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Exercise 4

Problem 4.1 The Tight-Binding Model
In this exercise we analytically solve the tight-binding model
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on the square lattice. We assume uniform hopping amplitudes ¢;; = —t.

Bring the Hamiltonian into the diagonal form

H=>" (k) (2)
k,o
and identify the dispersion relation e(k).

Hint: Assuming the lattice has N = L x L sites with spacing a and periodic boundary
conditions, you can replace the field operators by their Fourier transforms using
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where the lattice momenta k run over N points of the Brillouin zone
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Problem 4.2 Exact Diagonalization of the Bose-Hubbard model
We consider the Bose-Hubbard model, given by the hamiltonian
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Here the sites can be occupied by spinless bosons (b(

ZT): bosonic annihilation (creation)
operators). As each site could hold an arbitrary number of bosons, you have to limit the

total number of particles, e.g. to < d = 5.

e Choose an adequate basis for the degrees of freedom involved. Fix ¢ = 1 and pu = 0.
For U = —1,1,4 construct the above Hamiltonian in that basis and diagonalize it.
For which cases does the particle number cut-off seem reasonable?

Hint: Follow the approach in Section 5.4.1 of the lecture notes.

e We know that [H, N] = 0, therefore all eigenstates [¢;) of H have a fixed number
of particles. Compute the number of particles of each eigenstate (1;|N ;).

e Since [H, N] = 0, this is a symmetry of the system. Use this fact to find the ground
state for a fixed number of particles using the power method (by changing the initial
guess).



Problem 4.3 Exact diagonalization of the t-V model

Implement exact diagonalization for the 1-dimensional t-V model of length L with a
potential V.
=1y (e +éle) +v > am
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For the numerical implementation, you can fix t =1 and V = 1.

e Use the Jordan-Wigner transform as described in section 5.4.2 of the lecture notes to
write the annihilation operator ¢; in terms of kronecker products of spin operators.
Implement a function which constructs the corresponding sparse matrix and use it
to construct the whole hamiltonian.

e Use a sparse eigenvalue solver to find the ground state energy for the periodic and
non-periodic case for some system sizes (2,4,6,8,10,12, ...).

For the ground state at open boundary conditions, you can find some reference

results below:
L | Energy per site

—0.5000
—0.4714
—0.5000
—0.5177

Ot = W DN

e Use again [I:[ N ] =0 to find the ground state for a fixed number of particles using
the power method with an appropriate initial guess.

e (optional): Block-diagonalize the Hamiltonian matrix and make use of the resulting
structure to speed up the ED calculation.

Problem 4.4 Exact diagonalization of the Fermi-Hubbard model
Study the Fermi-Hubbard model given by the Hamiltonian

0= =t 3 (tio + o) + U g,
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with exact diagonalization. Here the local degrees of freedom correspond to fermions
carrying spin-1/2.

Hint: Use the procedure described in section 5.4.2 of the lecture notes to map it to a
problem of spinless fermions and use a Jordan-Wigner transform like in Problem 4.3.
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