
ex13_solution

May 20, 2025

Computational Quantum Physics - PHYS 463

Lecturer: Prof. G. Carleo

Assistants: alessandro.sinibaldi@epfl.ch, linda.mauron@epfl.ch, lorenzo.fioroni@epfl.ch

0.1 Exercise 13.0 A brief introduction to Qiskit
In order to simulate quantum computers on classical hardware (and also to access real hardware
online) we will resort to the IBM Quantum Computing framework Qiskit (currently migrating to
Qiskit 2).

Give a comprehensive view of what Qiskit can do is a task that goes beyond the scope of this
course, for this reason we will restrict to prepare quantum circuits and measure observables on it.

[1]: # First install Qiskit
#!pip install qiskit matplotlib pylatexenc qiskit_ibm_provider qiskit_aer␣

↪qiskit_ibm_runtime

[2]: import numpy as np
import scipy.linalg as la
import matplotlib.pyplot as plt

import qiskit
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit_aer import QasmSimulator, StatevectorSimulator
from qiskit.visualization import plot_histogram

Create you first circuit Circuits are defined using a QuantumRegister and a
ClassicalRegister that keep track of the operations made on qubits and classical bits respectively.

[3]: n_qubits = 1

qc = QuantumCircuit(QuantumRegister(n_qubits), ClassicalRegister(n_qubits))

Every circuit has a set of gates already defined

[4]: # We call the gate and pass as an argument the qubit on which it will act
See https://qiskit.org/documentation/stubs/qiskit.circuit.QuantumCircuit.html␣

↪for all the available gates

1

https://qiskit.org/
https://quantum.cloud.ibm.com/docs/en

qc.x(0)
qc.h(0)

We want to measure the qubit we prepared and save the result in the classical␣
↪bit

qc.measure(qubit=0, cbit=0)

[4]: <qiskit.circuit.instructionset.InstructionSet at 0x1225f0910>

[5]: # We can easily draw the circuit
qc.draw('mpl')

[5]:

Now we want to perform the simulation and plot the results

[6]: simulator = QasmSimulator()
results = simulator.run(qc, shots=1000).result()

[7]: plot_histogram(results.get_counts())
[7]:

2

Preparing Bell states Now we want to prepare a two qubit entangled state (a Bell state) on
the quantum computer

[8]: # shortcut for QuantumCircuit(QuantumRegister(2), ClassicalRegister(2))
qc2 = QuantumCircuit(2,2)

qc2.h(0)
qc2.cx(0,1)

Which qubits to measure and where to save the results
qc2.measure(qubit=[0,1], cbit=[0,1])
qc2.draw('mpl')

[8]:

3

[9]: results2 = simulator.run(qc2, shots=1000).result()
plot_histogram(results2.get_counts())

[9]:

Measuring an observable What if we want to measure a specific observable (as an example
X^I) on the prepared state?

4

Qiskit gives the possibility to do so. The procedure at the moment is a little bit involved, but
future release will simplify this.

[10]: from qiskit.quantum_info import SparsePauliOp # To create␣
↪operators

from qiskit.primitives import StatevectorEstimator as Estimator # to␣
↪estimate expectation values

[11]: n_shots = 1000
estimator = Estimator()

[12]: ob = SparsePauliOp.from_list([("XI",1.0)])

Compose the observable with the quantum circuit you want to measure
qc_meas = QuantumCircuit(2)
qc_meas.h(0)
qc_meas.cx(0,1)
qc_meas.cx(1,0)
qc_meas.cx(0,1)

Measure
pubs = (qc_meas, ob)
qc_measured = estimator.run([pubs]).result()[0]

[13]: print("Value:",qc_measured.data.evs)

Value: 0.9999999999999998

Running your circuit on hardware Suppose now we want to run our circuit on real hardware
instead of simulators, how do we do that?

We must change the backend of our calculations, and we need an IBM Quantum account.

[14]: from qiskit_ibm_runtime import QiskitRuntimeService

[15]: # Find your API token in the homepage of the IBM Quantum website (you can skip␣
↪if you already did it)

#QiskitRuntimeService.save_account(channel="ibm_quantum", token="<IQP_TOKEN>",␣
↪overwrite=True)

[16]: # Then load your credentials
service = QiskitRuntimeService(channel='ibm_quantum', instance='ibm-q/open/

↪main')

/var/folders/3n/2qkt_9ts32v_c5xkvv3d61mr0000gp/T/ipykernel_49184/204554355.py:2:
DeprecationWarning: The "ibm_quantum" channel option is deprecated and will be
sunset on 1 July. After this date, "ibm_cloud" and "local" will be the only
valid channels. For information on migrating to the new IBM Quantum Platform on
the "ibm_cloud" channel, review the migration guide

5

https://quantum-computing.ibm.com/

https://quantum.cloud.ibm.com/docs/migration-guides/classic-iqp-to-cloud-iqp .
service = QiskitRuntimeService(channel='ibm_quantum',

instance='ibm-q/open/main')

[17]: ## See the backends you have access to
service.backends(simulator=False)

[17]: [<IBMBackend('ibm_brisbane')>, <IBMBackend('ibm_sherbrooke')>]

[18]: # Now decide which backend to use
hw_backend = service.backend('ibm_brisbane')

[19]: # You can also use the backend to import a noisemodel
from qiskit_aer.noise import NoiseModel
from qiskit_aer.primitives import Estimator as AerEstimator

noise_model = NoiseModel.from_backend(hw_backend)
print(noise_model)

NoiseModel:
Basis gates: ['delay', 'ecr', 'for_loop', 'id', 'if_else', 'measure', 'reset',

'rz', 'switch_case', 'sx', 'x']
Instructions with noise: ['ecr', 'reset', 'id', 'measure', 'x', 'sx']
Qubits with noise: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,
77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,
97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,
113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126]

Specific qubit errors: [('ecr', (1, 0)), ('ecr', (2, 1)), ('ecr', (3, 2)),
('ecr', (4, 3)), ('ecr', (4, 5)), ('ecr', (4, 15)), ('ecr', (6, 5)), ('ecr', (6,
7)), ('ecr', (7, 8)), ('ecr', (8, 9)), ('ecr', (10, 9)), ('ecr', (10, 11)),
('ecr', (11, 12)), ('ecr', (12, 17)), ('ecr', (13, 12)), ('ecr', (14, 0)),
('ecr', (14, 18)), ('ecr', (15, 22)), ('ecr', (16, 8)), ('ecr', (16, 26)),
('ecr', (17, 30)), ('ecr', (18, 19)), ('ecr', (20, 19)), ('ecr', (20, 33)),
('ecr', (21, 20)), ('ecr', (21, 22)), ('ecr', (22, 23)), ('ecr', (24, 23)),
('ecr', (24, 34)), ('ecr', (25, 24)), ('ecr', (26, 25)), ('ecr', (27, 26)),
('ecr', (28, 27)), ('ecr', (28, 29)), ('ecr', (28, 35)), ('ecr', (30, 29)),
('ecr', (30, 31)), ('ecr', (31, 32)), ('ecr', (32, 36)), ('ecr', (33, 39)),
('ecr', (34, 43)), ('ecr', (35, 47)), ('ecr', (36, 51)), ('ecr', (37, 38)),
('ecr', (39, 38)), ('ecr', (40, 39)), ('ecr', (40, 41)), ('ecr', (41, 53)),
('ecr', (42, 41)), ('ecr', (42, 43)), ('ecr', (43, 44)), ('ecr', (44, 45)),
('ecr', (46, 45)), ('ecr', (46, 47)), ('ecr', (48, 47)), ('ecr', (48, 49)),
('ecr', (50, 49)), ('ecr', (50, 51)), ('ecr', (52, 37)), ('ecr', (52, 56)),
('ecr', (53, 60)), ('ecr', (54, 45)), ('ecr', (54, 64)), ('ecr', (55, 49)),
('ecr', (55, 68)), ('ecr', (56, 57)), ('ecr', (57, 58)), ('ecr', (58, 59)),
('ecr', (58, 71)), ('ecr', (59, 60)), ('ecr', (60, 61)), ('ecr', (62, 61)),

6

('ecr', (62, 63)), ('ecr', (62, 72)), ('ecr', (63, 64)), ('ecr', (65, 64)),
('ecr', (65, 66)), ('ecr', (67, 66)), ('ecr', (67, 68)), ('ecr', (69, 68)),
('ecr', (69, 70)), ('ecr', (73, 66)), ('ecr', (74, 70)), ('ecr', (74, 89)),
('ecr', (75, 90)), ('ecr', (76, 75)), ('ecr', (77, 71)), ('ecr', (77, 76)),
('ecr', (77, 78)), ('ecr', (79, 78)), ('ecr', (79, 80)), ('ecr', (80, 81)),
('ecr', (81, 72)), ('ecr', (81, 82)), ('ecr', (82, 83)), ('ecr', (83, 92)),
('ecr', (84, 83)), ('ecr', (85, 73)), ('ecr', (85, 84)), ('ecr', (85, 86)),
('ecr', (86, 87)), ('ecr', (87, 88)), ('ecr', (88, 89)), ('ecr', (91, 79)),
('ecr', (92, 102)), ('ecr', (93, 87)), ('ecr', (93, 106)), ('ecr', (94, 90)),
('ecr', (94, 95)), ('ecr', (95, 96)), ('ecr', (97, 96)), ('ecr', (97, 98)),
('ecr', (98, 91)), ('ecr', (99, 98)), ('ecr', (100, 99)), ('ecr', (100, 110)),
('ecr', (101, 100)), ('ecr', (101, 102)), ('ecr', (102, 103)), ('ecr', (104,
103)), ('ecr', (105, 104)), ('ecr', (105, 106)), ('ecr', (107, 106)), ('ecr',
(108, 107)), ('ecr', (108, 112)), ('ecr', (109, 96)), ('ecr', (110, 118)),
('ecr', (111, 104)), ('ecr', (112, 126)), ('ecr', (113, 114)), ('ecr', (114,
109)), ('ecr', (114, 115)), ('ecr', (116, 115)), ('ecr', (116, 117)), ('ecr',
(117, 118)), ('ecr', (118, 119)), ('ecr', (120, 119)), ('ecr', (121, 120)),
('ecr', (122, 111)), ('ecr', (122, 121)), ('ecr', (122, 123)), ('ecr', (124,
123)), ('ecr', (125, 124)), ('ecr', (125, 126)), ('reset', (0,)), ('reset',
(1,)), ('reset', (2,)), ('reset', (3,)), ('reset', (4,)), ('reset', (5,)),
('reset', (6,)), ('reset', (7,)), ('reset', (8,)), ('reset', (9,)), ('reset',
(10,)), ('reset', (11,)), ('reset', (12,)), ('reset', (13,)), ('reset', (14,)),
('reset', (15,)), ('reset', (16,)), ('reset', (17,)), ('reset', (18,)),
('reset', (19,)), ('reset', (20,)), ('reset', (21,)), ('reset', (22,)),
('reset', (23,)), ('reset', (24,)), ('reset', (25,)), ('reset', (26,)),
('reset', (27,)), ('reset', (28,)), ('reset', (29,)), ('reset', (30,)),
('reset', (31,)), ('reset', (32,)), ('reset', (33,)), ('reset', (34,)),
('reset', (35,)), ('reset', (36,)), ('reset', (37,)), ('reset', (38,)),
('reset', (39,)), ('reset', (40,)), ('reset', (41,)), ('reset', (42,)),
('reset', (43,)), ('reset', (44,)), ('reset', (45,)), ('reset', (46,)),
('reset', (47,)), ('reset', (48,)), ('reset', (49,)), ('reset', (50,)),
('reset', (51,)), ('reset', (52,)), ('reset', (53,)), ('reset', (54,)),
('reset', (55,)), ('reset', (56,)), ('reset', (57,)), ('reset', (58,)),
('reset', (59,)), ('reset', (60,)), ('reset', (61,)), ('reset', (62,)),
('reset', (63,)), ('reset', (64,)), ('reset', (65,)), ('reset', (66,)),
('reset', (67,)), ('reset', (68,)), ('reset', (69,)), ('reset', (70,)),
('reset', (71,)), ('reset', (72,)), ('reset', (73,)), ('reset', (74,)),
('reset', (75,)), ('reset', (76,)), ('reset', (77,)), ('reset', (78,)),
('reset', (79,)), ('reset', (80,)), ('reset', (81,)), ('reset', (82,)),
('reset', (83,)), ('reset', (84,)), ('reset', (85,)), ('reset', (86,)),
('reset', (87,)), ('reset', (88,)), ('reset', (89,)), ('reset', (90,)),
('reset', (91,)), ('reset', (92,)), ('reset', (93,)), ('reset', (94,)),
('reset', (95,)), ('reset', (96,)), ('reset', (97,)), ('reset', (98,)),
('reset', (99,)), ('reset', (100,)), ('reset', (101,)), ('reset', (102,)),
('reset', (103,)), ('reset', (104,)), ('reset', (105,)), ('reset', (106,)),
('reset', (107,)), ('reset', (108,)), ('reset', (109,)), ('reset', (110,)),
('reset', (111,)), ('reset', (112,)), ('reset', (113,)), ('reset', (114,)),
('reset', (115,)), ('reset', (116,)), ('reset', (117,)), ('reset', (118,)),

7

('reset', (119,)), ('reset', (120,)), ('reset', (121,)), ('reset', (122,)),
('reset', (123,)), ('reset', (124,)), ('reset', (125,)), ('reset', (126,)),
('id', (0,)), ('id', (1,)), ('id', (2,)), ('id', (3,)), ('id', (4,)), ('id',
(5,)), ('id', (6,)), ('id', (7,)), ('id', (8,)), ('id', (9,)), ('id', (10,)),
('id', (11,)), ('id', (12,)), ('id', (13,)), ('id', (14,)), ('id', (15,)),
('id', (16,)), ('id', (17,)), ('id', (18,)), ('id', (19,)), ('id', (20,)),
('id', (21,)), ('id', (22,)), ('id', (23,)), ('id', (24,)), ('id', (25,)),
('id', (26,)), ('id', (27,)), ('id', (28,)), ('id', (29,)), ('id', (30,)),
('id', (31,)), ('id', (32,)), ('id', (33,)), ('id', (34,)), ('id', (35,)),
('id', (36,)), ('id', (37,)), ('id', (38,)), ('id', (39,)), ('id', (40,)),
('id', (41,)), ('id', (42,)), ('id', (43,)), ('id', (44,)), ('id', (45,)),
('id', (46,)), ('id', (47,)), ('id', (48,)), ('id', (49,)), ('id', (50,)),
('id', (51,)), ('id', (52,)), ('id', (53,)), ('id', (54,)), ('id', (55,)),
('id', (56,)), ('id', (57,)), ('id', (58,)), ('id', (59,)), ('id', (60,)),
('id', (61,)), ('id', (62,)), ('id', (63,)), ('id', (64,)), ('id', (65,)),
('id', (66,)), ('id', (67,)), ('id', (68,)), ('id', (69,)), ('id', (70,)),
('id', (71,)), ('id', (72,)), ('id', (73,)), ('id', (74,)), ('id', (75,)),
('id', (76,)), ('id', (77,)), ('id', (78,)), ('id', (79,)), ('id', (80,)),
('id', (81,)), ('id', (82,)), ('id', (83,)), ('id', (84,)), ('id', (85,)),
('id', (86,)), ('id', (87,)), ('id', (88,)), ('id', (89,)), ('id', (90,)),
('id', (91,)), ('id', (92,)), ('id', (93,)), ('id', (94,)), ('id', (95,)),
('id', (96,)), ('id', (97,)), ('id', (98,)), ('id', (99,)), ('id', (100,)),
('id', (101,)), ('id', (102,)), ('id', (103,)), ('id', (104,)), ('id', (105,)),
('id', (106,)), ('id', (107,)), ('id', (108,)), ('id', (109,)), ('id', (110,)),
('id', (111,)), ('id', (112,)), ('id', (113,)), ('id', (114,)), ('id', (115,)),
('id', (116,)), ('id', (117,)), ('id', (118,)), ('id', (119,)), ('id', (120,)),
('id', (121,)), ('id', (122,)), ('id', (123,)), ('id', (124,)), ('id', (125,)),
('id', (126,)), ('x', (0,)), ('x', (1,)), ('x', (2,)), ('x', (3,)), ('x', (4,)),
('x', (5,)), ('x', (6,)), ('x', (7,)), ('x', (8,)), ('x', (9,)), ('x', (10,)),
('x', (11,)), ('x', (12,)), ('x', (13,)), ('x', (14,)), ('x', (15,)), ('x',
(16,)), ('x', (17,)), ('x', (18,)), ('x', (19,)), ('x', (20,)), ('x', (21,)),
('x', (22,)), ('x', (23,)), ('x', (24,)), ('x', (25,)), ('x', (26,)), ('x',
(27,)), ('x', (28,)), ('x', (29,)), ('x', (30,)), ('x', (31,)), ('x', (32,)),
('x', (33,)), ('x', (34,)), ('x', (35,)), ('x', (36,)), ('x', (37,)), ('x',
(38,)), ('x', (39,)), ('x', (40,)), ('x', (41,)), ('x', (42,)), ('x', (43,)),
('x', (44,)), ('x', (45,)), ('x', (46,)), ('x', (47,)), ('x', (48,)), ('x',
(49,)), ('x', (50,)), ('x', (51,)), ('x', (52,)), ('x', (53,)), ('x', (54,)),
('x', (55,)), ('x', (56,)), ('x', (57,)), ('x', (58,)), ('x', (59,)), ('x',
(60,)), ('x', (61,)), ('x', (62,)), ('x', (63,)), ('x', (64,)), ('x', (65,)),
('x', (66,)), ('x', (67,)), ('x', (68,)), ('x', (69,)), ('x', (70,)), ('x',
(71,)), ('x', (72,)), ('x', (73,)), ('x', (74,)), ('x', (75,)), ('x', (76,)),
('x', (77,)), ('x', (78,)), ('x', (79,)), ('x', (80,)), ('x', (81,)), ('x',
(82,)), ('x', (83,)), ('x', (84,)), ('x', (85,)), ('x', (86,)), ('x', (87,)),
('x', (88,)), ('x', (89,)), ('x', (90,)), ('x', (91,)), ('x', (92,)), ('x',
(93,)), ('x', (94,)), ('x', (95,)), ('x', (96,)), ('x', (97,)), ('x', (98,)),
('x', (99,)), ('x', (100,)), ('x', (101,)), ('x', (102,)), ('x', (103,)), ('x',
(104,)), ('x', (105,)), ('x', (106,)), ('x', (107,)), ('x', (108,)), ('x',
(109,)), ('x', (110,)), ('x', (111,)), ('x', (112,)), ('x', (113,)), ('x',

8

(114,)), ('x', (115,)), ('x', (116,)), ('x', (117,)), ('x', (118,)), ('x',
(119,)), ('x', (120,)), ('x', (121,)), ('x', (122,)), ('x', (123,)), ('x',
(124,)), ('x', (125,)), ('x', (126,)), ('sx', (0,)), ('sx', (1,)), ('sx', (2,)),
('sx', (3,)), ('sx', (4,)), ('sx', (5,)), ('sx', (6,)), ('sx', (7,)), ('sx',
(8,)), ('sx', (9,)), ('sx', (10,)), ('sx', (11,)), ('sx', (12,)), ('sx', (13,)),
('sx', (14,)), ('sx', (15,)), ('sx', (16,)), ('sx', (17,)), ('sx', (18,)),
('sx', (19,)), ('sx', (20,)), ('sx', (21,)), ('sx', (22,)), ('sx', (23,)),
('sx', (24,)), ('sx', (25,)), ('sx', (26,)), ('sx', (27,)), ('sx', (28,)),
('sx', (29,)), ('sx', (30,)), ('sx', (31,)), ('sx', (32,)), ('sx', (33,)),
('sx', (34,)), ('sx', (35,)), ('sx', (36,)), ('sx', (37,)), ('sx', (38,)),
('sx', (39,)), ('sx', (40,)), ('sx', (41,)), ('sx', (42,)), ('sx', (43,)),
('sx', (44,)), ('sx', (45,)), ('sx', (46,)), ('sx', (47,)), ('sx', (48,)),
('sx', (49,)), ('sx', (50,)), ('sx', (51,)), ('sx', (52,)), ('sx', (53,)),
('sx', (54,)), ('sx', (55,)), ('sx', (56,)), ('sx', (57,)), ('sx', (58,)),
('sx', (59,)), ('sx', (60,)), ('sx', (61,)), ('sx', (62,)), ('sx', (63,)),
('sx', (64,)), ('sx', (65,)), ('sx', (66,)), ('sx', (67,)), ('sx', (68,)),
('sx', (69,)), ('sx', (70,)), ('sx', (71,)), ('sx', (72,)), ('sx', (73,)),
('sx', (74,)), ('sx', (75,)), ('sx', (76,)), ('sx', (77,)), ('sx', (78,)),
('sx', (79,)), ('sx', (80,)), ('sx', (81,)), ('sx', (82,)), ('sx', (83,)),
('sx', (84,)), ('sx', (85,)), ('sx', (86,)), ('sx', (87,)), ('sx', (88,)),
('sx', (89,)), ('sx', (90,)), ('sx', (91,)), ('sx', (92,)), ('sx', (93,)),
('sx', (94,)), ('sx', (95,)), ('sx', (96,)), ('sx', (97,)), ('sx', (98,)),
('sx', (99,)), ('sx', (100,)), ('sx', (101,)), ('sx', (102,)), ('sx', (103,)),
('sx', (104,)), ('sx', (105,)), ('sx', (106,)), ('sx', (107,)), ('sx', (108,)),
('sx', (109,)), ('sx', (110,)), ('sx', (111,)), ('sx', (112,)), ('sx', (113,)),
('sx', (114,)), ('sx', (115,)), ('sx', (116,)), ('sx', (117,)), ('sx', (118,)),
('sx', (119,)), ('sx', (120,)), ('sx', (121,)), ('sx', (122,)), ('sx', (123,)),
('sx', (124,)), ('sx', (125,)), ('sx', (126,)), ('measure', (0,)), ('measure',
(1,)), ('measure', (2,)), ('measure', (3,)), ('measure', (4,)), ('measure',
(5,)), ('measure', (6,)), ('measure', (7,)), ('measure', (8,)), ('measure',
(9,)), ('measure', (10,)), ('measure', (11,)), ('measure', (12,)), ('measure',
(13,)), ('measure', (14,)), ('measure', (15,)), ('measure', (16,)), ('measure',
(17,)), ('measure', (18,)), ('measure', (19,)), ('measure', (20,)), ('measure',
(21,)), ('measure', (22,)), ('measure', (23,)), ('measure', (24,)), ('measure',
(25,)), ('measure', (26,)), ('measure', (27,)), ('measure', (28,)), ('measure',
(29,)), ('measure', (30,)), ('measure', (31,)), ('measure', (32,)), ('measure',
(33,)), ('measure', (34,)), ('measure', (35,)), ('measure', (36,)), ('measure',
(37,)), ('measure', (38,)), ('measure', (39,)), ('measure', (40,)), ('measure',
(41,)), ('measure', (42,)), ('measure', (43,)), ('measure', (44,)), ('measure',
(45,)), ('measure', (46,)), ('measure', (47,)), ('measure', (48,)), ('measure',
(49,)), ('measure', (50,)), ('measure', (51,)), ('measure', (52,)), ('measure',
(53,)), ('measure', (54,)), ('measure', (55,)), ('measure', (56,)), ('measure',
(57,)), ('measure', (58,)), ('measure', (59,)), ('measure', (60,)), ('measure',
(61,)), ('measure', (62,)), ('measure', (63,)), ('measure', (64,)), ('measure',
(65,)), ('measure', (66,)), ('measure', (67,)), ('measure', (68,)), ('measure',
(69,)), ('measure', (70,)), ('measure', (71,)), ('measure', (72,)), ('measure',
(73,)), ('measure', (74,)), ('measure', (75,)), ('measure', (76,)), ('measure',
(77,)), ('measure', (78,)), ('measure', (79,)), ('measure', (80,)), ('measure',

9

(81,)), ('measure', (82,)), ('measure', (83,)), ('measure', (84,)), ('measure',
(85,)), ('measure', (86,)), ('measure', (87,)), ('measure', (88,)), ('measure',
(89,)), ('measure', (90,)), ('measure', (91,)), ('measure', (92,)), ('measure',
(93,)), ('measure', (94,)), ('measure', (95,)), ('measure', (96,)), ('measure',
(97,)), ('measure', (98,)), ('measure', (99,)), ('measure', (100,)), ('measure',
(101,)), ('measure', (102,)), ('measure', (103,)), ('measure', (104,)),
('measure', (105,)), ('measure', (106,)), ('measure', (107,)), ('measure',
(108,)), ('measure', (109,)), ('measure', (110,)), ('measure', (111,)),
('measure', (112,)), ('measure', (113,)), ('measure', (114,)), ('measure',
(115,)), ('measure', (116,)), ('measure', (117,)), ('measure', (118,)),
('measure', (119,)), ('measure', (120,)), ('measure', (121,)), ('measure',
(122,)), ('measure', (123,)), ('measure', (124,)), ('measure', (125,)),
('measure', (126,))]

[20]: noisy_estimator = AerEstimator(
backend_options={

"method": "density_matrix",
"noise_model": noise_model,

},
run_options={"shots": n_shots},

)

[21]: # Measure
qc_measured_noisy = noisy_estimator.run(qc_meas, ob).result()

[22]: print(f"Value: {qc_measured_noisy.values[0]} ± {qc_measured_noisy.
↪metadata[0]['variance'].real}")

Value: 0.946 ± 0.10508400000000007

0.2 Exercise 13.1 : Simulating the Heisenberg Chain

[23]: from qiskit.quantum_info import SparsePauliOp

[24]: from qiskit.quantum_info import Statevector
from qiskit.circuit.library import PauliEvolutionGate

We will use the 𝑋𝑋𝑋 Heisenberg Hamiltonian 𝐻Heis as defined below

𝐻Heis =
𝑁

∑
⟨𝑖𝑗⟩

𝐽 (𝜎(𝑖)
𝑥 𝜎(𝑗)

𝑥 + 𝜎(𝑖)
𝑦 𝜎(𝑗)

𝑦 + 𝜎(𝑖)
𝑧 𝜎(𝑗)

𝑧) .

𝑁 is the number of spin-1/2 particles in model. The operators 𝜎𝑥, 𝜎𝑦, and 𝜎𝑧 are the usual Pauli
operators where the 𝑖 and 𝑗 superscripts label which qubit they act on. For example, 𝜎(1)

𝑥 would
be the 𝜎𝑥 operator acting on only qubit 1. This version of the general Heisenberg spin model is
called 𝑋𝑋𝑋 because the same 𝐽 value multiplies each pair of Pauli operators. The sum notation
⟨𝑖𝑗⟩ means the sum is over nearest neighbors (only qubits next to each other interact), and 𝐽 is the
interaction strength, which we will set 𝐽 = 1.

10

0.2.1 Classical simulation of the Heisenberg chain

We can use Qiskit to have a classical simulation of the Heisenberg chain that we will use as a
benchmark for the quantum computations.

[25]: # Returns the matrix representation of the XXX Heisenberg model
def H_heis(n_spins):

using SparsePauliOp from Terra 0.20 is very compact
XXs = SparsePauliOp.from_sparse_list([["XX", [i,i+1], 1] for i in␣

↪range(n_spins-1)], n_spins)
YYs = SparsePauliOp.from_sparse_list([["YY", [i,i+1], 1] for i in␣

↪range(n_spins-1)], n_spins)
ZZs = SparsePauliOp.from_sparse_list([["ZZ", [i,i+1], 1] for i in␣

↪range(n_spins-1)], n_spins)

Sum interactions
H = XXs + YYs + ZZs

Return Hamiltonian
return H

[26]: def U_heis(n_spins,t):
import scipy.linalg as la
Compute XXX Hamiltonian
For efficiency, can also be done with csr using H_heis(n_spins).

↪to_matrix(sparse=True)
and then use csr_array defined in the previous lectures
H = H_heis(n_spins).to_matrix()

Return the exponential of -i multipled by time t multipled by the XXX␣
↪Heisenberg Hamiltonian

return la.expm(-1j*H*t)

Now that we have the time evolution operator we can apply it to an inital state of choice and study
its time dependent properties.

We consider a system of 𝑁 = 3 spins with the initial state |𝜓0⟩ = |110⟩ and evolve it up until total
time 𝑇 = 𝜋.

We will measure the overlap with the initial state at every time 𝑡, namely 𝑂(𝑡) = |⟨110|𝑈(𝑡)|110⟩|2.

[27]: # Define array of time points
ts = np.linspace(0, np.pi, 100)
n_spins = 3

Define initial state |110>
init_state = np.array(Statevector.from_label("110"))

11

Compute probability of remaining in |110> state over the array of time points
init_state is the array corresponding to |110>
@ is short hand for matrix multiplication
U_heis(t) is the unitary time evolution at time t
init_state@U_heis@init_state returns the inner product <110|U_heis(t)|110>
np.abs(...)**2 is the modulus squared of the innner product which is the␣
↪expectation value,
or probability, of remaining in |110>

probs_110_exact = [np.abs(init_state@U_heis(n_spins,t)@init_state)**2 for t in␣
↪ts]

Plot evolution of |110>
plt.plot(ts, probs_110_exact,linestyle="dashed",color="black")
plt.xlabel('time')
plt.ylabel(r'probability of state $|110\rangle$')
plt.title(r'Evolution of state $|110\rangle$ under H_{Heis}')
plt.grid()
plt.show()

12

0.2.2 Quantum simulation of the Heisenberg chain

0.2.3 Part I: The 2 spin case

For the 2 spin case the Hamiltonian has the following form:

𝐻Heis2 = 𝜎(0)
𝑥 𝜎(1)

𝑥 + 𝜎(0)
𝑦 𝜎(1)

𝑦 + 𝜎(0)
𝑧 𝜎(1)

𝑧

We notice that the Pauli operator pairs (𝜎(𝑖)
𝑥 𝜎(𝑗)

𝑥 , 𝜎(𝑖)
𝑦 𝜎(𝑗)

𝑦 , and 𝜎(𝑖)
𝑧 𝜎(𝑗)

𝑧) commute. This means that
the exponential decomposition using Trotterization of a 2 spins Hamiltonian (𝐻Heis2) is exactand
gets us closer to a gate implementation of 𝑈Heis2(𝑡)

𝑈Heis2(𝑡) = exp (−𝑖𝑡𝐻Heis2) (1)

𝑈Heis2(𝑡) = exp (−𝑖𝑡𝜎(0)
𝑥 𝜎(1)

𝑥) exp (−𝑖𝑡𝜎(0)
𝑦 𝜎(1)

𝑦) exp (−𝑖𝑡𝜎(0)
𝑧 𝜎(1)

𝑧) (2)

Qiskit already includes these operations, but we will see how we can construct the three operations
using only single qubit rotations and CNOTs.

[28]: # First, create a classical simulation to compare

Define array of time points
ts = np.linspace(0, np.pi, 100)
n_spins = 2

Define initial state |10>
init_state = np.array(Statevector.from_label("10"))
probs_10_exact = [np.abs(init_state@U_heis(n_spins,t)@init_state)**2 for t in␣

↪ts]

Plot evolution of |10>
plt.plot(ts, probs_10_exact,linestyle="dashed",color="black")
plt.xlabel('time')
plt.ylabel(r'probability of state $|10\rangle$')
plt.title(r'Evolution of state $|10\rangle$ under H_{Heis}')
plt.grid()
plt.show()

13

We will start from the 𝑅𝑍𝑍(𝜃) rotation gate.

Once this gate is decomposed, we can act on the two qubits with 𝑅𝑌 and 𝑅𝑋 to construct 𝑅𝑋𝑋
and 𝑅𝑌 𝑌 , respectively.

The 𝑅𝑍𝑍(𝜃) is a two qubit gate with the following structure:

𝑅𝑍𝑍(𝜃) = cos(𝜃)𝐼⊗𝐼−𝑖 sin(𝜃)𝑍⊗𝑍 =
⎡
⎢⎢
⎣

cos(𝜃) − 𝑖 sin(𝜃) 0 0 0
0 cos(𝜃) + 𝑖 sin(𝜃) 0 0
0 0 cos(𝜃) + 𝑖 sin(𝜃) 0
0 0 0 cos(𝜃) − 𝑖 sin(𝜃)

⎤
⎥⎥
⎦

Since there are only diagonal elements, we can start from a single qubit rotation 𝑅𝑍 = cos(𝜃)𝐼 −
𝑖 sin(𝜃)𝑍, which is already diagonal

𝐼 ⊗ 𝑅𝑍(𝜃) =
⎡
⎢⎢
⎣

cos(𝜃) − 𝑖 sin(𝜃) 0 0 0
0 cos(𝜃) + 𝑖 sin(𝜃) 0 0
0 0 cos(𝜃) − 𝑖 sin(𝜃) 0
0 0 0 cos(𝜃) + 𝑖 sin(𝜃)

⎤
⎥⎥
⎦

14

and then invert the third and the fourth element of the diagonal. We can switch 3rd and 4th rows
by multiplying this matrix by a CNOT and then switch 3rd and 4th columns by mmultiplying the
result by another 𝐶𝑁𝑂𝑇 (see the 𝐶𝑁𝑂𝑇 definition in the lecture note).

The final result is therefore 𝐶𝑁𝑂𝑇12 ∗ 𝐼 ⊗ 𝑅𝑍(𝜃) ∗ 𝐶𝑁𝑂𝑇12.

[29]: def R_zz(t):

'''
Circuit for R_zz(t), as derived

Args:
- t: parameter of the rotation

Returns:
A QuantumCircuit implementing the R_zz(t) rotation with name ZZ

'''

ZZ_qr = QuantumRegister(2)
ZZ_qc = QuantumCircuit(ZZ_qr, name='ZZ')
ZZ_qc.cx(0,1)
ZZ_qc.rz(2 * t, 1) #<- Rotations are defined as R(\theta) = e^{-iP \theta/

↪2} in Qiskit
ZZ_qc.cx(0,1)
return ZZ_qc

[30]: R_zz(1).draw("mpl")
[30]:

Now we can apply a basis change using

𝑅𝑌 (𝜃) = exp (−𝑖𝜃
2𝑌) = (cos 𝜃

2 − sin 𝜃
2

sin 𝜃
2 cos 𝜃

2
)

apply 𝑅𝑍𝑍 and then change the basis back to the original in order to apply the 𝑅𝑋𝑋.

In particular

15

𝑅𝑌 (𝜋/2) = 1√
2

(1 −1
1 1)

and 𝑅𝑌 (𝜋/2)𝑍𝑅𝑌 (−𝜋/2) = 𝑋, 𝑅𝑌 (𝜋/2)𝑅𝑌 (−𝜋/2) = 𝐼 , therefore

[31]: def R_xx(t):

'''
Circuit for R_xx(t)

Args:
- t: parameter of the rotation

Returns:
A QuantumCircuit implementing the R_xx(t) rotation with name XX

'''

XX_qr = QuantumRegister(2)
XX_qc = QuantumCircuit(XX_qr, name='XX')

XX_qc.ry(np.pi/2,[0,1])
XX_qc.cx(0,1)
XX_qc.rz(2 * t, 1)
XX_qc.cx(0,1)
XX_qc.ry(-np.pi/2,[0,1])
return XX_qc

[32]: R_xx(1).draw("mpl")
[32]:

And a similar procedure for 𝑅𝑌 𝑌 with

𝑅𝑋(𝜃) = exp (−𝑖𝜃
2𝑋) = (cos 𝜃

2 −𝑖 sin 𝜃
2

−𝑖 sin 𝜃
2 cos 𝜃

2
)

16

[33]: def R_yy(t):

'''
Circuit for R_yy(t)

Args:
- t: parameter of the rotation

Returns:
A QuantumCircuit implementing the R_yy(t) rotation with name YY

'''

YY_qr = QuantumRegister(2)
YY_qc = QuantumCircuit(YY_qr, name='YY')

YY_qc.rx(np.pi/2,[0,1])
YY_qc.cx(0,1)
YY_qc.rz(2 * t, 1)
YY_qc.cx(0,1)
YY_qc.rx(-np.pi/2,[0,1])

return YY_qc

[34]: R_yy(1).draw("mpl")
[34]:

[35]: ## We want to measure
|0><0|= (1/2)*(I+Z)
prj_0 = SparsePauliOp(["I","Z"],[0.5,0.5])

|1><1|= (1/2)*(I-Z)
prj_1 = SparsePauliOp(["I","Z"],[0.5,-0.5])
and |10><10| = |1><1| � |0><0|
prj = prj_1 ^ prj_0

17

[36]: # run the simulation
probs_10 = []

for sim_t in ts:

Prepare
qc = QuantumCircuit(2)
qc.x(1)
qc = qc.compose(R_xx(sim_t))
qc = qc.compose(R_yy(sim_t))
qc = qc.compose(R_zz(sim_t))

Measure
prob = estimator.run([(qc,prj)]).result()[0].data.evs.real
probs_10.append(prob)

[37]: # Now plot the comparison
plt.plot(ts, probs_10_exact,linestyle="dashed",color="black",label="Exact")
plt.plot(ts, probs_10,color="C0",label="Trotter",linestyle="",marker=".")
plt.xlabel('time')
plt.ylabel(r'probability of state $|10\rangle$')

plt.legend()
plt.grid()
plt.show()

18

0.2.4 Part II: The 𝑁 > 2 spin case

Now we will study the more general case.

Actually, we just need to add a spin to see the difference: the exponential 𝑈Heis3(𝑡) cannot be
split into a product of simpler exponentials. However, we can approximate 𝑈Heis3(𝑡) as a product
of simpler exponentials through Trotterization. Consider again the 2 spin case, within the larger
3 spin system. As we have seen the Hamiltonian on spins 𝑖 and 𝑗 (𝑖, 𝑗 ∈ {0, 1, 2}) is 𝐻(𝑖,𝑗)

Heis2 =
𝜎(𝑖)

𝑥 𝜎(𝑗)
𝑥 + 𝜎(𝑖)

𝑦 𝜎(𝑗)
𝑦 + 𝜎(𝑖)

𝑧 𝜎(𝑗)
𝑧 . Rewritting 𝑈Heis3(𝑡) in terms of the two possible subsystems within the

total 𝑁 = 3 system you will simulate,

𝑈Heis3(𝑡) = exp [−𝑖𝑡 (𝐻(0,1)
Heis2 + 𝐻(1,2)

Heis2)] .

𝐻(0,1)
Heis2 and 𝐻(1,2)

Heis2 do not commute, so 𝑈Heis3(𝑡) ≠ exp (−𝑖𝑡𝐻(0,1)
Heis2) exp (−𝑖𝑡𝐻(1,2)

Heis2). But, this prod-
uct decomposition can be approximated with Trotterization which says 𝑈Heis3(𝑡) is approximately
a short evolution of 𝐻(0,1)

Heis2 (time = 𝑡/𝑛) and followed by a short evolution of 𝐻(1,2)
Heis2 (time = 𝑡/𝑛)

repeated 𝑛 times

19

𝑈Heis3(𝑡) = exp [−𝑖𝑡 (𝐻(0,1)
Heis2 + 𝐻(1,2)

Heis2)] (3)

𝑈Heis3(𝑡) ≈ [exp (−𝑖𝑡
𝑛 𝐻(0,1)

Heis2) exp (−𝑖𝑡
𝑛 𝐻(1,2)

Heis2)]
𝑛

. (4)

𝑛 is the number of Trotter steps, and as 𝑛 increases, the approximation becomes more accurate.
(Note that how a untiary is split up into subsystems for Trotterization is not necessarily unique.)

[38]: ## Here we introduce a general function for Heisenberg chain Trotter evolution
The circuit will not contain the initialisation

def Heisenberg_Trotter(num_spins,trotter_steps,t):

'''
Circuit implementing Trotterization of the time evolutiom operator for the␣

↪XXX Heisenberg
model on num_spins.

Naively, every Trotter step requires 6*(num_spins-1) CNOTs

Args:
- num_spins: int, number of qubits of the system
- trotter_steps: the number of trotter steps n to implement
- t: the simulation time we are targeting

Returns:
A QuantumCircuit implementing the Trotterization of the time evolutiom␣

↪operator for the XXX Heisenberg
model

'''
Given a target time and a number of Trotter steps, every step will evolve␣

↪the
circuit for a time step dt = target_time/trotter_steps
dt = t/trotter_steps

Initialize quantum circuit for n_spins
qr = QuantumRegister(num_spins)
A QuantumCircuit can also be initialised without a classical register (in␣

↪this case classical bits == qubits)
qc = QuantumCircuit(qr)

for _ in range(trotter_steps):
for i in range(0, num_spins - 1):

qc.append(R_xx(dt), [i, i+1])
qc.append(R_yy(dt), [i, i+1])
qc.append(R_zz(dt), [i, i+1])

20

Barrier to separate the different Trotter steps in the circuit drawing
qc.barrier()

return qc

Now we will use the function created to compare the Trotterization with the exact evolution.

[39]: # Simulate the system with a different number of Trotter steps and compare with␣
↪the matrix exponentiation

In this case, we will consider 4, 8 and 12 Trotter steps
probs_110_trott = {4:[],8:[],12:[]}

We want to measure |110><110|
prj_3 = prj_1 ^ prj_1 ^ prj_0

We loop over different number of Trotter steps
for n in probs_110_trott.keys():

for sim_t in ts:
Initialize the circuit
trott_qr = QuantumRegister(3)
trott_qc = QuantumCircuit(trott_qr)
trott_qc.x([1,2])

Append the Trotterization
trott_steps = Heisenberg_Trotter(num_spins=3,trotter_steps=n,t=sim_t)
#trott_qc = trott_qc.compose(trott_steps)
trott_qc.append(trott_steps, [trott_qr[0], trott_qr[1], trott_qr[2]])

Measure
prob = estimator.run([(trott_qc,prj_3)]).result()[0].data.evs.real
probs_110_trott[n].append(prob)

print(str(n)+" steps completed")

4 steps completed

8 steps completed

12 steps completed

[40]: # Now plot the comparison
plt.plot(ts, probs_110_exact,linestyle="dashed",color="black",label="Exact")
for (i,n) in enumerate(probs_110_trott.keys()):

plt.plot(ts, probs_110_trott[n],color="C"+str(i),label=str(n)+" steps")
plt.xlabel('time')
plt.ylabel(r'probability of state $|110\rangle$')
plt.title(r'Trotterization comparison')
plt.legend()

21

plt.grid()
plt.show()

As we can see from the plot , the dynamics gets closer and closer to the exact state evolution as
we increase the number of Trotter steps. This comes at the cost of increasing the number of gates
in our quantum circuit.

22

	Exercise 13.0 A brief introduction to Qiskit
	Exercise 13.1 : Simulating the Heisenberg Chain
	Classical simulation of the Heisenberg chain
	Quantum simulation of the Heisenberg chain
	Part I: The 2 spin case
	Part II: The N>2 spin case

