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Problem 6.1 DFT for Helium

The goal of this exercise is to treat the Helium atom within density functional theory. To
do this we need to solve the Kohn-Scham equation (Eq. 7.12 in the script) self-consistently.
First we need a solver for the Schrödinger equation in (1) for given potential V (r).
Given its solution ψ(r)/u(r) we can compute the Hartree potential by solving the Poisson
equation (2). Additionally we can compute an approximate exchange-correlation energy,
using the free electron approximation and the solution of (1). All in all this procedure
provides you with a new effective potential as input to (1). Repeat the above procedure
to arrive at a self-consistent solution.
Throughout this exercise we use atomic units (ℏ = m = 4πϵ0 = 1).

a) Schrödinger Solver

For a spherically symmetric potential V (r) and solution ψ(r), the three-dimensional
Schrödinger equation

(
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∆+ V (r)
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ψ(r) = εψ(r) reduces to the radial equation
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u′′(r) + V (r)u(r) = εu(r), (1)

where u(r) =
√
4π r ψ(r).

• Implement an algorithm for finding the ground state energy and wave function of
(1) for a given potential V (r).

Hint: Use the code that you implemented to solve Exercise 2.1

• Test your code with the l = 0 sector of the hydrogen atom, where V (r) = −1
r
, and

compare your result with the analytical solution εexact = −0.5 a.u. and uexact(r) ∝
re−r).

In part c), you will apply this code to the effective potential as given by density functional
theory.

b) Poisson Solver

The Hartree potential Vh(r⃗) satisfies the Poisson equation ∆Vh(r⃗) = −4πρ(r⃗). For
spherically symmetric ρ(r) and Vh(r), this reduces to

U ′′(r) = − r

N
4πρ(r),

where U(r) := rVh(r)/N .

For a system of N = 2 electrons, we use the ansatz ρ(r) = N |ψ0(r)|2 for the electron den-
sity, where ψ0 is the normalized ground state of the single-electron Schrödinger equation



with the effective potential from density functional theory (see part c) below). Equiva-
lently,

U ′′(r) = −u
2(r)

r
(2)

where u(r) is the ground state of (1) and normalized to norm one,
∫∞
0
dr u2(r) = 1. Note

that U(r) satisfies the boundary conditions U(0) = 0 and U(∞) = 1.

• Implement a solver for (2) with these boundary conditions for a given function u(r).

Hint: Use the (velocity free) Verlet algorithm to integrate from U(0) = 0, U(∆r) =
∆r to some rmax ≫ 0 (e.g., rmax = 20). Then add a suitable multiple of the
homogeneous solution Uhom(r) = r to fix the outer boundary condition.

• Test your code with the u(r) as obtained for the hydrogen atom in part a), and
compare your result with the analytical solution Uexact(r) = −(r + 1)e−2r + 1.

c) Helium

Apply density functional theory to the Helium atom. Use the effective potential
Veff = Ven + Vh + Vxc, where Ven is the appropriate nuclear potential, Vh the Hartree
potential as obtained via part b), and

Vxc(r) = −
(

3

2π

)2/3(
4π

3
ρ

)1/3

= −
(

3

2π2

u2(r)

r2

)1/3

is a parametrization of the exchange-correlation potential, and can be determined via part
a) with ε and u(r).

Repeat these steps iteratively until you reach a self-consistent solution. Decrease your
step size ∆r and/or increase the cut-off radius rmax to check where your results are not
heavily depending on these constants any more.

Hint: You should obtain

ϵ ≈ −0.52 a.u.

E ≈ −2.72 a.u.

where energy E is related to the eigenvalue ε by the formula

E = 2ϵ−
∫
dr Vh(r)u

2(r)− 1

2

∫
dr Vxc(r)u

2(r).

d) (Bonus) PySCF

Use PySCF to do a DFT calculation for the Helium atom and compare your results to
those obtained in c).


	DFT for Helium

