[50]:

[51]:

ex14 solution

May 27, 2025

Computational Quantum Physics - PHYS 463
Lecturer: Prof. G. Carleo

Assistants: alessandro.sinibaldi@epfl.ch, linda.mauron@epfl.ch, lorenzo.fioroni@epfl.ch

0.1 Exercise 14.1 : The Variational Quantum Eigensolver (VQE)

In this exercise we are going to see how variational methods can be used in a hybrid quantum-
classical scheme in order to approximate quantum states.

In particular the aim of the Variational Quantum Eigensolver (VQE) is to optimize a set of pa-
rameterized quantum gates to approximate the ground state of a quantum system, given that the
expectation value of the energy and its derivatives with respect to the parameters are evaluated on
a quantum hardware in a scalable way.

Preparing ground state is an exponentially complex task even on a quantum computer (QMA),
but the VQE is expected to give some advantage for specific tasks in physics, chemistry and/or
material sciences.

0.1.1 Classical simulation of H,

Here we will recall the code for the classical simulation of the dissociation process of H, diatomic
molecule.

import numpy as np
from pyscf import gto,scf,ao2mo,mp,cc,fci,tools
import matplotlib.pyplot as plt

np.set_printoptions(precision=2,suppress=1e-8,linewidth=120)

Define a set of distances between the two atoms
distances = np.arange(0.3, 4, .05)

and a bastis in which the calculations will be made
basis = 'sto-6g' #'6-31g' 'cc-pvdz' 'aug-cc-pvdz' ,...

Define a dictionary containing the energies derived with different methods
energies = {}

[52]:

[63]:

(]
(]
(]

energies["HF_"+basis]
energies["FCI_"+basis]
energies["CCSD_"+basis]

for (i,r) in enumerate(distances):
Butld the 3D geometry of the molecule
geometry = "H .0 .0 .0; H .0 .0 "+str(r)

And pass it to the gaussian orbitals generator (this is an alternative,
sway to create the molecule object)

mol = gto.
~M(atom=geometry,charge=0,spin=0,basis=basis, symmetry=True,verbose=0)

mf = scf.RHF(mol) # Initialise a Restricted HF calculation using they
~molecule constructed

Ehf = mf.kernel() # <- calling the kernel we compute the energy using the,
<orbitals obtained

fci_h2 = fci.FCI(mf) # FCI calculation
Efci = fci_h2.kernel() [0]

ccsd_h2 = cc.CCSD(mf) # CCSD calculation
e_ccsd = ccsd_h2.kernel() [0]
e_ccsd += Ehf # <- this lines ©s mandatory because CCSD computes the energy,

~dtfference with HF

Save energies
energies["HF_"+basis] .append (Ehf)
energies["FCI_"+basis] .append(Efci)
energies["CCSD_"+basis] .append(e_ccsd)

Now plot the result
plt.plot(distances,energies["HF_"+basis],label="HF - "+basis)
plt.plot(distances,energies["FCI_"+basis],label="FCI - "+basis)
plt.plot(distances,energies["CCSD_"+basis],label="CCSD -
~"+basis,linestyle="",marker=".")

plt.xlabel(r"r [\AA]")
plt.ylabel(r"E [Hartreel")
plt.legend ()

plt.show()

[54]:

-061
_D]' -
_.U.B -
v
v
=
[1%]
T -0.9
LLI -e
_1D -
—— HF - sto-6g
—1.1 1 FCI - sto-6g
« CCSD - sto-6g

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
rlA]

As can be seen, the CCSD calculation is as accurate as FCI in this small system.

0.1.2 Quantum simulation of H,
Now we will proceed to the simulation on the quantum computer.

As showed here the Variational quantum eigensolver can be used to calculate dissociation processes
of small molecules on quantum processor.

from qiskit import QuantumCircuit

from qiskit.circuit import ParameterVector

from qiskit.quantum_info import SparsePauliOp # To create operators

from qiskit.primitives import Estimator # to estimate expectation wvalues

Preparing the Hamiltonian First, since we want to study a fermionic system on a set of qubits,
we must find a mapping between the two.

The oldest mapping proposed is the Jordan-Wigner, which was illustrated also in the lectures, but
there are many others.

Two noticeable alternatives are the parity mapping and the Bravyi-Kitaev mapping.

In particular, we are going to focus on the parity mapping for the H, system.

https://www.nature.com/articles/nature23879
https://iopscience.iop.org/article/10.1088/1367-2630/aac54f
https://pubs.acs.org/doi/10.1021/acs.jctc.8b00450

[55] :

[56] :

[57]:

[58]:

[58] :

[59]:

[60]:

Instead of storing the occupation of a fermionic state f;, as Jordan-Wigner does, this isomorphism
uses the qubits to store the quantity

j—1
p; = Zfz mod 2) (1)
1=0

called parity of the set of occupation numbers f;_; ... fo.

This is convenient for system like H, which conserve the total number of electrons with fixed spin
orientation, meaning that we can get rid of two qubits out of the box.

Manually performing the mapping can be a very tedious and prone-to-error task, for this reason
we will use the very practical Qiskit PySCF driver, which recalls the creation of a PySCF molecule
object that we have seen in previous lectures but gives a qubit operator ready to be measured on
a quantum computer.

This driver can be found in the Qiskit optional package nature.

Ipip install 'qiskit-nature'’

from qiskit_nature.second_q.drivers import PySCFDriver
from qiskit_nature.second_q.formats.molecule_info import MoleculeInfo
from qiskit_nature.second_q.transformers import FreezeCoreTransformer

Initialize the molecule using the PySCF driver, this has the same structure,
~as the molecule object we created

in the previous lectures
molecule = MoleculeInfo(["H", "H"], [(0.0, 0.0, 0.0), (0.0, 0.0, 0.735)],.
~.charge=0, multiplicity=1)

driver = PySCFDriver.from_molecule(molecule, basis="sto6g")

this ts now done ezplicitly
problem = driver.run()

Now the problem has also the nuclear repulsion shift of the Born-Uppenheimer,
—approzrimation

problem.nuclear_repulsion_energy
np.float64(0.7199689944489797)

Calling .second_q_ops will generate a bunch of operator such as dipole,
—magnetization,

We are interested in the Hamiltonian

hamiltonian = problem.second_g_ops() [0]

print (hamiltonian)

Fermionic Operator
number spin orbitals=4, number terms=36

[61]:

[62]:

-1.260626877670799 * (+_ 0 -_0)
-0.4761511477140961 * (+_1 -_1)
-1.260626877670799 * (+.2 - 2)
-0.4761511477140961 * (+_.3 -_3)
.33782804623258983 * (+_0 +_.0 -_0 -_0)
.3326288267523017 * (+ 0 +. 1 - 1 -0)
.33782804623258983 * (+_0 +_.2 -_2 -_0)
.3326288267523017 * (+ 0 + 3 -3 -0)

.09060902125379115 * (+. 0 + 0 - 1 - 1)
.09060902125379115 * (+ 0 + 1 - 0 -1)
.09060902125379115 * (+. 0 + 2 - 3 - 1)
.09060902125379115 * (+ 0 + 3 - 2 = 1)
.09060902125379115 * (+. 1 + 0 -1 - 0)
.09060902125379115 * (+_1 +.1 -0 - 0)
.09060902125379115 * (+_1 + 2 - 3 - 0)
.09060902125379115 * (+_1 +.3 -2 - 0)
.3326288267523017 * (+.1 + 0 -0 -1)
.35008911193642955 * (+_ 1 + 1 - 1 - 1)

.3326288267523017 * (+. 1 + 2 - 2 - 1)
.35008911193642955 * (+_ 1 +3 - 3 -_1
.33782804623258983 * (+ 2 + 0 - 0 — 2
.3326288267523017 * (+ 2 + 1 - 1 - 2)
.33782804623258983 * (+ 2 + 2 - 2 - 2)
.3326288267523017 * (+ 2 +3 -3 - 2)

.09060902125379115 * (+.2 + 0 -1 - 3)
.09060902125379115 * (+.2 +.1 - 0 - 3)
.09060902125379115 * (+_2 + 2 - 3 - 3)
.09060902125379115 * (+ 2 + 3 - 2 - 3)
.09060902125379115 * (+.3 + 0 -1 - 2)
.09060902125379115 * (+ 3 + 1 - 0 -2)
.09060902125379115 * (+ 3 + 2 - 3 - 2)
.09060902125379115 * (+ 3 + 3 - 2 - 2)

.3326288267523017 * (+ 3 +. 0 - 0 -_3)
.35008911193642955 * (+ 3 + 1 - 1 - 3)
.3326288267523017 * (+.3 + 2 - 2 - 3)
.35008911193642955 * (+ 3 +.3 - 3 - 3)

+ + + + + + + + + F + F + + F o+ A+ F o+ A+ A+ + o+ A+ +

O O O O O OO OO OO OO O OO OO O0ODO0ODODODOOOOOOOOOOo

from qiskit_nature.second_q.mappers import JordanWignerMapper, ParityMapper

Create the qubit operator (With 2 qubit reduction)
mapper = ParityMapper ()

qubit_op = mapper.map(hamiltonian)

print(qubit_op)

SparsePauliOp(['IIII', 'IIIZ', 'IIzz', 'IZzI', 'ZZI1', 'IIZI', '1ZZZ', 'ZZIZ',
'ZXIX', 'IXZX', 'ZXzX', 'IXIX', 'IzIZ', 'ZZZZ', 'ZIZI'],

coeffs=[-0.82+0.j, 0.17+0.j, -0.22+0.j, 0.17+0.j, -0.22+0.73,
0.12+40.j, 0.17+0.j, 0.17+0.j, 0.05+0.j, -0.05+0.7,

[63]:

[64] :

[65] :

[66] :
[66]:

-0.05+0.j, 0.05+0.j, 0.17+0.j, 0.18+0.j, 0.12+0.3])

Create the qubit operator (With 2 qubit reduction)

mapper = ParityMapper(num_particles=[1,1]) # Parity mapper requires the spin,
—up and down electrons

qubit_op = mapper.map(hamiltonian)

print(qubit_op)

SparsePauliOp(['II', 'IZ', 'ZI', 'ZZ', 'XX'],
coeffs=[-1.06+0.j, 0.4 +0.j, -0.4 +0.j, -0.01+0.j, 0.18+0.j1)

Now we have seen how to create a qubit operator for a single configuration, we will need to repeat
this procedure for every r in order to study the dissociation process of H,.

Initial state We need a starting point for our calculations, that in this case will be the Hartree-
Fock (HF) determinant. This can be easily prepared on the quantum circuit, since we are already
in the basis of the HF orbitals. This means that we will need to put an X gate if the corresponding
spin-orbital is occupied (Jordan-Wigner) or it has a odd occupation number (Parity).

Qiskit provides a useful HartreeFock function to create this initial state, that then we will pass to
the VQE function.

from qiskit_nature.second_qg.circuit.library.initial_states import HartreeFock

init_state = HartreeFock(num_spatial_orbitals=2, num_particles=[1,1],
-qubit_mapper=mapper)

init_state.draw("mpl")

o

di

Variational wave function Now that we have the Hamiltonian operator, we will need an ansatz
for our wavefunction. Since we need a variational ansatz, some gates will contains parameters that
are going to be iteratively optimized (for example, rotations about the z,y, z axes).

There is no analytical way to choose an ansatz for the system: there are empirical rules based on
similarity with what we are studying. Some ansétze come from classical computational chemistry,
such as the highly accurate q-UCCSD, but mostly we have to consider some circuits that can be

https://arxiv.org/pdf/1506.00443.pdf

[67]:

[68]:

[68]:

run on current devices, so they have to contain few two qubits gates and be relatively shallow:
these ansétze are called hardware-efficient.

What we are going to consider is one of the so-called “hardware-efficient ansédtze”. The system
does not contain many qubits, so our trial ansatz will be very simple : a layer of rotations around
the y-axis followed by CNOTs and again a layer of rotations. This simple structure can be easily
extended both in depth (adding more CNOTs and rotation) and in width, to study bigger system,
therefore is widely used.

def variational_ansatz(n_qubits,params):

gc = QuantumCircuit(n_qubits)

for i in range(n_qubits):
qc.ry(params[i],i)

gc.barrier()

for i in range(n_qubits-1):
gc.cx(i,i+1)

qc.barrier()

for i in range(n_qubits):
gc.ry(params[n_qubits+i],i)

return qc

Let's plot an example

params = ParameterVector(' ',10)
variational_ansatz(5,params) .draw("mpl")

O
o

O
H

g
TTTT

[69]:

[70]:

[71]:

[71]:

Evaluating energy and the gradient Now we focus on the core part of the VQE algorithm:
the evaluation of the energy and of its gradient on the quantum hardware.

Qiskit has built-in methods for this, but we are going to implement ours from scratch.

First, we want a circuit to measure the expecation value of the Hamiltonian on our trial state

def energy(quantum_circuit,hami,parameters,estimator):
This function evaluates the energy during a VQE calculation
return estimator.run(quantum_circuit,hami,parameters).result().values[0]

Example energy estimation

param_vec = ParameterVector(" ",4)
g_circuit = variational_ansatz(2,param_vec)
estimator = Estimator()

/tmp/ipykernel_1114631/3923375788.py:4: DeprecationWarning: The class
*" 1is deprecated as of qgiskit 1.2. It

giskit.primitives.estimator.Estimator
will be removed no earlier than 3 months after the release date. All
implementations of the "BaseEstimatorV1™ interface have been deprecated in favor
of their V2 counterparts. The V2 alternative for the “Estimator” class is
"StatevectorEstimator”.

estimator = Estimator()

energy(q_circuit,qubit_op,np.random.rand(4),estimator)

np.float64(-0.604828087212575)

Now things get interesting! In order to optimize our parameters #, a quantum computer has to give
to classical optimizer important information such as first- or second-order derivatives! But how can
we measure the derivative wrt to a specific parameter on a quantum circuit?

B 0
5 10) = 5 WOIHIV(0))

()

many different methods have been proposed recently, in this case we are going to see a method that
is called parameter shift:

e assume that every parametrized gate is of the form

_—i0.G. _ .
Uj(ej) =e V= COS(Qj)I — zsm(ej)Gj

where G is an operator such that G? =1

o then the derivative can be expressed as

d L0 +e;s)— L0 —e;s)

(979iL(9> - 2sin(s)

where s € R and e; indicates the versor in the i-th direction. In our case we are going to

consider s = g

This means that to calculate the gradient with N, parameters, we have to measure H on 2N,
different circuits, but it’s possiblel!

Note that the assumption we made is quite general: G; could be every tensor product of Pauli
operators

[72]: #useful function to shift the parameters
def ei(i,n):
vi = np.zeros(n)
vi[il = 1.0
return vil[:]

def gradient(quantum_circuit,hami,parameters,estimator):

This function evaluates the gradient during a VUE calculation

nparameters = len(parameters)
g = np.zeros(nparameters)

First create the values dictionary
values_dict = []

Then the wvalues for the gradient

for i in range(uparameters):
values_dict.append((parameters + ei(i,nparameters)*np.pi/2.0).tolist())
values_dict.append((parameters - ei(i,nparameters)*np.pi/2.0).tolist())

results = []

for values in values_dict:
res = energy(quantum_circuit,hami,values,estimator)
results.append(res)

for i in range(nparameters):

rplus = results[2x*i]
rminus = results[2xi+1]
#G = (Ep - Em)/2

var(G) = var(Ep) * (dG/dEp)**2 + var(Em) * (dG/dEm)**2
gli] = (rplus-rminus)/2

return g

The VQE algorithm Now we declare a function to repeat iteratively the procedure of measuring
energy, its gradient and then optimizing the parameters using a standard gradient descent technique,

namely

0 =0u1q — 77V9L(9)

new

with n € R as the learning rate.

[73]: def VQE(operator=None, ansatz=None, init_params=None, init_state=None,,,
—~estimator=None, max_iter=100, learning rate=0.1):

initialize the useful quantities
curr_params = init_params

Create the wvariational circuit to measure

nparameters = len(init_params)

ParameterVector(' ',nparameters)
init_state.compose(ansatz(n_qubits,params_vec))

params_vec
circ_wfn

log = {'energies': [], 'gradients': [1}
for i in range(max_iter):

Measure energy and gradient
E = energy(circ_wfn,operator,curr_params,estimator)
g = gradient(circ_wfn,operator,curr_params,estimator)

log['energies'].append(E)
log['gradients'].append(g)

Update the parameters
curr_params = curr_params - learning_ratex*g
return log

[1:

Perform the optimization on a single configuration
[74]: molecule = MoleculeInfo(["H", "H"], [(0.0, 0.0, 0.0), (0.0, 0.0, 0.735)1,,

~charge=0, multiplicity=1)

driver = PySCFDriver.from_molecule(molecule, basis="sto6g")

problem = driver.run()

hamiltonian = problem.second_g_ops() [0]

nucl_shift = problem.nuclear_repulsion_energy

mapper = ParityMapper (num_particles=[1,1]) # Parity mapper requires the spin up,
~and down electrons

qubit_op = mapper.map(hamiltonian)

[75]: | # Now create the circuit

n_qubits = qubit_op.num_qubits
init_params = np.random.rand(2*n_qubits)

10

[76]:

init_state = HartreeFock(num_spatial_orbitals=2, num_particles=[1,1],
~qubit_mapper=mapper)

n_reps = 50
learning _rate = 0.5
estimator = Estimator()

res = VQE(qubit_op,variational_ansatz,init_params,init_state,estimator,n_reps,
~learning_rate)

/tmp/ipykernel _1114631/1692613447.py:9: DeprecationWarning: The class
o is deprecated as of qiskit 1.2. It
will be removed no earlier than 3 months after the release date. All
implementations of the “BaseEstimatorV1™ interface have been deprecated in favor
of their V2 counterparts. The V2 alternative for the “Estimator” class is
“StatevectorEstimator”.

estimator = Estimator()

giskit.primitives.estimator.Estimator

steps = list(range(n_reps))

plt.figure(figsize=(4.8,3.4),dpi=100)

plt.errorbar(steps,np.
~array(res['energies'])+nucl_shift,marker='o',linestyle='dashed',label="VQE")

plt.hlines(-1.145, xmin= -10, xmax= 1000,label='Theoretical',linestyle,
~='dashed',color="'black"')

plt.xlabel('Step')

plt.xlim(xmin=-1,xmax=51)

plt.ylabel('Energy')

plt.show()

11

[
A
—0.4 1 -i
o064 %
> %
@ L]
& —0.8 - t*
1]
9
-1.0 1 °
T T T T T T
0 10 20 30 40 50
Step

Quantum simulation Now we are going to perform the VQE algorithm for every configuration

of the H, molecule.

[77]: | # Prepare the backend

estimator = Estimator()
vge_distances = list(np.arange(0.3, 1.5, .1)) + list(np.arange(1.5, 4.0, .2))

energies["VQE_"+basis] = []
energies["VQE_error"+basis] = []

Repeat for every r
for (i,r) in enumerate(vqe_distances):

print ("\n ")

print (£" DISTANCE: {r}")

print ("===== \n")

molecule = MoleculeInfo(["H", "H"], [(0.0, 0.0, 0.0), (0.0, 0.0,)],.

~charge=0, multiplicity=1)
PySCFDriver.from_molecule(molecule, basis="sto6g")

driver =
problem = driver.run()
nucl_shift = problem.nuclear_repulsion_energy

Build the (reduced) qubit operator
hamiltonian = problem.second_q_ops() [0]
mapper = ParityMapper (num_particles=[1,1])

12

qubit_op = mapper.map(hamiltonian)

Now create the circuit
n_qubits = qubit_op.num_qubits
params

np.random.rand(2*n_qubits)
init_state = HartreeFock(num_spatial_orbitals=2, num_particles=[1,1],,
~qubit_mapper=mapper)

#Run the algorithm

n_reps = 150

1r = 0.5

res =4
~VQE(qubit_op,variational_ansatz,params,init_state,estimator,n_reps,lr)

print ("Final energy: ",res['energies'][-1]+nucl_shift)

energies["VQE_"+basis] .append(res['energies'] [-1]+nucl_shift)

/tmp/ipykernel_1114631/1487965590.py:2: DeprecationWarning: The class
“"qiskit.primitives.estimator.Estimator™ " is deprecated as of qiskit 1.2. It
will be removed no earlier than 3 months after the release date. All
implementations of the "BaseEstimatorV1™ interface have been deprecated in favor
of their V2 counterparts. The V2 alternative for the “Estimator”™ class is
“StatevectorEstimator”.

estimator = Estimator()

DISTANCE: 0.3

Final energy: -0.613030967938903

DISTANCE: 0.4

Final energy: -0.9251782194739735

DISTANCE: 0.5

Final energy: -1.0653851727714747

13

DISTANCE: O.

6000000000000001

Final energy:

-1.1255968661617182

DISTANCE: O.

7000000000000002

Final energy:

-1.1449790794971126

DISTANCE: O.

8000000000000003

Final energy:

-1.142613162302784

DISTANCE: O.

9000000000000001

Final energy:

-1.1286542684480338

DISTANCE: 1.

0000000000000002

Final energy:

-1.1088730601683296

DISTANCE: 1.

1000000000000003

Final energy:

-1.0867110009039278

DISTANCE: 1.

2000000000000004

Final energy:

-1.0642957382564404

DISTANCE:

1.

3000000000000005

Final energy:

-1.0429690681419195

14

DISTANCE: 1

.4000000000000004

Final energy:

-1.0235629424238053

DISTANCE: 1.

Final energy:

-1.0062562562577946

DISTANCE: 1.

Final energy:

-0.9783081492049671

DISTANCE: 1.

Final energy:

-0.9500298750837197

DISTANCE: 2

.0999999999999996

Final energy:

-0.9432833196061

DISTANCE: 2.

Final energy:

-0.9433191083798482

DISTANCE: 2.

Final energy:

-0.9419097906069627

DISTANCE: 2

.6999999999999997

Final energy:

-0.942189995389784

15

DISTANCE: 2.8999999999999995

Final energy: -0.9420684807899089

DISTANCE: 3.0999999999999996

Final energy: -0.9419893547684488

DISTANCE: 3.3

Final energy: -0.9420080058569545

DISTANCE: 3.4999999999999996

Final energy: -0.9420661786635257

DISTANCE: 3.6999999999999993

Final energy: -0.9420784558024419

DISTANCE: 3.8999999999999995

Final energy: -0.9420703057745775

Plot the final results
[78]: plt.plot(distances,energies["HF_"+basis],linestyle="dashed",label="HF - "+basis)

plt.plot(distances,energies["FCI_"+basis],label="FCI - "+basis)
plt.errorbar(vqe_distances,energies["VQE_"+basis],label="VQE -
~'"+basis,linestyle="",marker="o" ,markersize=>5,mew=0.5,mec="black")

plt.xlabel(r"r [\AA]")
plt.ylabel(r"E [Hartreel")
plt.legend ()

plt.show()

16

[1:

E [Hartree]

—1.0 A

—-1.1 A

—
-
-
-

——- HF - sto-6g
FCI - sto-6g
® VQE - sto-6g
T T T T T T T T
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
rlA]

17

	Exercise 14.1 : The Variational Quantum Eigensolver (VQE)
	Classical simulation of H_2
	Quantum simulation of H_2

