[1]1:

[2]:

ex04 solution

March 15, 2025

Computational Quantum Physics - PHYS 463
Lecturer: Prof. G. Carleo

Assistants: alessandro.sinibaldi@epfl.ch, linda.mauron@epfl.ch, lorenzo.fioroni@epfl.ch

0.1 Solution 04: Many-body systems of indistinguishable particles

common imports

scipy consists of a lot of different
wseparately

import scipy

import scipy.sparse

import scipy.sparse.linalg

use csr_array rather than csr_matric
<NUMpY, t.e.

@ is the matriz product and * 1is the
“array

csr_matriz uses both @ and * for the

from scipy.sparse import csr_array

import matplotlib.pyplot as plt

import numpy as np

modules which we have to import,

to have the same operators as withy

elementwise product for csr_array and np.

matriz product

nicer printing of floating point numbers
np.set_printoptions(precision=3,suppress=1e-8,linewidth=120)

import functools # for functools.reduce

throughout this exercise we have to compute a lot of expressions of the form

res = kron(x0, kron(xl, kron(x2, kron(x3, ...))))

the pedestrian way of achieving this would be to use a loop:

res = 1
for xi in [..., x3, x2, x1, x0]:
res = kron(x, res)

[3]:

however we can do the same in a functional way in just 1 line (using functools.reduce):

res = reduce(kron, [x0, x1, x2, x3, ...1)

0.1.1 Problem 4.2 - Exact Diagonalization of 2-site Lattice Hamiltonians

We are interested in finding static properties of quantum systems, moving from spin systems in the
previous exercise to systems of indistiguishable particles.

bosons Given how the creation and annihilation operators act on the bosonic Fock space, we
choose the second quantization formalism and create the matrices accordingly.

We have to keep in mind that we need to truncate the Hilbert space when we are considering
bosons.

Given a finite cutoff d write the destruction operator

0 vVi 0 - 0
) 0 0 \/§ 0
b= 0 : 0

0 O

b, =1(d)®...1(d) @b I(d) ®...1(d),

i—1 terms L—i terms

def b(i, d, L):

I

bosonic annihilation operator

Args:
1: state to act on
d: occupation number cutoff (not inclusive)
L: number of states

Returns:
A sparse matriz representing the destruction of a boson in state <

rr

b = scipy.sparse.diags(np.sqrt(np.arange(1l, d)), 1)

left scipy.sparse.identity(d ** i)

right = scipy.sparse.identity(d ** (L - i - 1))

mat functools.reduce(scipy.sparse.kron, (left, b_, right))
return mat

For the creation operator b, we only need to transpose b (and take the conjugate, but since this is
a real operator this operation is superfluous) .

Using this write a function for the number operator acting on state i

(3

[4]: def n_b(i,d,L):

rr

bosonic number operator

Args:
1: index of state to act on
d: occupation number cutoff (not inclusive)
L: number of states

Returns:

A sparse matrixz counting the number of bosons in state 1%
1

bi = b(i,d,L)

bi_dagger = bi.conjugate().T
ni = bi_dagger @ bi

return ni

and the total number operator

=

I
]
s.:)

[6]: def N _b(d,L):

rr

bosonic total number operator

Args:
d: occupation number cutoff (not inclusive)
L: number of states

Returns:

A sparse matrixz which counts the total number of bosons

return sum(n_b(i,d,L) for i in range(L))

Now define a function to create the Bose-Hubbard Hamiltonian for constant ¢ and U using the
operators defined above.

[6]: def bose_hubbard(d=5, L=2, t=1, U=1, mu=0, pbc=False):

mnn

bose-hubbard hamiltonian

Args:
d: occupation number cutoff (not inclusive)
L: number of states
t: hopping amplitude
U: interaction term

pbc: whether to use periodic boundary conditions (True) or
open boundary conditions (False, default)

nimnn

if pbc and L > 2:

edges = [(i, (i+1)%L) for i in range(L)]
else:

edges = [(i, i+1) for i in range(L-1)]
hopping =0

for i,j in edges:
bi = b(i, d, L)
bj = b(j, d, L)
hopping += bi.T.conj() @ bj + bj.T.conj() @ bi

local_int = O

for i in range(L):
ni =nb(i, 4, L)
local_int += n_i @ n_i - n_i

H = -t * hopping + 0.5 * U * local_int
explicitly convert to csr
H = csr_array(H)

return H

At this point we have all the ingredients to create the Hamiltonian for our problem and diagonalize

it
e U=1landt=1
[7]1: 'L =2
d =5
U=
t:

[8]: H = bose_hubbard(d, L, t=t, U=U)
N = N_b(d,L)

Diagonalize the hamiltonian using scipy:

[9]: eigvals, eigvecs = scipy.sparse.linalg.eigsh(H, which='SA')
eigvals

[9]: array([-1.646, -1.562, -1.247, -1. , —0.275, 1. D

Optionally you can verify that your results match those those computed using our library NetKet
(https://github.com /netket /netket)

[10] : | #check with netket

import netket as nk

g = nk.graph.Chain(L, pbc=False)

hi = nk.hilbert.Fock(n_max=d-1, N=L)

ha = nk.operator.BoseHubbard(hi, g, U=U, J=t)
nk.exact.lanczos_ed(ha, k=6)

/home/fioroni/Documents/Research/2025/TA_computational quantum_physics/.venv/1lib
/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found.
Please update jupyter and ipywidgets. See
https://ipywidgets.readthedocs.io/en/stable/user_install.html

from .autonotebook import tqdm as notebook_tqgdm
WARNING:2025-03-15 12:58:12,639: jax._src.xla_bridge:966: An NVIDIA GPU may be
present on this machine, but a CUDA-enabled jaxlib is not installed. Falling
back to cpu.

[10]: array([-1.646, -1.562, -1.247, -1. , —0.275, 1. iD)

We know that the hamiltonian H commutes with the total number operator]Q; therefore all
eigenstates [¢;) of H have a fixed number of particles.

Compute the number of particles of each eigenstate by taking the expectation value of the total
number operator (¢;|N|i;):

[11]: |print(' i\t Ei\t N \n')
for i, psi in enumerate(eigvecs.T):
n = psi.T.conj() @ N @psi
print (£'{i}\t {f"{eigvals[i]:0.3f}".rjust(6)}\t {n:0.1£f}"')

i Ei N

0 -1.646 3.0
1 -1.562 2.0
2 -1.247 4.0
3 -1.000 1.0
4 -0.275 5.0
5 1.000 1.0

Of course, no site is occupied by more than the cut-off d

[12]: nops = [n_b(j,d,L) for j in range(L)]
ns = np.zeros(L)

print(' i\t Ei\t', ''.join(map(str, [f'n_{i} ' for i in range(L)])), '\ty
on k <d\n")
for i, psi in enumerate(eigvecs.T):
for j in range(L):
ns[j] = (psi.T.conj() @ nops[j] @psi)
print(£f'{i}\t {f"{eigvals[i]:0.3f}".rjust(6)}\t {ns}\t {np.round(ns)<d}')

i Ei nO0 n_1 nk <d

0 -1.646 [1.5 1.5] [True True]
1 -1.562 [1. 1.] [True True]
2 -1.247 [2. 2.] [True Truel
3 -1.000 [0.5 0.5] [True Truel
4 -0.275 [2.5 2.5] [True Truel
5 1.000 [0.513 0.513] [True Truel

Repeat the same for

. U:4andt:1

[13]: L =2
d=5
H = bose_hubbard(d, L, t=1, U=4)

N = N_b(d,L)
eigvals, eigvecs = scipy.sparse.linalg.eigsh(H, which='SA', k=6)
print(' i\t Ei\t N\tN < d \n'")
for i, psi in enumerate(eigvecs.T):
n =psi.T.conj() @ N @psi
print (f'{i*\t {f"{eigvals[i]:0.3f}".rjust(6)}\t {n:0.1f}\t {np.round(n)<d}')

i Ei N N <d
0 -1.000 1.0 True
1 -0.828 2.0 True
2 1.000 1.0 True
3 1.708 3.0 True
4 4.000 2.0 True
5 4.828 2.0 True

e U=—1landt=1

[14]: L = 2
d=5
H = bose_hubbard(d, L, t=1, U=-1)

[15]:

N = N_b(d,L)
eigvals, eigvecs = scipy.sparse.linalg.eigsh(H, which='SA', k=6)
print(' i\t Ei\t\t N\tN < d \n')
for i, psi in enumerate(eigvecs.T):
n = psi.T.conj() @ N @psi
print (f'{i}\t {f"{eigvals[i]:0.3f}".rjust(8)}\t {n:0.1f}\t {np.round(n)<d}')

i Ei N N <d

0 -13.000 7.0 False
1 -12.000 8.0 False
2 -11.424 6.0 False
3 -9.372 5.0 False
4 -7.615 4.0 True

5 -7.275 5.0 False

Fixed numbers of particles

Find the ground state for fixed numbers of particles using the power method with an initial guess
with the correct number of particles.

slightly adapted power method from the previous exercise
(added support for matrices which don't have shapes powers of 2)

lambda 1s a reserved keyword for lambda functions,
so we can't give the wvariable like that name....
def power_method(H, n_iters, lambd=1, uO=None):
if u0 is None:
take a random vector as in initial guess
TODO this is a real vector but depending on the hamiltonian
it might need to be complex
u = np.random.normal (size=H.shape[0])
else:
u = ul

construct the propagator
I = scipy.sparse.identity(len(u))
prop = lambd * I - H

old = np.inf

energies = []

for i in range(n_iters):
u = prop @ u

normalize the vector

this 1s necessary since the propagator is not unitary

and 1f we do a lot of iterations the floating point numbers in v
swould grow

very quickly to the point where the exponent overflows
also 1t 1s convenient for computing the expectation value below
u =1u / np.linalg.norm(u)

compute the expectation wvalue
For a CSR array “(v @ h) @ v~ is slow, therefore we do it the other,

sway Tound

e =u.T.conj() @ (H @ uw
stop early if the energy does not improve anymore
if np.abs((old - e) / e) < le-15:

break

energies.append(e)
old = e

return u, energies

Create a (classical) state with the desired number of particles to be used as an initial guess

10y mp) = [01) ® [ng) © . ® |1y)

[16]: def bosonic_site_state(d, n):

[17]:

[18]:

def

mimn
Args:
d: occupation number cutoff

n: number of bosons
nimnn

state = np.zeros(d)
state[n] = 1
return state

bosonic_state(d, occupations):
mimn
Args:
d: occupation number cutoff
occupations: a list of the number of bosons in each state

nimnn

return functools.reduce(np.kron, (bosonic_site_state(d, n) for n ing

-occupations))

= = O N

bose _hubbard(d, L, t=t, U=U)

Manually create the following initial state with 4 particles:

2,2) =2) @ 2)

[19]: # n_particles = 4
n_list = [2,2]

init state = bosonic_state(d,n_list)
init_state

[19]: array([O0., O., O., 0., O., O., O., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., O.,
0., 0., 0., 0., 0., 0., 0.1)

run the power method

[20]: gs, e_gs = power_method(H, 2000, 14., u0=init_state)
e_gs[-1]

[20] : np.float64(-1.247303334275856)

[21]: plt.plot(np.arange(len(e_gs)),e_gs,label=f"d = {d}")
plt.xlabel("Iteration")
plt.ylabel("Energy")
plt.legend ()

plt.show()

[22]:

[22]:

[23]:

0.2 A

0.0

_0.2 -

—0.4 1

Energy

_'U.ﬁ -

—0.8 T

_l.D -

—1.2 1

#check with netket

import netket as nk
g = nk.graph.Chain(L, pbc=False)

hi
ha

nk.

nk.hilbert.Fock(n_max=d-1, N=

T
15 20
lteration

L, n_particles=4)

nk.operator.BoseHubbard(hi, g, U=U, J=t)
exact.lanczos_ed(ha)

array([-1.247])

0.1.2 Problem 4.3 - Exact Diagonalization of the t-V model

spinless fermions

ing/lowering operators

pault matrices

SX

Sy
sz

scipy.sparse.csr_array([[0.,
scipy.sparse.csr_array([[O0.,
scipy.sparse.csr_array([[1.,

0% +i0Y

2

5t =

1.1,0[1., 0.11)
-1.31,[1.3, 0.11)
0.],[0., -1.11)

10

25

Start by defining the pauli matrices o%,0%,0

¥4

as well as the spin ris-

I = scipy.sparse.identity(2)

sp = (sx + 1j * sy) / 2

sm= (sx - 1j * sy) / 2

we know that sp and sm are real:
np.testing.assert_array_equal(sp.imag.todense(), 0)
np.testing.assert_array_equal(sm.imag.todense(), 0)
sp = sp.real

sm = sm.real

Construct the fermionic annihilation operator in terms of spin operators

6G=5"85..0°05" @111,
_ N —— —

i—1 terms L—i terms

[24]: def c(i, L):

nimnn

fermionic annihilation operator

Args:
1: index of state to act on
L: number of states

Returns:
A sparse matriz destroying a fermion in sState %
simple (but slow) 1-line wversion:
return functools.reduce(scipy.sparse.kron, [sz,]*i + [sp,] + [sz,]*(L - 4,

<= 1))

more optimized:

we know that sz is diagonal, therefore dense kron much faster:

sz_diag = np.array([1, -1])

1 = scipy.sparse.diags_array(functools.reduce(np.kron, [sz_diagl*i, np.
sarray([1.1)))

r = scipy.sparse.identity(2**(L - i - 1))

return functools.reduce(scipy.sparse.kron, [1, sp, r])

as well as the number operator

[25]: def n_c(i,L):

nimnn

fermionic number operator
Args:

1: index of state to act on
L: number of states

11

Returns:
A sparse matriz counting the number of fermions in state 1

mnn

ci = c(i, L)
ci_dagger = ci.conjugate().T
return ci_dagger 0 ci

[26]: def N_c(L):

rr

fermionic total number operator

Args:
L: number of states

Returns:
A sparse matrixz counting the total number of fermions

1

return sum(n_c(i,L) for i in range(L))

Define a function for the t-V hamiltonian

H=tY (ele;+éle,) +v > an,
(i) (@)

>

[27]: def tV(L, t=1, V=1, pbc=False):

mnn

t-V hamiltonian for a 1d chain of spinless fermions
with nearest-neighbour interaction term

Args:
L: number of states
t: hopping amplitude
V: anteraction term
pbc: whether to use periodic boundary conditions (True) or
open boundary conditions (False, default)

mnn

if pbc and L > 2:

edges = [(1, (i+1)%L) for i in range(L)]
else:

edges = [(i, i+1) for i in range(L-1)]
H=0

for i,j in edges:

12

= c(i, L)

ci

= c(j, L)
n_c(i

cJ

ni

, LY # =ci.T.conj() @ c3

j, L) #
H=H+t * (ci.T.conj() @ ¢cj + cj.T.conj() @ ci)

n_c(
H=H+V* (ni @ nj)

cj.T.conj() @ cj

nj

explicitly convert to csr

y (H)

H = csr_arra
H.eliminate_zeros()

return H

tV(4) .todense() .astype(int)

array([[O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O],

[27]:

[O’ O, 1’ O, O, O’ O, O’ O’ O’ O’ O, O’ O’ 0’ O]’
o, ¢, o, o, 1, o, 0, 0, 0, 0, 0, 0, 0, O, O, O],
[O’ O, o’ 1, O, 1’ O, o’ O, O, O’ O, o’ O’ o) O],

to, o, ¢, 0, o, o, 0, 0, 1, 0, 0, O, O, O, O, O],

[o’ O, O’ 1’ O’ O’ 1, O’ O’ 1’ O’ O, o) O’ O) O]’
to, o, o, 0, 0o, 1, ¢, 0, 0, 0, 1, 0, O, O, O, O],

[O’ O’ O) O’ O’ O’ O’ 2’ O, O’ O’ 1’ O’ O, O’ O],

to, o, o, o, 1, o, 0, 0, 0, 0, 0, 0, 0, O, O, O],
[O’ O’ O’ O, o’ 1’ O’ O’ O’ O) 1’ O’ O’ O’ o’ O]’

o, o, o0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0],

to, o, o, 0, 0, 0, 0, 1, 0, 0, 0, 1, O, 1, O, O],

[O’ O, O’ O, O, O’ O, O’ O’ O’ 1’ O, 1’ O’ 0’ O]’

to, o, o, o, 0o, 0o, 0, 0, 0, 0, O, 1, O, 1, 1, O],

[O’ O, o’ O, O, O’ O, o’ O, O, O’ O, o’ 1’ 2) O],

o, o, o, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3]])

Open boundary conditions:

print('L', '\t', "EO")

[28]:

for L in range(2,17):

scipy.sparse.linalg.eigsh(tV(L), which='SA', k=1)[0][0] / L

print(L, '\t', "{:0.4f}".format(EO))

EO

EO

-0.5000
-0.4714
-0.5000
-0.5177
-0.5000
-0.5262
-0.5205
-0.5270

13

10 -0.5304

11 -0.5258
12 -0.5337
13 -0.5309
14 -0.5342
15 -0.5353
16 -0.5336

Periodic boundary conditions:

[29]: | # pbc
print('L', '\t', "EO")
for L in range(2,17):
EO = scipy.sparse.linalg.eigsh(tV(L, pbc=True), which='SA', k=1)[0][0] / L
print(L, '\t', "{:0.4f}".format (E0))

-0.5000
-0.3333
-0.5000
.6000
-0.5393
-0.5090
-0.5617
-0.5556
.5298
-0.5484

© 00 N O O W
|
o

=
= O
|
o

—_
N
|
o

.56b61

13 -0.5385
14 -0.5418

15 -0.5523
16 -0.5466
Fixed number of particles

Construct a initial state with a fixed number of fermions to use as initial guess for the power
method.

[30]: n_particles = 4
L=28

we distribute the particles with untiform probability
select N states randomly

indices = np.random.choice(L, n_particles, replace=False)

n_list = np.zeros(L, dtype=int)

14

n_list[indices] = 1
print(n_list)

reuse the code for bosons from above
with a cutoff of d=2 since there can be at most 1 fermion in each state
u0 = bosonic_state(2, n_list)

[01101010]

[31]: power_method(tV(L), 1000, 10., uO)[1][-1]
[31]: np.float64(-3.9999999999999676)

[32]: | # check with netket
import netket as nk

def tV_nk(hi, t=1, V=1, pbc=False):

g = nk.graph.Chain(hi.n_orbitals, pbc=pbc)

ha = 0

for i,j in g.edges():
ci = nk.operator.fermion.destroy(hi,i)
cj = nk.operator.fermion.destroy(hi,j)
ci_dagger = nk.operator.fermion.create(hi,i)
cj_dagger = nk.operator.fermion.create(hi,j)
ni = nk.operator.fermion.number (hi,i)
nj = nk.operator.fermion.number(hi, j)
ha = ha + t * (ci_dagger * cj + cj_dagger * ci)
ha = ha + V * (ni * nj)

return ha

hi = nk.hilbert.SpinOrbitalFermions(n_orbitals=L, n_fermions=n_particles)
nk.exact.lanczos_ed(tV_nk(hi), k=1)

[32]: array([-4.]1)

Block-diagonalize the hamiltonian To do this, find the number of particles of each basis state
(which corresponds to the diagonal of N) and find the suitable permutation to assemble all basis
states with same occupation number.

[33]: L =38

H = tV(L)
plt.spy(H, markersize=1)

[33]: <matplotlib.lines.Line2D at 0x744620261490>

15

N
100 - \ \
R
150 - ‘\h\

NN

250

[34]: # we look at the diagonal of the number operator to find the number of fermions
of each basis state
diag = np.round(N_c(L).diagonal()) .astype(int)
find permutation for increasing number of spins
perm = np.argsort(diag)

block-diagonalize the matriz
H = Hlperm, :]1[:, perm] # reorder rows and columns

plt.spy(H, markersize=1)

[34]: <matplotlib.lines.Line2D at 0x74462b378c20>

16

0 50 100 150 200 250

50 +

100 ~

150 ~

200

250

[35]: # compute the positions of each block corresponding to a fized number of,
wparticles:
numbers = np.unique(diag)
start = np.searchsorted(diag[perm], numbers, 'left')
end = np.searchsorted(diag[perm], numbers, 'right') # could use np.diff on,
wstart w/ the size of the matriz appended
num = end-start

extract the block corresponding to N=4:
i = int(np.where(numbers == 4)[0] [0])
H4 = H[start[i]:end[i], start[i]:end[i]]

diagonalize the block corresponding to N=4,
at a greately reduced cost compared to the full Hamiltonian matriz
scipy.sparse.linalg.eigsh(H4, k=2, which='SA") [0]

[35]: array([-4. , —3.164]1)

0.1.3 Problem 4.4 - Exact Diagonalization of the Fermi-Hubbard model

Spinful fermions Basis representation: Number of up and down spins on site 1, number of up
and down spins on site 2...

17

[36]:

We are dealing with fermions, so each site can hold at most one particle of each spin.

Use the following mapping to spinless fermions:

/ /7 V4 /
‘”1T= Nop - 7nL—1,¢7nL,i> = |ny,ny . nyp g, nhp),

Cip = CiCi| = Ciipe
(or alternatively like in the lecture notes):

|n1T7 Nyp s Mg 45 nL,J,) = [ny,my . myp g, NoL),

Cip = ChiCi | = Chipq-
to define the operators in terms of the spinless operators from problem 4.3

def c_spin(i, s, L):

mnn

fermionic annihilation operator (with spin)

Args:
t1: index of state to act on
s: wvalue of the spin; 0 encodes spin up, and 1 encodes douwn
L: number of states

Returns:

A sparse matriz destroying a fermion with spin s in state 1%
nimnn

s: O for spin down and 1 for spin up
return c(i+s*L, 2x*L)

or alternatively:

#return c(2*i+s, 2*L)

def n_c_spin(i, s, L):

fermionic number operator (with spin)

Args:
1: index of state to act on
s: value of the spin; 0 encodes spin up, and 1 encodes down
L: number of states

Returns:
A sparse matriz counting the number of fermions with spin s in state

18

nmnn

ci = c_spin(i, s, L)
return ci.T.conj() @ ci

def N_c_spin(L):

I

fermionic total number operator (with spin)

Args:
L: number of states

Returns:
A sparse matriz counting the total number of fermions
counting both fermions with spin up and down
return sum(n_c_spin(i,s,L) for s in [0, 1] for i in range(L))

Define the fermi-hubbard hamiltonian (here written for just 2 sites, but you can also implement
the general one)

2
I_} =—t Z (610'620 + 650610) +U Z ﬁzTﬁ'LJ,
o=m,l i=1

[37]: def fermi_hubbard(L=2, t=1, U=1):

mnn

fermi-hubbard hamiltonian

Args:
L: number of states
t: hopping amplitude
U: interaction term

nmnn

H=0
for i,j in [(i, i+1) for i in range(L-1)]:
for s in [0,1]: # spin down, spin up
ci = c_spin(i, s, L)
cj = c_spin(j, s, L)
H=H-t * (ci.T.conj() @ cj + c¢j.T.conj() @ ci)

for i in range(L):

ni_down = n_c_spin(i, 0, L)
ni_up = n_c_spin(i, 1, L)

19

H=H+ U * ni_up @ ni_down

explicitly convert to csr
H = csr_array(H)
H.eliminate_zeros()

return H

[38]: H = fermi_hubbard(t=1, U=1)
H.todense() .real.astype(int)

[38l: array(f[O, 0, O, O, O, 0O, O, O, O, O, O, O, O, O, O, O],
to, o, -1, 0o, 0, 0, 0, O, O, O, O, O, O, O, O, O,
to, -1, o, o0, 0, 0, 0, O, O, O, O, O, 0O, O, o0, O],
to, o, o, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O],
to, o, o, 0, 0, 0, O, O, -t, O, O, O, O, O, O, O],
to, o, o, o, o, t, -1, 0, O, -1, O, O, O, O, O, O],
to, o, o, o0, 0, -1, 0, O, O, O, -1, O, O, O, O, O],
to, o, o, o, 0o, 0o, 0, 1, 0, 0O, O, -1, O, O, O, O],
to, o, o, 0, -1 o0, O, O, O, O, O, O, O, O, O, O],
tro, o, o, o0, 0, -1, 0, O, O, O, -1, O, O, O, O, O],
to, o, o, 0, 0, 0, -1, O, O, -1, &, O, O, O, O, O,
to, o, o, o0, 0, 0, O, -1, 0, O, O, 1, 0, O, O, O],
to, o, o, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O,
to, o, o, 0o, 0, 0, O, O, O, O, O, 0O, O, 1, -1, 0],
to, o, o, 0, 0, 0, 0, O, O, O, O, O, O, -1, 1, 0],
to, o, o, o, 0, 0, O, O, O, O, O, 0O, O, O, , 211

and diagonalize it
[39]: scipy.sparse.linalg.eigsh(H, which='SA') [0]
[39]: array([-1.562, -1. , -1. , -0. , -0. , -0. 1)

[40]: # check with netket
this assumes that you chose the first of the two mappings
1f you chose the other one your matrixz will look differently

n_particles = 2
hi = nk.hilbert.SpinOrbitalFermions(n_orbitals=n_particles, s=1/2)

def fermi_hubbard_nk(N=2, t=1, U=1, pbc=False):
g = nk.graph.Chain(hi.n_orbitals, pbc=pbc)
ha = 0
for i,j in g.edges(Q):
for s in [1, -1]: # spin up, spin down
ci = nk.operator.fermion.destroy(hi, i, sz=s)
cj = nk.operator.fermion.destroy(hi, j, sz=s)

20

ci_dagger = nk.operator.fermion.create(hi, i, sz=s)
cj_dagger = nk.operator.fermion.create(hi, j, sz=s)
ha = ha - t * (ci_dagger*cj + cj_dagger*ci)

for i in g.nodes():
ni_up = nk.operator.fermion.number(hi, i, sz=1)
ni_down = nk.operator.fermion.number(hi, i, sz=-1)
#
ha = ha + U * ni_up*ni_down

return ha

ha = fermi_hubbard_nk(t=1, U=1)
print('H=\n', ha.to_dense() .astype(int), '\n')

print('Eigenvalues:\n', nk.exact.lanczos_ed(ha, k=6))

H=

[foO 0 0O0OO O OO0 OO0 OO0 OO0 O 0]
[0 -1 0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
211

[

=
O O O O O O o
l—l‘l—kOOOO
O O O O

[

= O O O
I—I\OOOO
l—l‘OOOOO
O O O O O o

|
= O O
|
O O O O+
O OO+ OO O O o o

O O O O
|
= O O

|

—

|
[N

|
-
O O O O O OO OO O o o

P O O O O OO OO O OO o Oo

|
[y

O O O O O OO OO OO OO oo
|
[N

O O O O O O O O O O O O o

O O O O O OO OO OO O o o
O O O O O O O OO OO OO oo
OOOOOOOI—Il

O O O O O O

O O O O O

O O O O

O O O O O O O O O oo
OOOOOIL

O O O O O -

O O O O+ O O O

O O O O O OO OO OO OO oo

rm M
o
O =

Eigenvalues:
[-1.562 -1. -1. -0. -0. -0.]

In this case, the block-diagonalization can be very efficient, since the Hilbert space is bigger (due
to the consideration of the spin degrees of freedom)

[41]: L =6

H

fermi_hubbard(L=L, t=1, U=1)

diag = np.round(N_c_spin(L) .diagonal()) .astype(int)
find permutation for increasing number of spins
perm = np.argsort(diag)

block-diagonalize the matric

21

H = Hlperm, :]1[:, perm]
plt.spy(H, markersize=1)

[41]: <matplotlib.lines.Line2D at 0x74462210faa0>

0 500 1000 1500 2000 2500 3000 3500 4000
D I I I I I I I I

[42]: | # compute the positions of each block corresponding to a fized number of,
wparticles:
numbers = np.unique(diag)
start = np.searchsorted(diag[perm], numbers, 'left')
end = np.searchsorted(diag[perm], numbers, 'right')
num = end-start

extract the block corresponding to N=4:
i = int(np.where(numbers == 4)[0] [0])
H4 = H[start[i]:end[i], start([i]:end[i]]

diagonalize the block corresponding to N=4,
scipy.sparse.linalg.eigsh(H4, k=2, which='SA"') [0]

[42]: array([-5.478, -4.852])

22

	Solution 04: Many-body systems of indistinguishable particles
	Problem 4.2 - Exact Diagonalization of 2-site Lattice Hamiltonians
	Problem 4.3 - Exact Diagonalization of the t-V model
	Problem 4.4 - Exact Diagonalization of the Fermi-Hubbard model

