[1]1:

[2]:

[3]:

[4] :

[5]:

ex01 solution

February 19, 2025

Computational Quantum Physics - PHYS 463
Lecturer: Prof. G. Carleo

Assistants: alessandro.sinibaldi@epfl.ch, linda.mauron@epfl.ch, lorenzo.fioroni@epfl.ch

0.1 Solution 01

0.1.1 Problem 1.1 - The perils of calculating derivatives

Import useful libraries
import numpy as np
import matplotlib.pyplot as plt

Define a function “f(z) returning the value "z * (z - 1)~
def f(x):
return x * (x - 1)

Numerical derivative by difference
def compute_df(x, delta):
return (f(x + delta) - f(x)) / delta

Compute the numerical derivative at © = 1° with ‘delta = 0.01°
print (compute_df (1, 0.01))
1.010000000000001

The analytical derivative is f'(z) = 2z — 1 and f’(1) = 1. The numerical result is not exactly the
same, because we used a finite rather than took the limit § — 0.

If we want to quantitatively estimate the error, we can use Taylor expansion:

fl@+8)—flx) fl@)+ f(2)d+ 5" ()0 + O(6%) — f(x)

0 0
= /@) + 31" ()6 + 0(?).

In our case f(x) = xz(x — 1), it is especially simple because f”(x) and higher-order derivatives are
all zero, and the error only contains the linear term of 4.

Use a for loop to compute the error for each “delta’,
and save the results in the list “errors’
deltas = [1le-2, le-4, 1le-6, 1e-8, 1le-10, 1le-12, le-14, 1le-16]

[6]:

errors = []

for delta in deltas:
df = compute_df (1, delta)
error = abs(df - 1)
errors.append (error)
print(delta, error)

0.01 0.010000000000000897
0.0001 9.999999988985486e-05
le-06 9.99917733279787e-07
1le-08 3.922528746258536e-09
le-10 8.284037100736441e-08
le-12 8.890058334132256e-05
le-14 0.0007992778373491216
le-16 1.0

Let's make a plot
plt.figure()
plt.plot(deltas, errors)
plt.xlabel('$\\delta$')
plt.ylabel('Error')
plt.xscale('log')
plt.yscale('log')
plt.show()

10“é
104é
104é
104é

107 3

Error

1077
107°
1077 3

1078

10—15 10—13

10—11

T
10~*
6

10~7

103

103

[7]:

[8]1:

[9]:

As & gets smaller, the error decreases linearly as predicted above, until 6 = 10~8. Then the error
increases because the floating-point error becomes significant.

In computers, there are no really ‘real’ numbers like 7 = 3.14159 ..., only approximations to them,
which we call ‘floating-point numbers’ or ‘floats’. Whenever we do arithmetics of floats, it will intro-
duce some error. This error is usually negligible for use in daily life, but in numerical computations
we need to be careful about it!

Let’s consider a simple model for the floating-point error: assume there is an error ¢ when we
compute x + § (and no floating-point error anywhere else). Then the total error is

flx+d+e)—flz)

ot (0) = 5 — ['(2)
_flato+fa+ed+3f (x+e)0” +0(0%) — flx) £

ICEIZIO | pato) -)+ 5@+ 08+ O(E)

"(x)e 1
= T L@+ o) + 0
The function e, (d) is minimized when 6 is of the order y/e. In our case, the default type of
floating-point number is float64 with 53-bit significand precision, so € ~ 2753 ~ 10715, and e,,, is
minimized when § ~ 1075,

In general, if we subtract two large numbers to get a small number (like f(x 4+ 0) — f(x)) or divide
something by a small number, there may be significant floating-point error. In future lectures we’ll
see more cases of floating-point error and how to deal with them.

0.1.2 Problem 1.2 - Game of Life

import numpy as np

amport libraries to make animations
from matplotlib import animation, rc
import matplotlib.pyplot as plt

from IPython.display import HTML

def init(x_size, y_size, coord):
state = np.zeros((x_size,y_size))
for ¢ in coord:
state[c] = 1
plt.imshow(state)
plt.show()
return state

def update(state):
new_state = np.zeros(state.shape)
temp_state = np.pad(state, 1, mode='constant')

https://en.wikipedia.org/wiki/Double-precision_floating-point_format

for i,j in np.ndindex(state.shape):
temp = temp_statel[i+l,j+1]
n_alive = np.sum(temp_state[i:i+3, j:j+3]) - temp

if temp == and n_alive > 3 or n_alive < 2:
continue
elif temp == 1 and mn_alive >= 2 or temp == O and n_alive ==

new_statel[i,j] = 1
return new_state

[10]: n_iter = 500
size = 30

here you can set your desired initial configuration
coords = [(15,15),(15,16),(15,17),(16,16)]

state = init(size, size, coords)

all_states is the container in which we save
the configurations of Conway's Game of Life
all_states = [state]

for _ in range(n_iter):
state = update(state)
all_states.append(state)

[11]: # for the animation of Conway's Game of Life
data should be a time-ordered list of
configurations e.g. datalt,z,y] such that
data[5] gives the configurations after 5
evolution steps

def make_animation(data):
fig = plt.figure(figsize=(5,5))
rc('animation', html='html5')
ax = plt.axes()

im=plt.imshow(datal[0])

def init_anim():
im.set _data(datal[0])
return [im]

def animate(i):
im.set_array(datali])

return [im]

anim = animation.FuncAnimation(fig, animate, init_func=init_anim,

[12]:

[13]:

[13]:

[14]:

[15]:

[16]:

frames = len(data), interval =150, blit = True)
plt.close(fig)
return anim
a = make_animation(all_states)

If this does mot work, you have to install the ffmpeg package
an easy way to do this is:

with conda: conda install -c conda-forge ffmpeg

with homebrew: brew install ffmpeg

on linux: sudo apt install ffmpeg

on windows: install ffmpeg with conda, or alternatively,

download ffmpeg from https://ffmpeg.org/download.

shtml#butld-windows

unpack the archive to somewhere and tell matplotlidb wherey
»ffmpeg.exe is located with:

tmport matplotlib.pyplot as plt

plt.rcParams['animation. ffmpeg_path'] = r'C:\...\bin\ffmpeg.exe’

at the top of the notebook, where you have to replace ... with the actual path

Save the animation as an mp4 file
a.save('solutions_ex01_videos/game_of_life.mp4')

HTML (a.to_html5_video())

<IPython.core.display.HTML object>

0.1.3 Problem 1.3 - Diagonalizing random hermitian matrices

def random_gue(n):

rr

Generate a random hermitian matrixz of size nzn
sampled from the gaussian unitary ensemble (GUE)
i.e. from p(H) ~ exp(-n/2 tr(H2))

rr

A = (np.random.normal(size=(n, n))+ 1j * np.random.normal(size=(n, n)))/np.
sqrt(2) # CN(0,1)
H = (A+A.conj().T)/np.sqrt(2*n)

return H
H = random_gue (2048)

check it's really hermitian
np.allclose(H, H.conj() .T)

[16]:

[17]:

[17]:

[18]:

[19]:

[20]:

True

verify it follows the correct distribution
np.mean(H), np.var(H)*2048

((1.101080713562214e-05+2.991085094991748e-21j), 0.9996026567127662)

call numpy routine for computing the eigenvalues of a hermitian matriz
spectrum = np.linalg.eigvalsh(H)

probability density function of the wigner semicircle law for radius R
def f(r, R):

p = 2./np.pi/(R**2) * np.sqrt(np.clip(R**2-r*x2, 0, None))

return p

plot a histogram of the spectrum
plt.figure()
plt.hist(spectrum, bins=100, density=True, alpha=0.8)

plot the wigner rule

R =2

x = np.linspace(-R, R, 100)
plt.plot(x, f(x, R), color='k"')

plt.xlabel('λ')
plt.ylabel('$p(\lambda)$"')
plt.show()

[21]:

[22]:

[22]:

[23]:

0.35 +

0.30 +

0.25 +

0.20

p(A)

0.15 T

0.10 T

0.05 +

0.00 -

Now generate 1000 samples of 4x4 matrices
n=4
n_samples = 100_000

samples = np.array([random_gue(n) for _ in range(n_samples)])

compute the mean Hij
mu = samples.mean(axis=0)

check it's close to 0
np.allclose(mu, 0, atol=le-2)

True

compute Hij Hmn*
xi = np.einsum('bij,bmn->ijmn', samples, samples.conj())/n_samples

check it is equal to delta_im delta_jn / n
delta = np.eye(n)
expected = 1/n * np.einsum('im,jn->ijmn', delta, delta)

np.allclose(expected, xi, atol=le-2)

[23]: True

0.1.4 Bonus part: plot the distribution of the level-spacings

[24]: def p2(s):
approxzimate distribution for the level spacings
return 32./(np.pi**2) * s**2 * np.exp(-4./np.pi * s**2)

[25]: spectrum = np.linalg.eigvalsh(samples)
plt.hist(spectrum.ravel(), bins=100, density=True, alpha=0.8)
plt.xlabel('λ')
plt.ylabel('$p(\lambda)$"')

[25]: Text(0, 0.5, '$p(\\lambda)$')

0.35

0.30 +

0.25 +

0.20

plA)

0.15

0.10

0.05 +

0.00 -

[26]: # compute the level-spacings and plot their distribution
spacings = (spectrum[:, 1:]-spectrum[:, :-1]).ravel()
spacings = spacings/spacings.mean()

[26] :

plt.hist(spacings, bins=100, density=True, alpha=0.8)
X = np.linspace(spacings.min(),spacings.max(), 100)
plt.plot(x, p2(x), color='k')

plt.xlabel('s')

plt.ylabel('$p(s)$')

Text (0, 0.5, '$p(s)$")

p(s)

10

3.0

3.5

	Solution 01
	Problem 1.1 - The perils of calculating derivatives
	Problem 1.2 - Game of Life
	Problem 1.3 - Diagonalizing random hermitian matrices
	Bonus part: plot the distribution of the level-spacings

