1., 0., 0., 0., 1., 1., 1., 0., 1., 1., 1.]])

[11]: assert grad_logpsi_mf(params, x).shape == (len(x),)+params.shape

0.2.3 c) Direct sampling

[12]: def sample_direct_mf(logpsi, params, N, N_samples):
assert logpsi == logpsi_mf
p_down = np.exp(2 * params[:N])
p_up = np.exp(2 * params[N:])
pdf = p_up / (p_up + p_down)
� = np.random.uniform(size=(N_samples, N))
samples = (pdf>�) * (+1) + (1 - (pdf>�)) * (-1)
return samples

[13]: samples_direct = sample_direct_mf(logpsi_mf, params, N, Ns)
samples_direct

[13]: array([[1, 1, -1, …, -1, -1, -1],
[-1, 1, 1, …, -1, 1, -1],
[1, 1, -1, …, -1, 1, 1],
…,
[-1, -1, -1, …, -1, -1, -1],
[1, -1, 1, …, 1, -1, -1],
[-1, 1, 1, …, -1, 1, 1]])

[14]: assert samples_direct.shape == (Ns, N)

0.2.4 d) Monte Carlo Sampling

[15]: # we need a funtion to do the update move to obtain new configurations
we will use this as propose_fn below

def single_spin_flip(x):
assert x.ndim == 1
N, = x.shape

3

x = x.copy()
i = np.random.randint(0, N)
x[i] *= -1
return x

[16]: s = np.array([-1,1,1,-1])

print(s)
print(single_spin_flip(s))

[-1 1 1 -1]
[-1 1 1 1]

[17]: def sample_step(logpsi, params, x, logpsi_x, propose_fn):
"""
One sampling step of Monte Carlo Markov Chain.
logpsi: function giving the log wave-funtion of a batch of sample given a␣

↪set of parametes
(params,x) -> log(�(x))

params: parameters of the ansatz
x: sample on which to do a step (shape (N,))
logpsi_x: log-value of the wave-function for x
propose_fn: update move
"""

if logpsi_x is None:
for the sampling we work with a single sample
but our ansatz only supports batches
so we add a dummy batch dimension here
logpsi_x = logpsi(params, np.expand_dims(x, 0))[0]

propose a new state
x_proposed = propose_fn(x) # this function samples from T(x -> x')
logpsi_x_proposed = logpsi(params, np.expand_dims(x_proposed, 0))[0]

R = np.exp(2 * (logpsi_x_proposed - logpsi_x))
u = np.random.uniform()
accept = R > u

if accept:
return x_proposed, logpsi_x_proposed

else:
return x, logpsi_x

[18]: def sample_mcmc(logpsi, params, N, N_samples, N_discard, x0=None,␣
↪propose_fn=single_spin_flip):

"""

4

Monte Carlo Markov Chains sampling. Given an ansatz, it samples randomly␣
↪N_samples.

logpsi: function giving the log wave-funtion of a batch of sample given a␣
↪set of parametes

(params,x) -> log(�(x))
params: parameters of the ansatz
N: number of sites
N_samples: number of samples to generate
N_discard: number of initial samples to discard (thermalization)
x0: initial configuration

(if None, a random sample is drawn from the Hilbert space)
propose_fn: update move
"""

Initialization
if x0 is None:

x0 = random_states(N, 1)[0]

x = x0
logpsi_x = None

Thermalization : we don't keep the samples
for i in range(N_discard):

x, logpsi_x = sample_step(logpsi, params, x, logpsi_x, propose_fn)

MCMC
samples = []
for i in range(N_samples):

x, logpsi_x = sample_step(logpsi, params, x, logpsi_x, propose_fn)
samples.append(x)

return np.vstack(samples)

[19]: samples_mcmc = sample_mcmc(logpsi_mf, params, N, Ns, N_discard)
samples_mcmc

[19]: array([[-1, -1, 1, …, -1, 1, -1],
[-1, 1, 1, …, -1, 1, -1],
[-1, 1, 1, …, -1, 1, -1],
…,
[-1, 1, -1, …, -1, 1, -1],
[-1, 1, -1, …, -1, 1, -1],
[-1, 1, -1, …, -1, 1, -1]])

[20]: assert samples_mcmc.shape == (Ns, N)

5

0.2.5 e) Connected Elements

[21]: def ising_hamiltonian(x, Γ=1, J=1):
"""
TFI hamiltonian in 1D with pbc. Given a configuration x compute the all␣

↪connected x' and matrix elements Hxx' s.t. Hxx' != 0
"""

x is again a batch of samples:
n_samples, n_sites = x.shape

there are n_sites + 1 connected states
n_conn = n_sites + 1

intitalize arrays
x_prime = np.zeros((n_samples, n_conn, n_sites), dtype=x.dtype)
mels = np.zeros((n_samples, n_conn))

states

diagonal: we take the first row to be the diagonal where x==x'
(this is arbitrary, we could have picked any other order)
x_prime[:, 0] = x

off-diagonal:
the remaining rows are the off-diagonal terms
We have to flip one spin each, we do this in order
flip_mask = np.eye(n_sites, dtype=int) # where to flip
x_prime[:, 1:] = (1-flip_mask) * np.expand_dims(x, 1) + flip_mask * (- np.

↪expand_dims(x, 1))

matrix elements

diagonal
mels[:, 0] = J * (x * np.roll(x, 1, axis=-1)).sum(axis=-1)

off-diagonal
mels[:, 1:] = -Γ

return x_prime, mels

[22]: xp, mels = ising_hamiltonian(x, 1, 1)

[23]: xp

[23]: array([[[-1, -1, 1, …, 1, 1, -1],
[1, -1, 1, …, 1, 1, -1],

6

[-1, 1, 1, …, 1, 1, -1],
…,
[-1, -1, 1, …, -1, 1, -1],
[-1, -1, 1, …, 1, -1, -1],
[-1, -1, 1, …, 1, 1, 1]],

[[-1, 1, -1, …, -1, -1, 1],
[1, 1, -1, …, -1, -1, 1],
[-1, -1, -1, …, -1, -1, 1],
…,
[-1, 1, -1, …, 1, -1, 1],
[-1, 1, -1, …, -1, 1, 1],
[-1, 1, -1, …, -1, -1, -1]],

[[1, -1, -1, …, -1, 1, -1],
[-1, -1, -1, …, -1, 1, -1],
[1, 1, -1, …, -1, 1, -1],
…,
[1, -1, -1, …, 1, 1, -1],
[1, -1, -1, …, -1, -1, -1],
[1, -1, -1, …, -1, 1, 1]],

[[1, 1, -1, …, -1, 1, 1],
[-1, 1, -1, …, -1, 1, 1],
[1, -1, -1, …, -1, 1, 1],
…,
[1, 1, -1, …, 1, 1, 1],
[1, 1, -1, …, -1, -1, 1],
[1, 1, -1, …, -1, 1, -1]],

[[-1, 1, 1, …, 1, 1, 1],
[1, 1, 1, …, 1, 1, 1],
[-1, -1, 1, …, 1, 1, 1],
…,
[-1, 1, 1, …, -1, 1, 1],
[-1, 1, 1, …, 1, -1, 1],
[-1, 1, 1, …, 1, 1, -1]]])

[24]: mels

[24]: array([[0., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1.,
-1., -1., -1., -1.],
[0., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1.,
-1., -1., -1., -1.],
[-4., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1.,
-1., -1., -1., -1.],
[0., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1.,

7

-1., -1., -1., -1.],
[4., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1., -1.,
-1., -1., -1., -1.]])

[25]: assert xp.shape == (len(x), N+1, N)
assert mels.shape == (len(x), N+1)

0.2.6 f) Local operator

[26]: def compute_eloc(operator, logpsi, params, x):
Ns, N = x.shape
xp, mels = operator(x)
logpsi_x = logpsi(params, x)
logpsi can only take batches of samples (with one single batch dimension)
so we have to flatten the input and unflatten the output
logpsi_xp = logpsi(params, xp.reshape(-1, N)).reshape(xp.shape[:-1])
eloc = (mels * np.exp(logpsi_xp-np.expand_dims(logpsi_x, -1))).sum(axis=-1)
return eloc

[27]: eloc = compute_eloc(ising_hamiltonian, logpsi_mf, params, x)

[28]: assert eloc.shape == (len(x),)

0.2.7 g+h) Stochastic estimates

[29]: def expect(operator, logpsi, params, x):
"compute the expectation value of an operator given a batch of samples"
eloc = compute_eloc(operator, logpsi, params, x)
E = eloc.mean()
return E

[30]: expect(ising_hamiltonian, logpsi_mf, params, samples_direct)

[30]: -15.965010091574

[31]: expect(ising_hamiltonian, logpsi_mf, params, samples_mcmc)

[31]: -15.920906915118627

0.2.8 i) Gradient descent

[32]: def expect_and_grad(operator, logpsi, grad_logpsi, params, x):

eloc = compute_eloc(operator, logpsi, params, x)
E = eloc.mean()
Dk = grad_logpsi(params, x)
delta_eloc = eloc - eloc.mean(axis=0, keepdims=True)

8

Gk = 2 * np.expand_dims(delta_eloc, 1) * Dk
grad = Gk.mean(axis=0)
return E, grad

[33]: _, g = expect_and_grad(ising_hamiltonian, logpsi_mf, grad_logpsi_mf, params, x)
assert g.shape == params.shape

[34]: # we will pass this as opt_fn to the vmc function below
def sgd(params, grad, �):

return params - � * grad

[35]: def vmc(operator, sample_fn, opt_fn, logpsi, grad_logpsi, params, N, nsteps):

energies = []

for i in tqdm(range(nsteps)):

sample
x = sample_fn(logpsi, params, N)
estimate energy and gradients
E, grad = expect_and_grad(operator, logpsi, grad_logpsi, params, x)
energies.append(E)
compute updated parameters
params = opt_fn(params, grad)

E = expect(operator, logpsi, params, x)
energies.append(E)

return params, energies

Mean-field Ansatz with direct sampling
[36]: # setup the direct sampler fixing the number of samples

sa = partial(sample_direct_mf, N_samples=Ns)

set up the optimizer by fixing the learning rate
opt = partial(sgd, �=0.01)

#set up the operator
ha = partial(ising_hamiltonian, Γ=1, J=1)

lpsi = logpsi_mf
glpsi = grad_logpsi_mf
set up the initial guess for the parameters
par = random_params_mf(N, 0.1)

_, energies = vmc(ha, sa, opt, lpsi, glpsi, par, N, 1000)
plt.figure()

9

plt.plot(energies)
E0_analytical = ising1d_energy(N, 1)
plt.plot([0, len(energies)], [E0_analytical,]*2, color='k')
plt.xlabel('step')
plt.ylabel(('Energy'))
print('relative error: {:0.2e}'.format(err_rel(E0_analytical, energies[-1])))
plt.show()

0%| | 0/1000 [00:00<?, ?it/s]

relative error: 1.15e-01

Mean-field with MCMC sampling
[37]: sa = partial(sample_mcmc, N_samples=Ns, N_discard=N_discard)

opt = partial(sgd, �=0.01)
ha = partial(ising_hamiltonian, Γ=1, J=1)

lpsi = logpsi_mf
glpsi = grad_logpsi_mf
par = random_params_mf(N, 0.1)

10

_, energies = vmc(ha, sa, opt, lpsi, glpsi, par, N, 1000)

plt.figure()
plt.plot(energies)
E0_analytical = ising1d_energy(N, 1)
plt.plot([0, len(energies)], [E0_analytical,]*2, color='k')
plt.xlabel('step')
plt.ylabel(('Energy'))
print('relative error: {:0.2e}'.format(err_rel(E0_analytical, energies[-1])))
plt.show()

0%| | 0/1000 [00:00<?, ?it/s]

relative error: 3.22e-02

0.2.9 j) Auto-correlation time (bonus)

11

[38]: def corr_fn_fft(g):
n = len(g)
A = np.fft.rfft(g - g.mean(axis=0), n=2*n)
B = A * A.conj() / len(g)
return np.fft.irfft(B)[:n] / ((g**2).mean(axis=0) - g.mean(axis=0)**2)

[39]: par_mf = random_params_mf(N, 0.1)
x = sample_mcmc(logpsi_mf, par_mf, N_samples=Ns, N=N, N_discard=N_discard)
eloc = compute_eloc(ising_hamiltonian, logpsi_mf, par_mf, x)

[40]: � = corr_fn_fft(eloc)
plt.figure()
plt.plot(�)
plt.show()

[41]: jcut = np.argmin(� > 0)
� = 0.5 + (�[:jcut]).sum()
�

[41]: 8.19596157065558

12

0.3 Exercise 7.2
0.3.1 a) Nearest-neighbour Jastrow

[42]: def logpsi_jastrow_nearest(params, s):
Ns, N = s.shape
J1 = params
return J1 * (s * np.roll(s, -1, axis=-1)).sum(axis=-1) # nearest neighbors␣

↪(pbc)

def grad_logpsi_jastrow_nearest(params, s):
Ns, N = s.shape
return (s * np.roll(s, -1, axis=-1)).sum(axis=-1, keepdims=True) # nearest␣

↪neighbors (pbc)

def random_params_jastrow_nearest(N, stddev=0.1):
return np.random.normal(0, stddev, size=1)

[43]: # check
params_jastrow = random_params_jastrow_nearest(N, 0.1)
assert logpsi_jastrow_nearest(params_jastrow, x).shape == (len(x),)
assert grad_logpsi_jastrow_nearest(params_jastrow, x).shape ==␣

↪(len(x),len(params_jastrow))

[44]: sa = partial(sample_mcmc, N_samples=Ns, N_discard=N_discard)
opt = partial(sgd, �=0.001) # needs a fairly small learning rate
ha = partial(ising_hamiltonian, Γ=1, J=1)

lpsi = logpsi_jastrow_nearest
glpsi = grad_logpsi_jastrow_nearest
par = random_params_jastrow_nearest(N, 0.1)

_, energies = vmc(ha, sa, opt, lpsi, glpsi, par, N, 300)
plt.figure()
plt.plot(energies)
E0_analytical = ising1d_energy(N, 1)
plt.plot([0, len(energies)], [E0_analytical,]*2, color='k')
plt.xlabel('step')
plt.ylabel(('Energy'))
print('relative error: {:0.2e}'.format(err_rel(E0_analytical, energies[-1])))
plt.show()

0%| | 0/300 [00:00<?, ?it/s]

relative error: 2.63e-02

13

0.3.2 b) Nearest+next-nearest-neighbour Jastrow

[45]: def logpsi_jastrow_next_nearest(params, s):
Ns, N = s.shape
J1 = params[0]
J2 = params[1]
res1 = logpsi_jastrow_nearest(J1, s)
res2 = J2 * (s * np.roll(s, -2, axis=-1)).sum(axis=-1) # next-nearest␣

↪neighbors (pbc)
return res1+res2

def grad_logpsi_jastrow_next_nearest(params, s):
Ns, N = s.shape
J1 = params[0]
J2 = params[1]
g1 = grad_logpsi_jastrow_nearest(J1, s)
g2 = (s * np.roll(s, -2, axis=-1)).sum(axis=-1, keepdims=True) #␣

↪next-nearest neighbors (pbc)
return np.concatenate([g1,g2], axis=1)

def random_params_jastrow_next_nearest(N, stddev=0.1):

14

return np.random.normal(0, stddev, size=2)

[46]: sa = partial(sample_mcmc, N_samples=Ns, N_discard=N_discard)
opt = partial(sgd, �=0.001)
ha = partial(ising_hamiltonian, Γ=1, J=1)

lpsi = logpsi_jastrow_next_nearest
glpsi = grad_logpsi_jastrow_next_nearest
par = random_params_jastrow_next_nearest(N, 0.1)

_, energies = vmc(ha, sa, opt, lpsi, glpsi, par, N, 300)

plt.figure()
plt.plot(energies)
E0_analytical = ising1d_energy(N, 1)
plt.plot([0, len(energies)], [E0_analytical,]*2, color='k')
plt.xlabel('step')
plt.ylabel(('Energy'))
print('relative error: {:0.2e}'.format(err_rel(E0_analytical, energies[-1])))
plt.show()

0%| | 0/300 [00:00<?, ?it/s]

relative error: 6.54e-03

15

0.3.3 c) Arbitrary n-neighbours Jastrow

[47]: def logpsi_jastrow_n_neighbours(params, s):
Ns, N = s.shape
n = params.shape[0]

res = 0
for i in range(n):

res += params[i]*(s * np.roll(s, -(i+1), axis=-1)).sum(axis=-1)

return res

def grad_logpsi_jastrow_n_neighbours(params, s):
Ns, N = s.shape
n = params.shape[0]

g = []
for i in range(n):

g.append((s * np.roll(s, -(i+1), axis=-1)).sum(axis=-1, keepdims=True)␣
↪)

return np.concatenate(g, axis=1)

def random_params_jastrow_n_neighbours(N, n=1, stddev=0.1):
assert n>=1 and n<N
return np.random.normal(0, stddev, size=n)

[48]: sa = partial(sample_mcmc, N_samples=Ns, N_discard=N_discard)
opt = partial(sgd, �=0.001)
ha = partial(ising_hamiltonian, Γ=1, J=1)

E0_analytical = ising1d_energy(N, 1)

E_converged = []
delta_E = []
for n in range(1,N//2+1): #<- we only go up to N//2 since we have pbcs

lpsi = logpsi_jastrow_n_neighbours
glpsi = grad_logpsi_jastrow_n_neighbours
par = random_params_jastrow_n_neighbours(N, n, 0.1)

_, energies = vmc(ha, sa, opt, lpsi, glpsi, par, N, 300)

E_converged.append(energies[-1])
delta_E.append(err_rel(E0_analytical, energies[-1]))

16

0%| | 0/300 [00:00<?, ?it/s]

0%| | 0/300 [00:00<?, ?it/s]

0%| | 0/300 [00:00<?, ?it/s]

0%| | 0/300 [00:00<?, ?it/s]

0%| | 0/300 [00:00<?, ?it/s]

0%| | 0/300 [00:00<?, ?it/s]

0%| | 0/300 [00:00<?, ?it/s]

0%| | 0/300 [00:00<?, ?it/s]

[49]: plt.figure()
plt.plot(np.arange(1,N//2+1), E_converged)
plt.plot([0,N//2+1], [E0_analytical,E0_analytical])
plt.xlabel('Number of neighbours')
plt.ylabel('Final Energy')
plt.show()

17

	Solution 07 - Variational Monte Carlo (VMC)
	Exercise 7.1 : Mean-field Ansatz
	a) Ansatz
	b) Gradient
	c) Direct sampling
	d) Monte Carlo Sampling
	e) Connected Elements
	f) Local operator
	g+h) Stochastic estimates
	i) Gradient descent
	j) Auto-correlation time (bonus)

	Exercise 7.2
	a) Nearest-neighbour Jastrow
	b) Nearest+next-nearest-neighbour Jastrow
	c) Arbitrary n-neighbours Jastrow

