
ex01_solution

February 19, 2025

Computational Quantum Physics - PHYS 463

Lecturer: Prof. G. Carleo

Assistants: alessandro.sinibaldi@epfl.ch, linda.mauron@epfl.ch, lorenzo.fioroni@epfl.ch

0.1 Solution 01
0.1.1 Problem 1.1 - The perils of calculating derivatives

[1]: # Import useful libraries
import numpy as np
import matplotlib.pyplot as plt

[2]: # Define a function `f(x)` returning the value `x * (x - 1)`
def f(x):

return x * (x - 1)

[3]: # Numerical derivative by difference
def compute_df(x, delta):

return (f(x + delta) - f(x)) / delta

[4]: # Compute the numerical derivative at `x = 1` with `delta = 0.01`
print(compute_df(1, 0.01))

1.010000000000001

The analytical derivative is 𝑓 ′(𝑥) = 2𝑥 − 1 and 𝑓 ′(1) = 1. The numerical result is not exactly the
same, because we used a finite 𝛿 rather than took the limit 𝛿 → 0.

If we want to quantitatively estimate the error, we can use Taylor expansion:
𝑓(𝑥 + 𝛿) − 𝑓(𝑥)

𝛿 = 𝑓(𝑥) + 𝑓 ′(𝑥)𝛿 + 1
2𝑓″(𝑥)𝛿2 + 𝑂(𝛿3) − 𝑓(𝑥)

𝛿
= 𝑓 ′(𝑥) + 1

2𝑓″(𝑥)𝛿 + 𝑂(𝛿2).
In our case 𝑓(𝑥) = 𝑥(𝑥 − 1), it is especially simple because 𝑓‴(𝑥) and higher-order derivatives are
all zero, and the error only contains the linear term of 𝛿.

[5]: # Use a for loop to compute the error for each `delta`,
and save the results in the list `errors`
deltas = [1e-2, 1e-4, 1e-6, 1e-8, 1e-10, 1e-12, 1e-14, 1e-16]

1

errors = []
for delta in deltas:

df = compute_df(1, delta)
error = abs(df - 1)
errors.append(error)
print(delta, error)

0.01 0.010000000000000897
0.0001 9.999999988985486e-05
1e-06 9.99917733279787e-07
1e-08 3.922528746258536e-09
1e-10 8.284037100736441e-08
1e-12 8.890058334132256e-05
1e-14 0.0007992778373491216
1e-16 1.0

[6]: # Let's make a plot
plt.figure()
plt.plot(deltas, errors)
plt.xlabel('$\\delta$')
plt.ylabel('Error')
plt.xscale('log')
plt.yscale('log')
plt.show()

2

As 𝛿 gets smaller, the error decreases linearly as predicted above, until 𝛿 = 10−8. Then the error
increases because the floating-point error becomes significant.

In computers, there are no really ‘real’ numbers like 𝜋 = 3.14159 …, only approximations to them,
which we call ‘floating-point numbers’ or ‘floats’. Whenever we do arithmetics of floats, it will intro-
duce some error. This error is usually negligible for use in daily life, but in numerical computations
we need to be careful about it!

Let’s consider a simple model for the floating-point error: assume there is an error 𝜖 when we
compute 𝑥 + 𝛿 (and no floating-point error anywhere else). Then the total error is

𝑒tot(𝛿) = 𝑓(𝑥 + 𝛿 + 𝜖) − 𝑓(𝑥)
𝛿 − 𝑓 ′(𝑥)

= 𝑓(𝑥 + 𝜖) + 𝑓 ′(𝑥 + 𝜖)𝛿 + 1
2𝑓″(𝑥 + 𝜖)𝛿2 + 𝑂(𝛿3) − 𝑓(𝑥)

𝛿 − 𝑓 ′(𝑥)

= 𝑓(𝑥 + 𝜖) − 𝑓(𝑥)
𝛿 + 𝑓 ′(𝑥 + 𝜖) − 𝑓 ′(𝑥) + 1

2𝑓″(𝑥 + 𝜖)𝛿 + 𝑂(𝛿2)

= 𝑓 ′(𝑥)𝜖
𝛿 + 1

2𝑓″(𝑥)𝛿 + 𝑂(𝛿2) + 𝑂(𝜖).

The function 𝑒tot(𝛿) is minimized when 𝛿 is of the order
√𝜖. In our case, the default type of

floating-point number is float64 with 53-bit significand precision, so 𝜖 ≈ 2−53 ≈ 10−16, and 𝑒tot is
minimized when 𝛿 ≈ 10−8.

In general, if we subtract two large numbers to get a small number (like 𝑓(𝑥 + 𝛿) − 𝑓(𝑥)) or divide
something by a small number, there may be significant floating-point error. In future lectures we’ll
see more cases of floating-point error and how to deal with them.

0.1.2 Problem 1.2 - Game of Life

[7]: import numpy as np

import libraries to make animations
from matplotlib import animation, rc
import matplotlib.pyplot as plt
from IPython.display import HTML

[8]: def init(x_size, y_size, coord):
state = np.zeros((x_size,y_size))
for c in coord:

state[c] = 1
plt.imshow(state)
plt.show()
return state

[9]: def update(state):
new_state = np.zeros(state.shape)
temp_state = np.pad(state, 1, mode='constant')

3

https://en.wikipedia.org/wiki/Double-precision_floating-point_format

for i,j in np.ndindex(state.shape):
temp = temp_state[i+1,j+1]
n_alive = np.sum(temp_state[i:i+3, j:j+3]) - temp

if temp == 1 and n_alive > 3 or n_alive < 2:
continue

elif temp == 1 and n_alive >= 2 or temp == 0 and n_alive == 3:
new_state[i,j] = 1

return new_state

[10]: n_iter = 500
size = 30

here you can set your desired initial configuration
coords = [(15,15),(15,16),(15,17),(16,16)]

state = init(size, size, coords)

all_states is the container in which we save
the configurations of Conway's Game of Life
all_states = [state]

for _ in range(n_iter):
state = update(state)
all_states.append(state)

4

[11]: # for the animation of Conway's Game of Life
data should be a time-ordered list of
configurations e.g. data[t,x,y] such that
data[5] gives the configurations after 5
evolution steps

def make_animation(data):
fig = plt.figure(figsize=(5,5))
rc('animation', html='html5')
ax = plt.axes()

im=plt.imshow(data[0])

def init_anim():
im.set_data(data[0])
return [im]

def animate(i):
im.set_array(data[i])
return [im]

anim = animation.FuncAnimation(fig, animate, init_func=init_anim,

5

frames = len(data), interval =150, blit = True)

plt.close(fig)

return anim

[12]: a = make_animation(all_states)

[13]: ## If this does not work, you have to install the ffmpeg package
an easy way to do this is:
with conda: conda install -c conda-forge ffmpeg
with homebrew: brew install ffmpeg
on linux: sudo apt install ffmpeg
on windows: install ffmpeg with conda, or alternatively,
download ffmpeg from https://ffmpeg.org/download.

↪html#build-windows
unpack the archive to somewhere and tell matplotlib where␣

↪ffmpeg.exe is located with:
import matplotlib.pyplot as plt
plt.rcParams['animation.ffmpeg_path'] = r'C:\...\bin\ffmpeg.exe'
at the top of the notebook, where you have to replace ... with the actual path

Save the animation as an mp4 file
a.save('solutions_ex01_videos/game_of_life.mp4')

HTML(a.to_html5_video())

[13]: <IPython.core.display.HTML object>

0.1.3 Problem 1.3 - Diagonalizing random hermitian matrices

[14]: def random_gue(n):
'''
Generate a random hermitian matrix of size nxn
sampled from the gaussian unitary ensemble (GUE)
i.e. from p(H) ~ exp(-n/2 tr(H^2))
'''
A = (np.random.normal(size=(n, n))+ 1j * np.random.normal(size=(n, n)))/np.

↪sqrt(2) # CN(0,1)
H = (A+A.conj().T)/np.sqrt(2*n)

return H

[15]: H = random_gue(2048)

[16]: # check it's really hermitian
np.allclose(H, H.conj().T)

6

[16]: True

[17]: # verify it follows the correct distribution
np.mean(H), np.var(H)*2048

[17]: ((1.101080713562214e-05+2.991085094991748e-21j), 0.9996026567127662)

[18]: # call numpy routine for computing the eigenvalues of a hermitian matrix
spectrum = np.linalg.eigvalsh(H)

[19]: # probability density function of the wigner semicircle law for radius R
def f(r, R):

p = 2./np.pi/(R**2) * np.sqrt(np.clip(R**2-r**2, 0, None))
return p

[20]: # plot a histogram of the spectrum
plt.figure()
plt.hist(spectrum, bins=100, density=True, alpha=0.8)

plot the wigner rule
R = 2
x = np.linspace(-R, R, 100)
plt.plot(x, f(x, R), color='k')

plt.xlabel('λ')
plt.ylabel('$p(\lambda)$')
plt.show()

7

[21]: ## Now generate 1000 samples of 4x4 matrices
n = 4
n_samples = 100_000

samples = np.array([random_gue(n) for _ in range(n_samples)])

[22]: # compute the mean �Hij�
mu = samples.mean(axis=0)

check it's close to 0
np.allclose(mu, 0, atol=1e-2)

[22]: True

[23]: # compute �Hij Hmn*�
xi = np.einsum('bij,bmn->ijmn', samples, samples.conj())/n_samples

check it is equal to delta_im delta_jn / n
delta = np.eye(n)
expected = 1/n * np.einsum('im,jn->ijmn', delta, delta)

8

np.allclose(expected, xi, atol=1e-2)

[23]: True

0.1.4 Bonus part: plot the distribution of the level-spacings

[24]: def p2(s):
approximate distribution for the level spacings
return 32./(np.pi**2) * s**2 * np.exp(-4./np.pi * s**2)

[25]: spectrum = np.linalg.eigvalsh(samples)
plt.hist(spectrum.ravel(), bins=100, density=True, alpha=0.8)
plt.xlabel('λ')
plt.ylabel('$p(\lambda)$')

[25]: Text(0, 0.5, '$p(\\lambda)$')

[26]: # compute the level-spacings and plot their distribution
spacings = (spectrum[:, 1:]-spectrum[:, :-1]).ravel()
spacings = spacings/spacings.mean()

9

plt.hist(spacings, bins=100, density=True, alpha=0.8)
x = np.linspace(spacings.min(),spacings.max(), 100)
plt.plot(x, p2(x), color='k')
plt.xlabel('s')
plt.ylabel('$p(s)$')

[26]: Text(0, 0.5, '$p(s)$')

10

	Solution 01
	Problem 1.1 - The perils of calculating derivatives
	Problem 1.2 - Game of Life
	Problem 1.3 - Diagonalizing random hermitian matrices
	Bonus part: plot the distribution of the level-spacings

