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Exercise 3

Problem 3.1 Exact diagonalization of the transverse field Ising Hamiltonian

The most accurate method for solving a quantum many-body problem is exact diagonal-
ization of the Hamiltonian matrix. In order to make the most out of the computational
resources available, it is very helpful to make use of all available tools for simplifying the
problem.

In this exercise, we consider the transverse field Ising model in 1D, given by the Hamil-
tonian
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where we used periodic boundary conditions, oy 41 = ¢7. This model shows (for N — o0)
a quantum phase transition at I'/J = 1. To see the onset of this transition, we need to
find the ground state while tuning I' (keeping J = 1 as the unit of energy).

The goal of this exercise is to represent Higng as a sparse matrix and diagonalize it with
(a variant of) the Lanczos algorithm provided in scipy as well as the power method.
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In the following we have I = (0 1), 0, = <O _1) and o, = (1 0).

a) When we write 67 in Eq. (1) we mean that we act with 6% on the i-th site and with
identities everywhere else: 67 =1 ® ... ® 0® ® ... ® I. This operator corresponds to
a 2V x 2V matrix. We can use scipy.sparse.kron successively to construct these
matrices. Write a method that returns (given the number of spins V) a list where
the i-th entry is the sparse matrix representation (scipy.sparse.csr_array) of 67.
Do the same with all the o7.
Hint: Notice that the identity matrix itself should be stored consistently as a sparse
matrix. You can declare a sparse identity matrix of size L using
scipy.sparse.csr_array(scipy.sparse.identity(L)).

b) Write a function that constructs the Ising Hamiltonian given the list of all 67 and
o7 generated in a).
Hint: For two matrices A and B in the csr_array format, matrix multiplication
can be done simply by A @ B . The symbol @ denotes matrix-matrix multiplication
in numpy and scipy.
To check your results, construct the Hamiltonian for N = 2 spins with J = 1 and
I' =0.1. You should obtain:
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c) First use the eigensolver scipy.sparse.linalg.eigsh (an advanced version of
Lanczos algorithm) to diagonalize the Hamiltonian and find the first few energy
eigenvalues. Then write a function that implements the power method from the
lecture (4.2.1) to find the ground state and its energy. Compare your results. Plot



the energy obtained from the power method for each iteration step to observe the
convergence behaviour of the method.

For system sizes N € {6,8,10,12} compute the ground state for ~ 20 different
values of I' € [0,2] (J = 1). Compute the largest-distance spin-spin correlator
C = (o] 6§67 [tho) for each of the obtained ground states and plot it against the
different values for I'.

For the same set of system sizes and magnetic fields I and again using scipy.sparse.
linalg.eigsh, find the first excited energy level and plot it along with the ground
state energy against the magnetic field I'. Extrapolate the energy gap at I'/J =1
to infinite system size, i.e., 1/N — 0. What can you observe? Explain your re-
sults from this exercise and exercise d) in light of the mentioned phase transition at
r/J=1.



Problem 3.2 Time evolution of the transverse field Ising chain

The goal of this exercise is to perform time evolution on a quantum state using sparse
matrix-vector multiplications. We study the transverse field Ising chain with open bound-
ary conditions, which is defined by the following Hamiltonian
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As a first step we split the time evolution operator into 2 non-commuting terms, the
diagonal part given by Hyzz and the non-diagonal part given by Hyx. The error involved
in doing this can be kept small by choosing a small time step A; (see section 4.4):
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The diagonal part exp(—i%ﬁm) multiplies each basis state with a phase factor, and

can be simplified into a product of two-site operators
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The non-diagonal part can also be simplified into a product of single-site operators
N
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a) Write each time evolution operator for the transverse field part exp(iAI'67) as a
sparse matrix.

b) Write each time evolution operators for the diagonal part exp(—iA,J6767,,) and
exp( J 070; +1) as sparse matrices.

¢) Implement the code that performs the time evolution for total time ¢ on the trans-
verse field Ising chain with open boundary conditions in space.

d) For system size N = 10, use your code to compute the time evolution of a state.
Start with an all-down configuration using only a transverse field I' and without
Ising coupling (thus take J = 0). Measure the magnetisation of each site at ~ 100
different time points in [0, 10].

Hint 1: The initial state can be constructed from a tensor product of single-site
states |U) = [1)®|)®...®|]). In the z-basis, the single-site state ||) is represented
by a two-component vector (0,1). Note that we don’t need to store |¥) as a sparse
vector, and we can use numpy.kron to construct it, because in general it’s dense
during the time evolution.

Hint 2: You can measure the magnetisation of a site ¢ by computing (V|67|¥). In
numpy, you need to take the real part of the result, and the imaginary part should
be zero.



e) Make a 2D color plot to show the magnetisation as a function of site and time. You
should see oscillations. Can you relate the period of the oscillation to the magnitude
of I'?
Hint: You can use matplotlib.pyplot.pcolormesh to make the 2D color plot.

f) Now set the Ising coupling J = 1 and use a transverse field of I' = 0.4. The starting
configuration is again all-down except of a single spin flipped in the middle. What
do you observe? How does the behaviour change with I'?



	Exact diagonalization of the transverse field Ising Hamiltonian
	Time evolution of the transverse field Ising chain

