
ex03_solution

March 11, 2025

Computational Quantum Physics - PHYS 463

Lecturer: Prof. G. Carleo

Assistants: alessandro.sinibaldi@epfl.ch, linda.mauron@epfl.ch, lorenzo.fioroni@epfl.ch

0.1 Solutions 03 - Quantum spin models
0.1.1 Problem 3.1 Exact diagonalization of the transverse field Ising Hamiltonian

[1]: import numpy as np
from matplotlib import pyplot as plt
from scipy.sparse import csr_array, identity, kron
from scipy.sparse.linalg import eigsh

a) Start by defining a function to generate the operator

𝜎̂𝛼
𝑖 = ̂𝐼 ⊗ ̂𝐼 ⊗ … ̂𝐼⏟⏟⏟⏟⏟

𝑖−1 times
⊗𝜎̂𝛼 ⊗ ̂𝐼 ⊗ ⋯ ⊗ ̂𝐼⏟⏟⏟⏟⏟

𝑁−𝑖 times
)

[2]: # pauli matrices
sx = csr_array([[0, 1], [1, 0]])
sz = csr_array([[1, 0], [0,-1]])

[3]: def operator(pauli, i, N):
left = identity(2**i)
right = identity(2 ** (N - i - 1))
mat = kron(kron(left, pauli), right)

Explicitly convert to CSR since kron likes to return COO
mat = csr_array(mat)
return mat

[4]: op = operator(sx, 0, 2)
print(type(op))

<class 'scipy.sparse._csr.csr_array'>

1

b) Using sparse matrices for the pauli operators 𝜎̂𝛼
𝑖 defined above we write a function

which constructs the transverse field ising hamiltonian

𝐻̂Ising = 𝐽
𝑁

∑
𝑖=1

𝜎̂𝑧
𝑖 𝜎̂𝑧

𝑖+1 − Γ
𝑁

∑
𝑖=1

𝜎̂𝑥
𝑖

[5]: def tfi_hamiltonian(N, J, gamma):
H = 0
for i in range(N):

j = (i+1)%N
H += J * operator(sz, i, N) @ operator(sz, j, N)

for i in range(N):
H -= gamma * operator(sx, i, N)

return H

We can check that for 2 spins we get the matrix given on the exercise sheet:

[6]: n_spins = 2
J= 1
gamma = 0.1

print(tfi_hamiltonian(n_spins, J, gamma).todense())

[[2. -0.1 -0.1 0.]
[-0.1 -2. 0. -0.1]
[-0.1 0. -2. -0.1]
[0. -0.1 -0.1 2.]]

c) Use scipy to diagonalize the hamiltonian
[7]: n_spins = 10

H = tfi_hamiltonian(n_spins, J, gamma)

If we set `k=2`, the Lanczos algorithm may not really converge to the two␣
↪smallest eigenvectors

From my experience it's safe to set `k` to the double of what we need
E_ed = eigsh(H, k=4, which="SA", return_eigenvectors=False)
print(E_ed)

[-6.38306387 -6.40332833 -10.02501566 -10.02501566]

Implement the power method

[8]: # lambda is a reserved keyword for lambda functions,
so we can't give the variable like that name....
def power_method(H, n_spins, n_iters, lambd=1, u0=None):

if u0 is None:
take a random vector as in initial guess
it might need to be complex

2

u = np.random.normal(size=2**n_spins) + 0j
else:

u = u0

construct the propagator
I = csr_array(identity(2**n_spins))
prop = lambd * I - H

old = np.inf
energies = []
for i in range(n_iters):

u = prop @ u

normalize the vector
this is necessary since the propagator is not unitary
and if we do a lot of iterations the floating point numbers in v ␣

↪would grow
very quickly to the point where the exponent overflows
also it is convenient for computing the expectation value below
u = u / np.linalg.norm(u)

compute the expectation value
For a CSR array `(v @ h) @ v` is slow, therefore we do it the other␣

↪way round
e = u.T.conj() @ (H @ u)

stop early if the energy does not improve anymore
if np.abs((old - e) / e) < 1e-15:

break

old = e
energies.append(e)

return u, energies

For the TFI in 1D with periodic boundary conditions we can upper bound the largest eigenvalue
𝐸𝑀 with

𝐸𝑀 ≤ |𝐽|𝑁 + |Γ|𝑁

and so to satisfy Λ > 𝐸𝑀 we can choose

Λ = |𝐽|𝑁 + |Γ|𝑁

Note that it is also possible to derive a tighter condition for Λ than given in the lecture notes (see
Becca & Sorella 2017, pp. 34), namely Λ > 𝐸0+𝐸𝑀

2 . This means that for the TFI with even 𝑁 the
power method should converge for any Λ > 0.

3

[9]: lambd = abs(J)*n_spins + abs(gamma)*n_spins

v, E_pwr = power_method(H, n_spins, n_iters=2000, lambd=lambd)
E_pwr[-1]

/var/folders/79/jcbbyf357tn_ctl5c6wsbn1h0000gp/T/ipykernel_92695/1040166075.py:3
2: RuntimeWarning: invalid value encountered in scalar divide

if np.abs((old - e) / e) < 1e-15:

[9]: (-10.025015664202867+0j)

and check that both find the same ground state energy

[10]: np.allclose(E_pwr[-1], E_ed[-1])

[10]: True

We see that the power method converges nicely already after a few steps

[11]: plt.figure()
plt.plot(E_pwr)
plt.ylabel("Energy E")
plt.xlabel("step")
plt.title('Power Method Convergence')
plt.show()

/Users/alessandrosinibaldi/Desktop/Coding/PhD/.venv/lib/python3.11/site-
packages/matplotlib/cbook.py:1762: ComplexWarning: Casting complex values to
real discards the imaginary part

return math.isfinite(val)
/Users/alessandrosinibaldi/Desktop/Coding/PhD/.venv/lib/python3.11/site-
packages/matplotlib/cbook.py:1398: ComplexWarning: Casting complex values to
real discards the imaginary part

return np.asarray(x, float)

4

d) Proceed by computing the ground state energy for different system sizes N and
transverse field strengths Γ and studying the spin-spin correlator

𝐶 = ⟨𝜓0|𝜎̂𝑧
0𝜎̂𝑧

𝑁/2|𝜓0⟩

[12]: Ns = [6, 8, 10, 12, 14]
gs = np.linspace(0, 2, 21)

corr = np.zeros((len(Ns), len(gs)))

plt.figure()
for i, N in enumerate(Ns):

print(f"N={N}")
for j, g in enumerate(gs):

H = tfi_hamiltonian(N, J=1, gamma=g)
v, e = power_method(H, N, 1000)
corr[i, j] = v.T.conj() @ (operator(sz, 0, N) @ (operator(sz, N//2, N)␣

↪@ v))
plt.plot(gs, corr[i, :], label=f"N={N}")

plt.ylabel("Correlator C")

5

plt.xlabel("Γ")
plt.legend()
plt.show()

N=6

/var/folders/79/jcbbyf357tn_ctl5c6wsbn1h0000gp/T/ipykernel_92695/1040166075.py:3
2: RuntimeWarning: invalid value encountered in scalar divide

if np.abs((old - e) / e) < 1e-15:
/var/folders/79/jcbbyf357tn_ctl5c6wsbn1h0000gp/T/ipykernel_92695/2552400123.py:1
2: ComplexWarning: Casting complex values to real discards the imaginary part

corr[i, j] = v.T.conj() @ (operator(sz, 0, N) @ (operator(sz, N//2, N) @ v))

N=8
N=10
N=12
N=14

e) Compute the the ground state as well as first excited state energy using ED and
plot both

[13]: Ns = [6, 8, 10, 12, 14]
gs = np.linspace(0, 2, 21)

6

k = 4 # how many eigenvalues to compute

energies = np.zeros((len(Ns), len(gs), k))

for i, N in enumerate(Ns):
for j, g in enumerate(gs):

H = tfi_hamiltonian(N, J=1, gamma=g)
we sort the energies in increasing order,
so that energies[:, :, 0] is the ground state energy
energies[i, j, :] = np.sort(eigsh(H, k=k, which="SA",␣

↪return_eigenvectors=False))

[14]: plt.figure()
for i, N in enumerate(Ns):

plt.plot(gs, energies[i, :, 1], label=f"N={N} E1", color=f"C{i}",␣
↪linestyle="--")

plt.plot(gs, energies[i, :, 0], label=f"N={N} E0", color=f"C{i}")

plt.axvline((1.0))
plt.ylabel("Energy E")
plt.xlabel("Γ")
plt.legend()
plt.show()

7

and plot the gap at the critical point Γ/𝐽 = 1 and extrapolate to 𝑁 → ∞ (thermodynamic limit)

[15]: i = len(gs)//2
print(f'Γ = {gs[i]}')
gap = energies[:, i, 1] - energies[:, i, 0]

Ninv = 1 / np.array(Ns)
fit
a = np.polyfit(np.log(Ninv), np.log(gap), 1)
f = lambda x: np.exp(a[0]*np.log(x)+a[1])

print(f'slope: {a[0]:0.5f}')
print(f"Energy gap at 1/N -> 0: {f(1/np.inf):0.5f}")

plt.figure()
plt.scatter(Ninv, gap)
x = np.linspace(0.05, 0.2, 100)
plt.plot(x, f(x))
plt.xscale('log')
plt.yscale('log')

8

plt.xlabel('1/N')
plt.ylabel('E_1-E_0')
plt.show()

Γ = 1.0
slope: 1.00548
Energy gap at 1/N -> 0: 0.00000

/var/folders/79/jcbbyf357tn_ctl5c6wsbn1h0000gp/T/ipykernel_92695/1676215558.py:8
: RuntimeWarning: divide by zero encountered in log

f = lambda x: np.exp(a[0]*np.log(x)+a[1])

0.1.2 Problem 3.2 Time evolution of the transverse field Ising chain

[16]: import numpy as np
from matplotlib import pyplot as plt
from scipy.sparse import csr_array, identity, kron
from functools import lru_cache

a) We define the time evolution operator for the transverse field part

exp(−𝑖𝛿𝜎̂𝑥
𝑖)

9

[17]: @lru_cache # helps save computation time
def exp_x(N, i, delta):

I = identity(2**N)
Xi = operator(sx, i, N)

mat = np.cos(delta) * I - 1j * np.sin(delta) * Xi
##else

TODO mat = ...
mat = csr_array(mat)
return mat

b) as well as the Time evolution operator for the diagonal part

exp(−𝑖𝛿𝜎̂𝑧
𝑖 𝜎𝑧

𝑖+1)

[18]: @lru_cache
def exp_zz(N, i, delta):

Zi = operator(sz, i, N)
here we write the code for pbc,
for obc we assume i only goes to N-2
Zi_p_1 = operator(sz, (i+1)%N, N)
I = identity(2**N)

mat = np.cos(delta) * I - 1j * np.sin(delta) * Zi@Zi_p_1
mat = csr_array(mat)
return mat

c) Putting everything together define a function which performs the time evolution

exp(−𝑖Δ𝑡𝐻̂) ≈ exp(−𝑖Δ𝑡
2 𝐽𝐻̂ZZ) exp(−𝑖Δ𝑡Γ𝐻̂X) exp(−𝑖Δ𝑡

2 𝐽𝐻̂ZZ) + 𝑂(Δ3
𝑡)

[19]: def time_evol(psi, t, dt, J, gamma):
n_steps = round(t / dt)

for i in range(N-1): # N-1 because we assume obc
psi = exp_zz(N, i, J*dt/2) @ psi

for i in range(N):
psi = exp_x(N, i, gamma*dt) @ psi

for step in range(n_steps):

for i in range(N-1):
here we fuse the two exp_Hzz(N, i, dt/2) of two

10

consecutive steps into one exp_Hzz(N, i, dt)
psi = exp_zz(N, i, J*dt) @ psi

for i in range(N):
psi = exp_x(N, i, gamma*dt) @ psi

for i in range(N-1):
psi = exp_zz(N, i, J*dt/2) @ psi

return psi

d) Study the time evolution of a small system of size 10
[20]: N = 10

To measure the Magnetisation of each site define the operator ⟨𝜎𝑧
𝑖 ⟩

[21]: @lru_cache # to save computation time
def Hz(N, i):

mat = operator(sz, i, N)
mat = csr_array(mat)
return mat

Starting with an initial state with all-down configuration

|Ψ⟩ = | ↓⟩ ⊗ | ↓⟩ ⊗ … ⊗ | ↓⟩

[22]: # `psi` can be dense, and we can store `psi` as a 1D vector rather than a 2D␣
↪matrix

spin_up = np.array([1, 0])
spin_down = np.array([0, 1])

psi = 1
for i in range(N):

psi = np.kron(psi, spin_down)

run the time evolution for J=0, Γ = 1

[23]: J = 0
gamma = 1

dt = 1e-1
t = 10
n_points = 100
ts = np.linspace(0, t, n_points+1)

we run the time evolution up to t=10
with a timestep of dt=1e-2,
measuring the observables every t/100 = 0.1

11

psi_t = psi.copy()

def measure(psi, observalbes):
return [((psi.conj().T @ O) @ psi) for O in observalbes]

observables = [Hz(N, i) for i in range(N)]
magnetization = []
###Ifdef SOLUTION
magnetization.append(measure(psi, observables))
for i in range(1, n_points+1):

psi_t = time_evol(psi_t, t/n_points, dt, J, gamma)
magnetization.append(measure(psi_t, observables))

e) and plot the magnetization ⟨𝜎𝑧
𝑖 ⟩ over time for each site i

[24]: magnetization = np.array(magnetization).real.T

[25]: plt.figure(figsize=(20, 5))
plt.pcolormesh(ts, range(N), magnetization, cmap="bwr", vmin=-1, vmax=1,␣

↪shading="nearest")
plt.xlabel("t")
plt.ylabel("i")
plt.title("$\\langle \\hat \\sigma^z_i \\rangle$")
plt.colorbar()
plt.show()

f) Do the same as in e) but for an initial state with all spins down except one spin up

|Ψ⟩ = | ↓⟩ ⊗ … ⊗ | ↑⟩ ⊗ … ⊗ | ↓⟩

and J=1, Γ = 0.4

12

[26]: # Initial state
psi = 1
for i in range((N - 1) // 2):

psi = np.kron(psi, spin_down)
psi = np.kron(psi, spin_up)
for i in range(N // 2):

psi = np.kron(psi, spin_down)

[]: # Time evolution
J = 1
gamma = 0.4

this time we run for longer time
dt = 1e-2
t = 10
n_points = 1000
ts = np.linspace(0, t, n_points+1)

psi_t = psi.copy()

def measure(psi, observalbes):
return [((psi.conj().T @ O) @ psi) for O in observalbes]

observables = [Hz(N, i) for i in range(N)]
magnetization = []
###Ifdef SOLUTION
magnetization.append(measure(psi, observables))
for i in range(1, n_points+1):

psi_t = time_evol(psi_t, t/n_points, dt, J, gamma)
magnetization.append(measure(psi_t, observables))

[28]: magnetization = np.array(magnetization).real.T

[29]: plt.figure(figsize=(20, 5))
plt.pcolormesh(ts, range(N), magnetization, cmap="bwr", vmin=-1, vmax=1,␣

↪shading="nearest")
plt.xlabel("t")
plt.ylabel("i")
plt.title("$\\langle \\hat \\sigma^z_i \\rangle$")
plt.colorbar()
plt.show()

13

14

	Solutions 03 - Quantum spin models
	Problem 3.1 Exact diagonalization of the transverse field Ising Hamiltonian
	Problem 3.2 Time evolution of the transverse field Ising chain

