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Problem 10.1 Reptation Quantum Monte Carlo

The goal of this first exercise is to implement the Reptation Quantum Monte Carlo al-
gorithm for particles in d = 1 spatial dimension. Using this algorithm we ultimately
want to find the ground-state and its energy for the anharmonic oscillator V = 1

2
x2+λx4

(ℏ = m = 1).

a) For the Reptation Quanutum Monte Carlo algorithm we need an Ansatz wave-
function for |Ψ(τ = 0)⟩ as well as a way to compute its energy. As an Ansatz we
choose Ψ = exp [−θx2] for θ > 0. From the lecture (Chapter 8.1.1.1) we know that
the estimator for the energy (local energy) can be written as

Eloc =

∫
dx′ ⟨x| Ĥ |x′⟩ ⟨x

′|ψ⟩
⟨x|ψ⟩

=
⟨x| Ĥ |ψ⟩
⟨x|ψ⟩

(1)

From the real-space representation of the potential energy operator V̂ |x⟩ = V (x) |x⟩
and momentum operator p̂ |x⟩ = i ∂

∂x
|x⟩ and using the Anstaz Ψ derive an explicit

expression for the local energy!
(HINT : To verify your results it holds that for an Ansatz of the form Ψ = exp [J(x)]
the local energy is given by: Eloc = −1

2
[J ′′(x) + (J ′(x))2] + V (x).)

b) Using the above, implement the Reptation Quantum Monte Carlo algorithm as
described in Chapter 11.4.2.2. You can use the template provided on Moodle.

c) Imaginary-Time evolution
In a first step, compute the imaginary-time evolution for a harmonic oscillator in
1D i.e. V (x) = 1

2
x2 with the gaussian initial state Ψ defined above.

Take θ = 0.1, and a time step ∆τ = 0.1. Do simulations at different imaginary
times τ = 0.1, 0.2, . . . 2, and on each measure the expectation value (and its error)
of the Hamiltonian, using the estimator derived above. Does it converge to the exact
value?

d) Potential energy
For the same simulations, compute also the expectation value of the potential energy
and its statistical error.

e) Wave-Function evolution
Determine the wave-function sampled by the Reptation QMC at each imaginary
time τ .

Do simulations at different imaginary times τ = 0.1, 0.5, 2, 5 and for each simulation
compute the histogram of configurations in the middle of the path. How are they
distributed? What distribution should they approach in the limit of large τ?

f) Time step
Now change the time step, for example take ∆τ = 0.1, 0.2, 0.5, 0.7 and for each of
those do an imaginary-time evolution for τ = 5. Plot the expectation value of the
energy as a function of the time step. Why does it change?



g) Exact evolution
How would you compute analytically or numerically (with exact diagonalization
techniques) the exact imaginary-time evolution? Compute it and compare the ex-
pectation value of the energy with the one obtained with the QMC.

h) Anharmonic oscillator
Finally consider the anharmonic oscillator V1 = 1

2
x2 + λx4 and use the Reptation

QMC to find the exact ground-state energy and wave-function for λ = 0.2 using the
same variational Ansatz as for the harmonic case.

Problem 10.2 Helium atom [Only for the brave]

a) 3 dimensions
Adapt the QMC code to work in 3 dimensions and for N particles.

b) Importance-Sampled propagator
Change transition probability to implement the propagator with importance sam-
pling. Change also, according to the prescriptions in the lecture notes, the accep-
tance probabilities.

c) Local Energy
Now consider the Helium atom Hamiltonian in the approximation of infinitely heavy
nucleus:

H(r⃗1, r⃗2) = −1
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r12
, (2)

where r12 = |r⃗1− r⃗2| is the distance between the two electrons, and r1 is the distance
of atom 1 from the nucleus (assumed to be fixed at the coordinate center) and equally
for r2, the distance of the other electron from the nucleus. Take as a variational
state the two-body Jastrow wave-function:

Ψ(r⃗1, r⃗2) = exp

[
−2r1 − 2r2 +

r12
2(1 + θ r12)

]
(3)

, where θ is a variational parameter. Show that the local energy in this case is:

Eloc(r⃗1, r⃗2) = −4+
θ
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+
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+

θ
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+
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,

(4)
where r̂ = r⃗/|r|.
Start with a reasonable value of θ and compute the exact ground-state energy with
the Reptation QMC.
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