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Problem 4.1 The Tight-Binding Model

In this exercise we analytically solve the tight-binding model

Ĥ =
∑
⟨i,j⟩,σ

(
tij ĉ

†
i,σ ĉj,σ + h.c.

)
(1)

on the square lattice. We assume uniform hopping amplitudes tij = −t.

Bring the Hamiltonian into the diagonal form

Ĥ =
∑
k,σ

ϵ(k) n̂k,σ (2)

and identify the dispersion relation ϵ(k).

Hint: Assuming the lattice has N = L × L sites with spacing a and periodic boundary
conditions, you can replace the field operators by their Fourier transforms using

ĉi,σ =
1√
N

∑
k

eik·ri ĉk,σ, (3)

where the lattice momenta k run over N points of the Brillouin zone

k =
2π

aL
(nx, ny), nx,y = {0, . . . , L− 1}. (4)

Problem 4.2 Exact Diagonalization of the Bose-Hubbard model

We consider the Bose-Hubbard model, given by the hamiltonian

Ĥ = −t
∑
⟨i,j⟩

(
b̂†i b̂j + b̂†j b̂i

)
+
U

2

∑
i

n̂i (n̂i − 1)− µ
∑
i

n̂i

Here the sites can be occupied by spinless bosons (b
(†)
i : bosonic annihilation (creation)

operators). As each site could hold an arbitrary number of bosons, you have to limit the
total number of particles, e.g. to < d = 5.

• Choose an adequate basis for the degrees of freedom involved. Fix t = 1 and µ = 0.
For U = −1, 1, 4 construct the above Hamiltonian in that basis and diagonalize it.
For which cases does the particle number cut-off seem reasonable?

Hint: Follow the approach in Section 5.4.1 of the lecture notes.

• We know that [Ĥ, N̂ ] = 0, therefore all eigenstates |ψi⟩ of Ĥ have a fixed number
of particles. Compute the number of particles of each eigenstate ⟨ψi|N̂ |ψi⟩.

• Since [Ĥ, N̂ ] = 0, this is a symmetry of the system. Use this fact to find the ground
state for a fixed number of particles using the power method (by changing the initial
guess).



Problem 4.3 Exact diagonalization of the t-V model

Implement exact diagonalization for the 1-dimensional t-V model of length L with a
potential V .

Ĥ = t
∑
⟨i,j⟩

(
ĉ†i ĉj + ĉ†j ĉi

)
+ V

∑
⟨i,j⟩

n̂in̂j

For the numerical implementation, you can fix t = 1 and V = 1.

• Use the Jordan-Wigner transform as described in section 5.4.2 of the lecture notes to
write the annihilation operator ĉi in terms of kronecker products of spin operators.
Implement a function which constructs the corresponding sparse matrix and use it
to construct the whole hamiltonian.

• Use a sparse eigenvalue solver to find the ground state energy for the periodic and
non-periodic case for some system sizes (2,4,6,8,10,12, ...).

For the ground state at open boundary conditions, you can find some reference
results below:

L Energy per site
2 −0.5000
3 −0.4714
4 −0.5000
5 −0.5177
...

...

• Use again [Ĥ, N̂ ] = 0 to find the ground state for a fixed number of particles using
the power method with an appropriate initial guess.

• (optional): Block-diagonalize the Hamiltonian matrix and make use of the resulting
structure to speed up the ED calculation.

Problem 4.4 Exact diagonalization of the Fermi-Hubbard model

Study the Fermi-Hubbard model given by the Hamiltonian

Ĥ = −t
∑
⟨i,j⟩,σ

(
ĉ†iσ ĉjσ + ĉ†jσ ĉiσ

)
+ U

∑
i

n̂i↑n̂i↓.

with exact diagonalization. Here the local degrees of freedom correspond to fermions
carrying spin-1/2.
Hint: Use the procedure described in section 5.4.2 of the lecture notes to map it to a
problem of spinless fermions and use a Jordan-Wigner transform like in Problem 4.3.
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