
ex04_solution

March 15, 2025

Computational Quantum Physics - PHYS 463

Lecturer: Prof. G. Carleo

Assistants: alessandro.sinibaldi@epfl.ch, linda.mauron@epfl.ch, lorenzo.fioroni@epfl.ch

0.1 Solution 04: Many-body systems of indistinguishable particles

[1]: # common imports

scipy consists of a lot of different modules which we have to import␣
↪separately

import scipy
import scipy.sparse
import scipy.sparse.linalg

use csr_array rather than csr_matrix to have the same operators as with␣
↪numpy, i.e.

@ is the matrix product and * is the elementwise product for csr_array and np.
↪array

csr_matrix uses both @ and * for the matrix product
from scipy.sparse import csr_array

import matplotlib.pyplot as plt

import numpy as np

nicer printing of floating point numbers
np.set_printoptions(precision=3,suppress=1e-8,linewidth=120)

[2]: import functools # for functools.reduce

throughout this exercise we have to compute a lot of expressions of the form

res = kron(x0, kron(x1, kron(x2, kron(x3, ...))))

the pedestrian way of achieving this would be to use a loop:

res = 1
for xi in [..., x3, x2, x1, x0]:

res = kron(x, res)

1

however we can do the same in a functional way in just 1 line (using functools.reduce):

res = reduce(kron, [x0, x1, x2, x3, ...])

0.1.1 Problem 4.2 - Exact Diagonalization of 2-site Lattice Hamiltonians

We are interested in finding static properties of quantum systems, moving from spin systems in the
previous exercise to systems of indistiguishable particles.

bosons Given how the creation and annihilation operators act on the bosonic Fock space, we
choose the second quantization formalism and create the matrices accordingly.

We have to keep in mind that we need to truncate the Hilbert space when we are considering
bosons.

Given a finite cutoff 𝑑 write the destruction operator

𝑏̂ =
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

0
√

1 0 ⋯ 0
0 0

√
2 ⋯ 0

0 0 0 ⋱ 0
⋮ ⋮ ⋮ ⋱

√
𝑑 − 1

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

𝑏̂𝑖 = ̂𝐼(𝑑) ⊗ … ̂𝐼(𝑑)⏟⏟⏟⏟⏟⏟⏟
𝑖−1 terms

⊗ ̂𝑏 ⊗ ̂𝐼(𝑑) ⊗ … ̂𝐼(𝑑)⏟⏟⏟⏟⏟⏟⏟
𝐿−𝑖 terms

,

[3]: def b(i, d, L):
'''
bosonic annihilation operator

Args:
i: state to act on
d: occupation number cutoff (not inclusive)
L: number of states

Returns:
A sparse matrix representing the destruction of a boson in state i

'''
b_ = scipy.sparse.diags(np.sqrt(np.arange(1, d)), 1)

left = scipy.sparse.identity(d ** i)
right = scipy.sparse.identity(d ** (L - i - 1))
mat = functools.reduce(scipy.sparse.kron, (left, b_, right))
return mat

For the creation operator 𝑏†, we only need to transpose 𝑏 (and take the conjugate, but since this is
a real operator this operation is superfluous) .

2

Using this write a function for the number operator acting on state i

𝑛̂𝑖 = 𝑏̂†
𝑖 𝑏𝑗

[4]: def n_b(i,d,L):
'''
bosonic number operator

Args:
i: index of state to act on
d: occupation number cutoff (not inclusive)
L: number of states

Returns:
A sparse matrix counting the number of bosons in state i

'''

bi = b(i,d,L)

bi_dagger = bi.conjugate().T
ni = bi_dagger @ bi

return ni

and the total number operator
̂𝑁 = ∑

𝑖
𝑛̂𝑖

[5]: def N_b(d,L):
'''
bosonic total number operator

Args:
d: occupation number cutoff (not inclusive)
L: number of states

Returns:
A sparse matrix which counts the total number of bosons

'''
return sum(n_b(i,d,L) for i in range(L))

Now define a function to create the Bose-Hubbard Hamiltonian for constant 𝑡 and 𝑈 using the
operators defined above.

𝐻̂ = −𝑡 ∑
⟨𝑖,𝑗⟩

(𝑏̂†
𝑖 𝑏̂𝑗 + ̂𝑏†

𝑗 𝑏̂𝑖) + 𝑈
2 ∑

𝑖
𝑛̂𝑖 (𝑛̂𝑖 − 1) − 𝜇 ∑

𝑖
𝑛̂𝑖

3

[6]: def bose_hubbard(d=5, L=2, t=1, U=1, mu=0, pbc=False):
"""
bose-hubbard hamiltonian

Args:
d: occupation number cutoff (not inclusive)
L: number of states
t: hopping amplitude
U: interaction term
pbc: whether to use periodic boundary conditions (True) or

open boundary conditions (False, default)
"""
if pbc and L > 2:

edges = [(i, (i+1)%L) for i in range(L)]
else:

edges = [(i, i+1) for i in range(L-1)]

hopping = 0
for i,j in edges:

bi = b(i, d, L)
bj = b(j, d, L)
hopping += bi.T.conj() @ bj + bj.T.conj() @ bi

local_int = 0
for i in range(L):

n_i = n_b(i, d, L)
local_int += n_i @ n_i - n_i

H = -t * hopping + 0.5 * U * local_int

explicitly convert to csr
H = csr_array(H)
return H

At this point we have all the ingredients to create the Hamiltonian for our problem and diagonalize
it

• 𝑈 = 1 and 𝑡 = 1

[7]: L = 2
d = 5

U = 1
t = 1

[8]: H = bose_hubbard(d, L, t=t, U=U)
N = N_b(d,L)

Diagonalize the hamiltonian using scipy:

4

[9]: eigvals, eigvecs = scipy.sparse.linalg.eigsh(H, which='SA')
eigvals

[9]: array([-1.646, -1.562, -1.247, -1. , -0.275, 1.])

Optionally you can verify that your results match those those computed using our library NetKet
(https://github.com/netket/netket)

[10]: #check with netket

import netket as nk
g = nk.graph.Chain(L, pbc=False)
hi = nk.hilbert.Fock(n_max=d-1, N=L)
ha = nk.operator.BoseHubbard(hi, g, U=U, J=t)
nk.exact.lanczos_ed(ha, k=6)

/home/fioroni/Documents/Research/2025/TA_computational_quantum_physics/.venv/lib
/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found.
Please update jupyter and ipywidgets. See
https://ipywidgets.readthedocs.io/en/stable/user_install.html

from .autonotebook import tqdm as notebook_tqdm
WARNING:2025-03-15 12:58:12,639:jax._src.xla_bridge:966: An NVIDIA GPU may be
present on this machine, but a CUDA-enabled jaxlib is not installed. Falling
back to cpu.

[10]: array([-1.646, -1.562, -1.247, -1. , -0.275, 1.])

We know that the hamiltonian 𝐻̂ commutes with the total number operator ̂𝑁 , therefore all
eigenstates |𝜓𝑖⟩ of 𝐻̂ have a fixed number of particles.

Compute the number of particles of each eigenstate by taking the expectation value of the total
number operator ⟨𝜓𝑖| ̂𝑁|𝜓𝑖⟩:

[11]: print('�i\t Ei\t �N� \n')
for i, psi in enumerate(eigvecs.T):

n = psi.T.conj() @ N @psi
print(f'{i}\t {f"{eigvals[i]:0.3f}".rjust(6)}\t {n:0.1f}')

�i Ei �N�

0 -1.646 3.0
1 -1.562 2.0
2 -1.247 4.0
3 -1.000 1.0
4 -0.275 5.0
5 1.000 1.0

Of course, no site is occupied by more than the cut-off 𝑑

5

[12]: nops = [n_b(j,d,L) for j in range(L)]
ns = np.zeros(L)

print('�i\t Ei\t', ''.join(map(str, [f'�n_{i}� ' for i in range(L)])), '\t␣
↪�n_k� < d \n')

for i, psi in enumerate(eigvecs.T):
for j in range(L):

ns[j] = (psi.T.conj() @ nops[j] @psi)
print(f'{i}\t {f"{eigvals[i]:0.3f}".rjust(6)}\t {ns}\t {np.round(ns)<d}')

�i Ei �n_0� �n_1� �n_k� < d

0 -1.646 [1.5 1.5] [True True]
1 -1.562 [1. 1.] [True True]
2 -1.247 [2. 2.] [True True]
3 -1.000 [0.5 0.5] [True True]
4 -0.275 [2.5 2.5] [True True]
5 1.000 [0.513 0.513] [True True]

Repeat the same for

• 𝑈 = 4 and 𝑡 = 1

[13]: L = 2
d = 5

H = bose_hubbard(d, L, t=1, U=4)
N = N_b(d,L)
eigvals, eigvecs = scipy.sparse.linalg.eigsh(H, which='SA', k=6)
print('�i\t Ei\t �N�\t�N� < d \n')
for i, psi in enumerate(eigvecs.T):

n = psi.T.conj() @ N @psi
print(f'{i}\t {f"{eigvals[i]:0.3f}".rjust(6)}\t {n:0.1f}\t {np.round(n)<d}')

�i Ei �N� �N� < d

0 -1.000 1.0 True
1 -0.828 2.0 True
2 1.000 1.0 True
3 1.708 3.0 True
4 4.000 2.0 True
5 4.828 2.0 True

• 𝑈 = −1 and 𝑡 = 1

[14]: L = 2
d = 5

H = bose_hubbard(d, L, t=1, U=-1)

6

N = N_b(d,L)
eigvals, eigvecs = scipy.sparse.linalg.eigsh(H, which='SA', k=6)
print('�i\t Ei\t\t �N�\t�N� < d \n')
for i, psi in enumerate(eigvecs.T):

n = psi.T.conj() @ N @psi
print(f'{i}\t {f"{eigvals[i]:0.3f}".rjust(8)}\t {n:0.1f}\t {np.round(n)<d}')

�i Ei �N� �N� < d

0 -13.000 7.0 False
1 -12.000 8.0 False
2 -11.424 6.0 False
3 -9.372 5.0 False
4 -7.615 4.0 True
5 -7.275 5.0 False

Fixed numbers of particles

Find the ground state for fixed numbers of particles using the power method with an initial guess
with the correct number of particles.

[15]: # slightly adapted power method from the previous exercise
(added support for matrices which don't have shapes powers of 2)

lambda is a reserved keyword for lambda functions,
so we can't give the variable like that name....
def power_method(H, n_iters, lambd=1, u0=None):

if u0 is None:
take a random vector as in initial guess
TODO this is a real vector but depending on the hamiltonian
it might need to be complex
u = np.random.normal(size=H.shape[0])

else:
u = u0

construct the propagator
I = scipy.sparse.identity(len(u))
prop = lambd * I - H

old = np.inf
energies = []
for i in range(n_iters):

u = prop @ u

normalize the vector
this is necessary since the propagator is not unitary
and if we do a lot of iterations the floating point numbers in v ␣

↪would grow

7

very quickly to the point where the exponent overflows
also it is convenient for computing the expectation value below
u = u / np.linalg.norm(u)

compute the expectation value
For a CSR array `(v @ h) @ v` is slow, therefore we do it the other␣

↪way round
e = u.T.conj() @ (H @ u)

stop early if the energy does not improve anymore
if np.abs((old - e) / e) < 1e-15:

break

energies.append(e)
old = e

return u, energies

Create a (classical) state with the desired number of particles to be used as an initial guess

|𝑛1, 𝑛2 … , 𝑛𝐿⟩ = |𝑛1⟩ ⊗ |𝑛2⟩ ⊗ … ⊗ |𝑛𝐿⟩

[16]: def bosonic_site_state(d, n):
"""
Args:

d: occupation number cutoff
n: number of bosons

"""

state = np.zeros(d)
state[n] = 1
return state

def bosonic_state(d, occupations):
"""
Args:

d: occupation number cutoff
occupations: a list of the number of bosons in each state

"""
return functools.reduce(np.kron, (bosonic_site_state(d, n) for n in␣

↪occupations))

[17]: L = 2
d = 5
t = 1
U = 1

[18]: H = bose_hubbard(d, L, t=t, U=U)

8

Manually create the following initial state with 4 particles:

|2, 2⟩ = |2⟩ ⊗ |2⟩

[19]: # n_particles = 4
n_list = [2,2]

init_state = bosonic_state(d,n_list)
init_state

[19]: array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0.])

run the power method

[20]: gs, e_gs = power_method(H, 2000, 14., u0=init_state)
e_gs[-1]

[20]: np.float64(-1.247303334275856)

[21]: plt.plot(np.arange(len(e_gs)),e_gs,label=f"d = {d}")
plt.xlabel("Iteration")
plt.ylabel("Energy")
plt.legend()

plt.show()

9

[22]: #check with netket

import netket as nk
g = nk.graph.Chain(L, pbc=False)
hi = nk.hilbert.Fock(n_max=d-1, N=L, n_particles=4)
ha = nk.operator.BoseHubbard(hi, g, U=U, J=t)
nk.exact.lanczos_ed(ha)

[22]: array([-1.247])

0.1.2 Problem 4.3 - Exact Diagonalization of the t-V model

spinless fermions Start by defining the pauli matrices 𝜎̂𝑥, 𝜎̂𝑦, 𝜎̂𝑧 as well as the spin ris-
ing/lowering operators

𝜎̂± = 𝜎̂𝑥 ± 𝑖𝜎̂𝑦

2 .

[23]: # pauli matrices
sx = scipy.sparse.csr_array([[0., 1.],[1., 0.]])
sy = scipy.sparse.csr_array([[0., -1.j],[1.j, 0.]])
sz = scipy.sparse.csr_array([[1., 0.],[0., -1.]])

10

I = scipy.sparse.identity(2)

sp = (sx + 1j * sy) / 2
sm = (sx - 1j * sy) / 2
we know that sp and sm are real:
np.testing.assert_array_equal(sp.imag.todense(), 0)
np.testing.assert_array_equal(sm.imag.todense(), 0)
sp = sp.real
sm = sm.real

Construct the fermionic annihilation operator in terms of spin operators

̂𝑐𝑖 = 𝜎̂𝑧 ⊗ 𝜎̂𝑧 … 𝜎̂𝑧⏟⏟⏟⏟⏟
𝑖−1 terms

⊗𝜎̂+ ⊗ ̂𝐼 ⊗ ̂𝐼 ⋯ ⊗ ̂𝐼⏟⏟⏟⏟⏟
𝐿−𝑖 terms

,

[24]: def c(i, L):
"""
fermionic annihilation operator

Args:
i: index of state to act on
L: number of states

Returns:
A sparse matrix destroying a fermion in state i

"""
simple (but slow) 1-line version:
return functools.reduce(scipy.sparse.kron, [sz,]*i + [sp,] + [sz,]*(L - i␣

↪- 1))

more optimized:
we know that sz is diagonal, therefore dense kron much faster:
sz_diag = np.array([1, -1])
l = scipy.sparse.diags_array(functools.reduce(np.kron, [sz_diag]*i, np.

↪array([1.])))
r = scipy.sparse.identity(2**(L - i - 1))
return functools.reduce(scipy.sparse.kron, [l, sp, r])

as well as the number operator

[25]: def n_c(i,L):
"""
fermionic number operator

Args:
i: index of state to act on
L: number of states

11

Returns:
A sparse matrix counting the number of fermions in state i

"""

ci = c(i, L)
ci_dagger = ci.conjugate().T
return ci_dagger @ ci

[26]: def N_c(L):
'''
fermionic total number operator

Args:
L: number of states

Returns:
A sparse matrix counting the total number of fermions

'''
return sum(n_c(i,L) for i in range(L))

Define a function for the t-V hamiltonian

𝐻 = 𝑡 ∑
⟨𝑖,𝑗⟩

(̂𝑐†
𝑖 ̂𝑐𝑗 + ̂𝑐†

𝑗 ̂𝑐𝑖) + 𝑉 ∑
⟨𝑖,𝑗⟩

𝑛̂𝑖𝑛̂𝑗

[27]: def tV(L, t=1, V=1, pbc=False):

"""
t-V hamiltonian for a 1d chain of spinless fermions
with nearest-neighbour interaction term

Args:
L: number of states
t: hopping amplitude
V: interaction term
pbc: whether to use periodic boundary conditions (True) or

open boundary conditions (False, default)

"""

if pbc and L > 2:
edges = [(i, (i+1)%L) for i in range(L)]

else:
edges = [(i, i+1) for i in range(L-1)]

H = 0
for i,j in edges:

12

ci = c(i, L)
cj = c(j, L)
ni = n_c(i, L) # = ci.T.conj() @ ci
nj = n_c(j, L) # = cj.T.conj() @ cj
H = H + t * (ci.T.conj() @ cj + cj.T.conj() @ ci)
H = H + V * (ni @ nj)

explicitly convert to csr
H = csr_array(H)
H.eliminate_zeros()
return H

tV(4).todense().astype(int)

[27]: array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3]])

Open boundary conditions:

[28]: print('L', '\t', "E0")

for L in range(2,17):
E0 = scipy.sparse.linalg.eigsh(tV(L), which='SA', k=1)[0][0] / L
print(L, '\t', "{:0.4f}".format(E0))

L E0
2 -0.5000
3 -0.4714
4 -0.5000
5 -0.5177
6 -0.5000
7 -0.5262
8 -0.5205
9 -0.5270

13

10 -0.5304
11 -0.5258
12 -0.5337
13 -0.5309

14 -0.5342
15 -0.5353

16 -0.5336

Periodic boundary conditions:

[29]: # pbc
print('L', '\t', "E0")
for L in range(2,17):

E0 = scipy.sparse.linalg.eigsh(tV(L, pbc=True), which='SA', k=1)[0][0] / L
print(L, '\t', "{:0.4f}".format(E0))

L E0
2 -0.5000
3 -0.3333
4 -0.5000
5 -0.6000
6 -0.5393
7 -0.5090
8 -0.5617
9 -0.5556
10 -0.5298
11 -0.5484

12 -0.5551

13 -0.5385
14 -0.5418

15 -0.5523

16 -0.5466

Fixed number of particles

Construct a initial state with a fixed number of fermions to use as initial guess for the power
method.

[30]: n_particles = 4
L = 8

we distribute the particles with uniform probability
select N states randomly
indices = np.random.choice(L, n_particles, replace=False)

n_list = np.zeros(L, dtype=int)

14

n_list[indices] = 1
print(n_list)

reuse the code for bosons from above
with a cutoff of d=2 since there can be at most 1 fermion in each state
u0 = bosonic_state(2, n_list)

[0 1 1 0 1 0 1 0]

[31]: power_method(tV(L), 1000, 10., u0)[1][-1]

[31]: np.float64(-3.9999999999999676)

[32]: # check with netket
import netket as nk

def tV_nk(hi, t=1, V=1, pbc=False):
g = nk.graph.Chain(hi.n_orbitals, pbc=pbc)
ha = 0
for i,j in g.edges():

ci = nk.operator.fermion.destroy(hi,i)
cj = nk.operator.fermion.destroy(hi,j)
ci_dagger = nk.operator.fermion.create(hi,i)
cj_dagger = nk.operator.fermion.create(hi,j)
ni = nk.operator.fermion.number(hi,i)
nj = nk.operator.fermion.number(hi,j)
ha = ha + t * (ci_dagger * cj + cj_dagger * ci)
ha = ha + V * (ni * nj)

return ha

hi = nk.hilbert.SpinOrbitalFermions(n_orbitals=L, n_fermions=n_particles)
nk.exact.lanczos_ed(tV_nk(hi), k=1)

[32]: array([-4.])

Block-diagonalize the hamiltonian To do this, find the number of particles of each basis state
(which corresponds to the diagonal of ̂𝑁) and find the suitable permutation to assemble all basis
states with same occupation number.

[33]: L = 8

H = tV(L)
plt.spy(H, markersize=1)

[33]: <matplotlib.lines.Line2D at 0x744620261490>

15

[34]: # we look at the diagonal of the number operator to find the number of fermions
of each basis state
diag = np.round(N_c(L).diagonal()).astype(int)
find permutation for increasing number of spins
perm = np.argsort(diag)

block-diagonalize the matrix
H = H[perm, :][:, perm] # reorder rows and columns
plt.spy(H, markersize=1)

[34]: <matplotlib.lines.Line2D at 0x74462b378c20>

16

[35]: # compute the positions of each block corresponding to a fixed number of␣
↪particles:

numbers = np.unique(diag)
start = np.searchsorted(diag[perm], numbers, 'left')
end = np.searchsorted(diag[perm], numbers, 'right') # could use np.diff on␣

↪start w/ the size of the matrix appended
num = end-start

extract the block corresponding to N=4:
i = int(np.where(numbers == 4)[0][0])
H4 = H[start[i]:end[i], start[i]:end[i]]

diagonalize the block corresponding to N=4,
at a greately reduced cost compared to the full Hamiltonian matrix
scipy.sparse.linalg.eigsh(H4, k=2, which='SA')[0]

[35]: array([-4. , -3.164])

0.1.3 Problem 4.4 - Exact Diagonalization of the Fermi-Hubbard model

Spinful fermions Basis representation: Number of up and down spins on site 1, number of up
and down spins on site 2…

17

We are dealing with fermions, so each site can hold at most one particle of each spin.

Use the following mapping to spinless fermions:

|𝑛1↑, 𝑛2↑ … , 𝑛𝐿−1,↓, 𝑛𝐿,↓⟩ → |𝑛′
1, 𝑛′

2 … , 𝑛′
2𝐿−1, 𝑛′

2𝐿⟩,

̂𝑐𝑖,↑ → ̂𝑐′
𝑖 ̂𝑐𝑖,↓ → ̂𝑐′

𝑖+𝐿.

(or alternatively like in the lecture notes):

|𝑛1↑, 𝑛1↓ … , 𝑛𝐿,↑, 𝑛𝐿,↓⟩ → |𝑛′
1, 𝑛′

2 … , 𝑛′
2𝐿−1, 𝑛′

2𝐿⟩,

̂𝑐𝑖,↑ → ̂𝑐′
2𝑖 ̂𝑐𝑖,↓ → ̂𝑐′

2𝑖+1.

to define the operators in terms of the spinless operators from problem 4.3

[36]: def c_spin(i, s, L):
"""
fermionic annihilation operator (with spin)

Args:
i: index of state to act on
s: value of the spin; 0 encodes spin up, and 1 encodes down
L: number of states

Returns:
A sparse matrix destroying a fermion with spin s in state i

"""

s: 0 for spin down and 1 for spin up
return c(i+s*L, 2*L)
or alternatively:
#return c(2*i+s, 2*L)

def n_c_spin(i, s, L):
"""
fermionic number operator (with spin)

Args:
i: index of state to act on
s: value of the spin; 0 encodes spin up, and 1 encodes down
L: number of states

Returns:
A sparse matrix counting the number of fermions with spin s in state i

18

"""

ci = c_spin(i, s, L)
return ci.T.conj() @ ci

def N_c_spin(L):
'''
fermionic total number operator (with spin)

Args:
L: number of states

Returns:
A sparse matrix counting the total number of fermions

'''
counting both fermions with spin up and down
return sum(n_c_spin(i,s,L) for s in [0, 1] for i in range(L))

Define the fermi-hubbard hamiltonian (here written for just 2 sites, but you can also implement
the general one)

𝐻̂ = −𝑡 ∑
𝜎=↑,↓

(̂𝑐†
1𝜎 ̂𝑐2𝜎 + ̂𝑐†

2𝜎 ̂𝑐1𝜎) + 𝑈
2

∑
𝑖=1

𝑛̂𝑖↑𝑛̂𝑖↓.

[37]: def fermi_hubbard(L=2, t=1, U=1):
"""
fermi-hubbard hamiltonian

Args:
L: number of states
t: hopping amplitude
U: interaction term

"""

H = 0
for i,j in [(i, i+1) for i in range(L-1)]:

for s in [0,1]: # spin down, spin up
ci = c_spin(i, s, L)
cj = c_spin(j, s, L)
H = H - t * (ci.T.conj() @ cj + cj.T.conj() @ ci)

for i in range(L):
ni_down = n_c_spin(i, 0, L)
ni_up = n_c_spin(i, 1, L)

19

H = H + U * ni_up @ ni_down

explicitly convert to csr
H = csr_array(H)
H.eliminate_zeros()
return H

[38]: H = fermi_hubbard(t=1, U=1)
H.todense().real.astype(int)

[38]: array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0],
[0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, -1, 0, 0, -1, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]])

and diagonalize it

[39]: scipy.sparse.linalg.eigsh(H, which='SA')[0]

[39]: array([-1.562, -1. , -1. , -0. , -0. , -0.])

[40]: # check with netket
this assumes that you chose the first of the two mappings
if you chose the other one your matrix will look differently

n_particles = 2

hi = nk.hilbert.SpinOrbitalFermions(n_orbitals=n_particles, s=1/2)

def fermi_hubbard_nk(N=2, t=1, U=1, pbc=False):
g = nk.graph.Chain(hi.n_orbitals, pbc=pbc)
ha = 0
for i,j in g.edges():

for s in [1, -1]: # spin up, spin down
ci = nk.operator.fermion.destroy(hi, i, sz=s)
cj = nk.operator.fermion.destroy(hi, j, sz=s)

20

ci_dagger = nk.operator.fermion.create(hi, i, sz=s)
cj_dagger = nk.operator.fermion.create(hi, j, sz=s)
ha = ha - t * (ci_dagger*cj + cj_dagger*ci)

for i in g.nodes():
ni_up = nk.operator.fermion.number(hi, i, sz=1)
ni_down = nk.operator.fermion.number(hi, i, sz=-1)
#
ha = ha + U * ni_up*ni_down

return ha

ha = fermi_hubbard_nk(t=1, U=1)
print('H=\n', ha.to_dense().astype(int), '\n')

print('Eigenvalues:\n', nk.exact.lanczos_ed(ha, k=6))

H=
[[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0]
[0 0 0 0 0 1 -1 0 0 -1 0 0 0 0 0 0]
[0 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 0]
[0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0]
[0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 0]
[0 0 0 0 0 0 -1 0 0 -1 1 0 0 0 0 0]
[0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2]]

Eigenvalues:
[-1.562 -1. -1. -0. -0. -0.]

In this case, the block-diagonalization can be very efficient, since the Hilbert space is bigger (due
to the consideration of the spin degrees of freedom)

[41]: L = 6

H = fermi_hubbard(L=L, t=1, U=1)

diag = np.round(N_c_spin(L).diagonal()).astype(int)
find permutation for increasing number of spins
perm = np.argsort(diag)
block-diagonalize the matrix

21

H = H[perm, :][:, perm]
plt.spy(H, markersize=1)

[41]: <matplotlib.lines.Line2D at 0x74462210faa0>

[42]: # compute the positions of each block corresponding to a fixed number of␣
↪particles:

numbers = np.unique(diag)
start = np.searchsorted(diag[perm], numbers, 'left')
end = np.searchsorted(diag[perm], numbers, 'right')
num = end-start

extract the block corresponding to N=4:
i = int(np.where(numbers == 4)[0][0])
H4 = H[start[i]:end[i], start[i]:end[i]]

diagonalize the block corresponding to N=4,
scipy.sparse.linalg.eigsh(H4, k=2, which='SA')[0]

[42]: array([-5.478, -4.852])

22

	Solution 04: Many-body systems of indistinguishable particles
	Problem 4.2 - Exact Diagonalization of 2-site Lattice Hamiltonians
	Problem 4.3 - Exact Diagonalization of the t-V model
	Problem 4.4 - Exact Diagonalization of the Fermi-Hubbard model

