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Exercise 6

Problem 6.1 DFT for Helium

The goal of this exercise is to treat the Helium atom within density functional theory. To
do this we need to solve the Kohn-Scham equation (Eq. 7.12 in the script) self-consistently.
First we need a solver for the Schrédinger equation in (1) for given potential V (r).
Given its solution ¢ (r)/u(r) we can compute the Hartree potential by solving the Poisson
equation (2). Additionally we can compute an approximate exchange-correlation energy,
using the free electron approximation and the solution of (1). All in all this procedure
provides you with a new effective potential as input to (1). Repeat the above procedure
to arrive at a self-consistent solution.

Throughout this exercise we use atomic units (A =m = 4mwep = 1).

a) Schrédinger Solver

For a spherically symmetric potential V (r) and solution (r), the three-dimensional
Schrédinger equation (—3A + V(r)) 1(r) = ep(r) reduces to the radial equation

—%u”(r) + V(r)u(r) = eu(r), (1)

where u(r) = vVAm r(r).
e Implement an algorithm for finding the ground state energy and wave function of
(1) for a given potential V' (r).
Hint: Use the code that you implemented to solve Exercise 2.1
e Test your code with the [ = 0 sector of the hydrogen atom, where V (r) = —%, and

compare your result with the analytical solution eeyaee = —0.5 a.u. and Uexact (1)
re=").

In part c), you will apply this code to the effective potential as given by density functional
theory.

b) Poisson Solver

The Hartree potential Vj,(7) satisfies the Poisson equation AV;(7) = —4mwp(F). For
spherically symmetric p(r) and V;,(r), this reduces to

r

U'(r) = N

dmp(r),

where U(r) :=rV,(r)/N.

For a system of N = 2 electrons, we use the ansatz p(r) = N|iy(r)|? for the electron den-
sity, where 1)y is the normalized ground state of the single-electron Schrodinger equation



with the effective potential from density functional theory (see part c¢) below). Equiva-
lently,
u?(r)

r

U'(r) = - (2)

where u(r) is the ground state of (1) and normalized to norm one, [;* dru?(r) = 1. Note
that U(r) satisfies the boundary conditions U(0) = 0 and U(o0) = 1.

e Implement a solver for (2) with these boundary conditions for a given function u(r).

Hint: Use the (velocity free) Verlet algorithm to integrate from U(0) = 0, U(Ar) =
Ar to some Ty > 0 (e.g., Tmax = 20). Then add a suitable multiple of the
homogeneous solution Upem () = r to fix the outer boundary condition.

e Test your code with the u(r) as obtained for the hydrogen atom in part a), and
compare your result with the analytical solution Ut (1) = —(r + 1)e™ 2" + 1.

c) Helium

Apply density functional theory to the Helium atom. Use the effective potential
Vet = Ven + Vi + Vi, where V., is the appropriate nuclear potential, Vj, the Hartree
potential as obtained via part b), and

o= (3) (50) = ()

is a parametrization of the exchange-correlation potential, and can be determined via part
a) with ¢ and wu(r).

Repeat these steps iteratively until you reach a self-consistent solution. Decrease your
step size Ar and/or increase the cut-off radius rp.x to check where your results are not
heavily depending on these constants any more.

Hint: You should obtain

e ~ —0.52 a.u.
F~ —-2.72 a.nu.

where energy F is related to the eigenvalue ¢ by the formula

E =2e¢— /dr Vi (r)u?(r) — %/dr Vie(T)u?(r).

d) (Bonus) PySCF

Use PySCF to do a DFT calculation for the Helium atom and compare your results to
those obtained in c).
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