ex03 solution

March 11, 2025

Computational Quantum Physics - PHYS 463
Lecturer: Prof. G. Carleo

Assistants: alessandro.sinibaldi@epfl.ch, linda.mauron@epfl.ch, lorenzo.fioroni@epfl.ch

0.1 Solutions 03 - Quantum spin models

0.1.1 Problem 3.1 Exact diagonalization of the transverse field Ising Hamiltonian

[1]: import numpy as np
from matplotlib import pyplot as plt
from scipy.sparse import csr_array, identity, kron
from scipy.sparse.linalg import eigsh

a) Start by defining a function to generate the operator

69=IRI®..I10°01® - ®I)
———— e’ S ————

i—1 times N—1 times

[2]: | # pauli matrices
sx = csr_array([[0, 1], [1, 011)
sz = csr_array([[1, 0], [0,-111)

[3]: def operator(pauli, i, N):
left = identity(2**i)
right = identity(2 *x (N - i - 1))
mat = kron(kron(left, pauli), right)

Explicitly convert to CSR since kron likes to return COO
mat = csr_array(mat)
return mat

[4]: op = operator(sx, 0, 2)
print (type(op))

<class 'scipy.sparse._csr.csr_array'>

b) Using sparse matrices for the pauli operators 7' defined above we write a function
which constructs the transverse field ising hamiltonian

z

N
J— 2oz ity
HIsing_‘] joig — T E :Ui

i=1 i=1

[6]: def tfi_hamiltonian(N, J, gamma):

H=0
for i in range(N):
j = (i+1)YN

H += J * operator(sz, i, N) @ operator(sz, j, N)
for i in range(N):

H -= gamma * operator(sx, i, N)
return H

We can check that for 2 spins we get the matrix given on the exercise sheet:

[6]: n_spins = 2
J=1
gamma = 0.1

print(tfi_hamiltonian(n_spins, J, gamma).todense())

[[2. -0.1-0.1 0.1
[-0.1 -2 0. -0.1]
[-0.1 0. -2. -0.1]
[0. -0.1-0.1 2. 1]

c) Use scipy to diagonalize the hamiltonian
[7]: n_spins = 10

H = tfi_hamiltonian(n_spins, J, gamma)

If we set k=27, the Lanczos algorithm may not really converge to the two
wsmallest eigenvectors

From my experience it's safe to set k° to the double of what we need

E_ed = eigsh(H, k=4, which="SA", return_eigenvectors=False)

print (E_ed)

[-6.38306387 -6.40332833 -10.02501566 -10.02501566]

Implement the power method

[8]: # lambda is a reserved keyword for lambda functions,
so we can't give the wvartable like that name....
def power_method(H, n_spins, n_iters, lambd=1, uO=None):
if u0 is None:
take a random wvector as in initial guess
1t might need to be complezx

np.random.normal (size=2**n_spins) + 0j

[«
]

else:
u = u0

construct the propagator
I = csr_array(identity(2+*n_spins))
prop = lambd * I - H

old = np.inf

energies = []

for i in range(n_iters):
u = prop @ u

normalize the vector

this 1s necessary since the propagator is not unitary

and i1f we do a lot of tterations the floating point numbers in v
—would grow

very quickly to the point where the exponent overflows

also 1t 1s convenient for computing the expectation value below

u = u / np.linalg.norm(u)

compute the expectation wvalue

For a CSR array “(v @ h) @ v 4s slow, therefore we do it the other,
sway rTound

e =u.T.conj() @ (H @ u

stop early if the energy does not improve anymore
if np.abs((old - e) / e) < le-15:
break

old = e
energies.append(e)

return u, energies

For the TFI in 1D with periodic boundary conditions we can upper bound the largest eigenvalue
E,; with
Ey < |JIN + DN

and so to satisfy A > F,; we can choose
A =|JIN + |I'|N
Note that it is also possible to derive a tighter condition for A than given in the lecture notes (see

Becca & Sorella 2017, pp. 34), namely A > % This means that for the TFI with even IV the
power method should converge for any A > 0.

[9]: lambd = abs(J)#*n_spins + abs(gamma)*n_spins

v, E_pwr = power_method(H, n_spins, n_iters=2000, lambd=lambd)
E_pwr[-1]

/var/folders/79/jcbbyf357tn_ctl5c6wsbnlh0000gp/T/ipykernel 92695/1040166075.py:3
2: RuntimeWarning: invalid value encountered in scalar divide
if np.abs((old - e) / e) < le-15:

[9]: (-10.025015664202867+03)
and check that both find the same ground state energy

[10]: np.allclose(E_pwr[-1], E_ed[-1])

[10]: True
We see that the power method converges nicely already after a few steps

[11]: plt.figure()
plt.plot (E_pwr)
plt.ylabel("Energy E")
plt.xlabel("step")
plt.title('Power Method Convergence')
plt.show()

/Users/alessandrosinibaldi/Desktop/Coding/PhD/.venv/1ib/python3.11/site-
packages/matplotlib/cbook.py:1762: ComplexWarning: Casting complex values to
real discards the imaginary part

return math.isfinite(val)
/Users/alessandrosinibaldi/Desktop/Coding/PhD/.venv/1ib/python3.11/site-
packages/matplotlib/cbook.py:1398: ComplexWarning: Casting complex values to
real discards the imaginary part

return np.asarray(x, float)

Power Method Convergence

Energy E

_1{] -

step

d) Proceed by computing the ground state energy for different system sizes N and
transverse field strengths I' and studying the spin-spin correlator

C = (0|55 j21¢0)

[12]: Ns
gs

(6, 8, 10, 12, 14]
np.linspace(0, 2, 21)

corr = np.zeros((len(Ns), len(gs)))

plt.figure()
for i, N in enumerate(Ns):
print (£"N={N}")
for j, g in enumerate(gs):
H = tfi_hamiltonian(N, J=1, gamma=g)
v, e = power_method(H, N, 1000)
corr[i, j] = v.T.conj() @ (operator(sz, 0, N) @ (operator(sz, N//2, N)
-0 V))
plt.plot(gs, corr[i, :], label=f"N={N}")
plt.ylabel("Correlator C")

plt.xlabel ("Γ")
plt.legend ()
plt.show()

N=6

/var/folders/79/jcbbyf357tn_ct1l5c6wsbn1h0000gp/T/ipykernel _92695/1040166075.py:3
2: RuntimeWarning: invalid value encountered in scalar divide
if np.abs((old - e) / e) < le-15:
/var/folders/79/jcbbyf357tn_ct15c6wsbn1h0000gp/T/ipykernel _92695/2552400123.py: 1
2: ComplexWarning: Casting complex values to real discards the imaginary part
corr[i, j] = v.T.conj() @ (operator(sz, 0, N) @ (operator(sz, N//2, N) @ v))

N=8

N=10
N=12
N=14

1.00 +

0.75

[

0.50

-

0.25

0.00

Correlator C

—0.25 +

—0.50 ~

—0.75 +

—1.00 ~

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
r

e) Compute the the ground state as well as first excited state energy using ED and
plot both

[13]:|Ns = [6, 8, 10, 12, 14]
gs = np.linspace(0, 2, 21)

[14]:

k =4 # how many eigenvalues to compute
energies = np.zeros((len(Ns), len(gs), k))

for i, N in enumerate(Ns):
for j, g in enumerate(gs):
H = tfi_hamiltonian(N, J=1, gamma=g)
we sort the energies in increasing order,
so that energties[:, :, 0] is the ground state energy
energies[i, j, :] = np.sort(eigsh(H, k=k, which="SA",
oreturn_eigenvectors=False))

plt.figure()
for i, N in enumerate(Ns):
plt.plot(gs, energies[i, :, 1], label=f"N={N} E1", color=f"C{il}",
~linestyle="--")
plt.plot(gs, energies[i, :, 0], label=f"N={N} EO", color=f"C{il}")

plt.axvline((1.0))
plt.ylabel("Energy E")
plt.xlabel ("Γ")
plt.legend()
plt.show()

_5 -
~10 1
_15 -
W —-—- N=6F1
=
& —— N=6E0
E ——- N=8E1
=201 __ nN=8EO
——- N=10FE1
—— N=10E0
254 === N=12 E1
—— N=12 E0
-—- N=14FE1
_30] — N=14E0

T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00
r

and plot the gap at the critical point I'/J = 1 and extrapolate to N — oo (thermodynamic limit)

[15]: i = len(gs)//2
print(f'T = {gs[il}")
gap = energies[:, i, 1] - energies[:, i, 0]

Ninv = 1 / np.array(Ns)

fit

a = np.polyfit(np.log(Ninv), np.log(gap), 1)
f = lambda x: np.exp(a[0]+*np.log(x)+al1])

print(f'slope: {al[0]:0.5f}')
print (f"Energy gap at 1/N -> 0: {f(1/np.inf):0.5f}")

plt.figure()

plt.scatter(Ninv, gap)

x = np.linspace(0.05, 0.2, 100)
plt.plot(x, £(x))
plt.xscale('log')
plt.yscale('log')

plt.xlabel('1/N')
plt.ylabel('E_1-E_0')
plt.show()

r=1.0
slope: 1.00548
Energy gap at 1/N -> 0: 0.00000

/var/folders/79/jcbbyf357tn_ctl5c6wsbn1h0000gp/T/ipykernel _92695/1676215558.py:8
: RuntimeWarning: divide by zero encountered in log
f = lambda x: np.exp(al[0]*np.log(x)+al[1])

3x 1071

2x 1071

Ei1 —En

10—1 i

6x 102 101 2x1071
/N

0.1.2 Problem 3.2 Time evolution of the transverse field Ising chain

[16]: import numpy as np
from matplotlib import pyplot as plt
from scipy.sparse import csr_array, identity, kron
from functools import lru_cache

a) We define the time evolution operator for the transverse field part

exp(—i0a?)

[17]: @lru_cache # helps save computation time
def exp_x(N, i, delta):

I = identity(2*x*N)
Xi = operator(sx, i, N)

mat = np.cos(delta) * I - 1j * np.sin(delta) * Xi
##else

TODO mat = ...

mat = csr_array(mat)

return mat

b) as well as the Time evolution operator for the diagonal part
exp(—i05707,)

[18]: @lru_cache
def exp_zz(N, i, delta):

Zi = operator(sz, i, N)

here we write the code for pbc,

for obc we assume 7 only goes to N-2
Zi_p_1 = operator(sz, (i+1)JN, N)

I = identity(2*xN)

mat = np.cos(delta) * I - 1j * np.sin(delta) * Zi@Zi_p_1

mat = csr_array(mat)
return mat

c) Putting everything together define a function which performs the time evolution

A, - - A, -
exp(—iAH) ~ exp(—i?tJHZZ) exp(—iA,I'Hy) exp(—iTtJHZZ) + O(A3)

[19]: def time_evol(psi, t, dt, J, gamma):
n_steps = round(t / dt)

for i in range(N-1): # N-1 because we assume obc
psi = exp_zz(N, i, J*dt/2) @ psi

for i in range(N):
psi = exp_x(N, i, gamma*dt) @ psi

for step in range(n_steps):

for i in range(N-1):
here we fuse the two exp_Hzz(N, <, dt/2) of two

10

consecutive steps into one exp_Hzz (N, <, dt)
psi = exp_zz(N, i, J*dt) @ psi

for i in range(N):
psi = exp_x(N, i, gamma*dt) Q@ psi

for i in range(N-1):
psi = exp_zz(N, i, J*dt/2) @ psi
return psi

d) Study the time evolution of a small system of size 10
[20]: N = 10

To measure the Magnetisation of each site define the operator (o7)
[21]: @lru_cache # to save computation time
def Hz(N, i):
mat = operator(sz, i, N)
mat = csr_array(mat)
return mat

Starting with an initial state with all-down configuration

W) =1Helhe.el)

[22]: # "psti” can be dense, and we can store “psti’ as a 1D wvector rather than a 2D,
~matrie

spin_up = np.array([1, 0])
spin_down = np.array([0, 1])

psi =1
for i in range(N):

psi = np.kron(psi, spin_down)

run the time evolution for J=0, ' =1

[23]:]J =0
gamma = 1
dt = le-1
t =10

n_points = 100
ts = np.linspace(0, t, n_points+1)

we run the time evolution up to t=10

with a timestep of di=le-2,
measuring the observables every t/100 = 0.1

11

psi_t = psi.copy()

def measure(psi, observalbes):
return [((psi.conj().T @ 0) @ psi) for 0 in observalbes]

observables = [Hz(N, i) for i in range(N)]
magnetization = []
###1fdef SOLUTION
magnetization.append(measure(psi, observables))
for i in range(l, n_points+1):
psi_t = time_evol(psi_t, t/n_points, dt, J, gamma)
magnetization.append(measure(psi_t, observables))

e) and plot the magnetization (07) over time for each site i
[24]: magnetization = np.array(magnetization).real.T

[25]: plt.figure(figsize=(20, 5))
plt.pcolormesh(ts, range(N), magnetization, cmap="bwr", vmin=-1, vmax=1,,
~shading="nearest")
plt.xlabel("t")
plt.ylabel("ig")
plt.title("$\\langle \\hat \\sigma"z_i \\rangle$")
plt.colorbar()
plt.show()

—0.25
—0.50
-0.75

-1.00

f) Do the same as in e€) but for an initial state with all spins down except one spin up

) =[)®.0|MNe.0l)

and J=1,T"'=04

12

[26]: # Initial state
psi =1
for i in range((N - 1) // 2):
psi = np.kron(psi, spin_down)
psi = np.kron(psi, spin_up)
for i in range(N // 2):
psi = np.kron(psi, spin_down)

[1: # Time evolution
J=1
gamma = 0.4

this time we run for longer time
dt = le-2

t =10

n_points = 1000

ts = np.linspace(0, t, n_points+1)

psi_t = psi.copy(O

def measure(psi, observalbes):
return [((psi.conj().T @ 0) @ psi) for O in observalbes]

observables = [Hz(N, i) for i in range(N)]
magnetization = []
###Ifdef SOLUTION
magnetization.append(measure(psi, observables))
for i in range(l, n_points+1):
psi_t = time_evol(psi_t, t/n_points, dt, J, gamma)
magnetization.append(measure(psi_t, observables))

[28] : magnetization = np.array(magnetization).real.T

[29]: plt.figure(figsize=(20, 5))
plt.pcolormesh(ts, range(N), magnetization, cmap="bwr", vmin=-1, vmax=1,
~shading="nearest")
plt.xlabel("t")
plt.ylabel("ig")
plt.title("$\\langle \\hat \\sigma"z_i \\rangle$")
plt.colorbar ()
plt.show()

13

1.00
0.75
0.50
0.25
0.00
—0.25
—0.50
-0.75
-1.00

ﬂ

&

10

14

	Solutions 03 - Quantum spin models
	Problem 3.1 Exact diagonalization of the transverse field Ising Hamiltonian
	Problem 3.2 Time evolution of the transverse field Ising chain

