Lecture 5: Ballistic transport

March 2025

la. The measured current through a point contact with two available channels,
when a voltage of 2011V is applied, is shown below; what is the conductance in
Siemens, and in units of the quantum of conductance, G, 7

To calculate conductance, we can use Ohm’s Law:

I
G=—
1%
From the plot:
I ~2.00nA=200x10"% A
V=2pV=20x10"°V

Conductance in Siemens:

2,00 x 107°

_ =1. 1074S=1
G TR 00 x 1074 S = 10078

Conductance in units of Gj: The quantum of conductance is given by:

2 2
Go = % ~ 7748 x 10°° §

—4
G _ 1.00 x 10 ~ 129
Gy 7.748 x 107°

1b. Transmission Probabilities

The noise formula is:
T.(1-T,)

_ 2on
S] = 2el En Tn

Given:
S;=20x10"2A?/Hz, 1=200x10"2A, e=16x10"1°C

From part (a), the total transmission is:

G
T1+T2:G70:1.29

Let us compute the right-hand side of the noise equation:

Si 2.0x 10728

Rt =0.312
2el  2-1.6x10719.2.0x 10~9 03125

So:

T,(1-T)) +To(1—T
it 1);;9 2( 2) _ 03125 = T1(1—Ty) 4 Tr(1 — T) = 0.4031



Assuming T + T» = 1.29, try values numerically:

Example:
Ty =085, T, =044

Ty(1—-Ty)=0.1275, T5(1—T3)=0.2464, Sum = 0.3739 ~ 0.4031
So approximate transmissions:
T, ~0.85, T5~0.44
lc. Johnson (Thermal) Noise

Johnson noise power spectral density:
S; = 4kgTG

Where:
kp=138x1073J/K, T=4K, G=1.00x10"*S
S;p=4-138x1072.4-1.00 x 107* =2.208 x 10726 A? /Hz

To convert to current noise, assume a bandwidth A f. For example, if:

Irms =10 pA = 10711 A

Then: (10-11y?
Af = 39 %10-% ~ 4.55kHz
1d. Shot Noise Comparison
Shot Noise in a Resistor
For a classical resistor, shot noise is given by:
Sr = 2el

Noise in a Quantum Point Contact

The noise in a quantum point contact is given by:

_ Zcrn(l *Tn)
Sr = 2el 72 T

Since
Y T.A-T,) <> T,

the noise is always smaller than 2el, unless all transmission probabilities T,, = 1. In that special case:
T,=1=)Y T,(1-T,)=0=S; =0
Thus, the shot noise in a quantum point contact is always:
S < 2el

with equality only when all 7,, = 0.5 (maximum noise), and S; = 0 when all T,, = 1 (fully transmitted
without partition).



2.Electrons in a high magnetic field form Landau levels. In this
exercise it will be shown that this can be described quantum me-
chanically as a harmonic oscillator.

a. Hamiltonian for an Electron in a Uniform Magnetic Field

The Hamiltonian for an electron in a magnetic field is given by:

H= o (p—eA) +V(2)

where:
e p = —iAV is the momentum operator,
e A is the vector potential,
e V(2) is the scalar potential (depends only on 2).
Expanding the squared term:
(p—eA)’ =p?—e(p-A+A p)+e*A%
Since V- A = 0 (Coulomb gauge), p- A = A - p, so:

1
2m*

H = (=h°V? = 2iheA -V + e A%) + V(2).

b. General Form of the Vector Potential

For a magnetic field B = B.Z, the vector potential A can be chosen in different gauges. Two common
choices are:

e Landau gauge: A = (—B.y,0,0),

e Symmetric gauge: A = (— Bﬁy, B§w70>~

Here, the symmetric gauge is used:

B.y. B
Ys B

A=—
2 2

7.

c. Separation of the Hamiltonian

With the symmetric gauge, the Hamiltonian becomes:

1 eB.y 2 eB,x 2
H:2m* <<px+ 5 > +<py2> +p2 | +V(2).

Since V (z) depends only on z, the Hamiltonian separates as:

H = Hry(x7y) + HZ(Z)v
where:

o H.(2) = L +V(2),

2m

2 2
S e
The wave function can be written as:

77[}(567yv Z) = 1/)(95731))((2)




d. Wave Function and Schrodinger Equation
Assume 9 (z,y) = u(y)e*®. Substituting into Hy,t) = E,y1:

3 R 9* Rk _ hkeB.y N e? B2y? uly)
2m* Oy?  2m* m* 2m* Y

= (Eay — E)u(y).

e. Harmonic Oscillator Form

Let n =y — yo, where yg = 5. The equation becomes:

B0 1, 4, 0
s 7 T R u(n) = (Eyy — E)u(n),

where the cyclotron frequency is:
eB,

m*

We =

Level Spacing and Zeeman Energy

The energy levels of the harmonic oscillator are:

1
= — | hw,.
E <n+2)

For m* =0.07m,, B, =1T:

eB, 1.6 x 1071 x 1

- ~ 2.5 x 10'2 N
= 007 x 911 x 1081 ¥ 25 x 107 rad/s

We =

The level spacing is:
AFE = hw, ~ 1.05 x 1073 x 2.5 x 10?2 ~ 2.6 x 10722 J ~ 1.6 meV.
The Zeeman energy is:
Ez = gupB.,
where pp = 52 ~ 5.8 x 107°eV/T. For g ~ 2:

2m

FE7 ~0.12meV.

The Landau level spacing (1.6 meV) is larger than the Zeeman energy (0.12meV).

f. Electron Position in the 2DEG

In the absence of a magnetic field, the electron is centered in the 2DEG. With Landau levels, the electron’s

wave function is localized around yo = e%“, shifting its average position toward one edge of the 2DEG.

3 The Hall Effect

In the lectures we have encountered the Hall effect three times as:
e The classical diffusive Hall effect,
e The classical ballistic Hall effect,
e The (integer) quantum Hall effect.

What are the differences and similarities in these different effects?

Hint: Consider what is measured in each case, what the relevant length scales are, and make sketches
of typical electron paths for each regime. Compare the role of scattering, magnetic field strength, and the
quantum mechanical nature of transport.



a. Comparison of Hall Effects

Effect Type Classical Diffusive | Classical Ballistic

Integer Quantum Hall (IQHE)

Measurement Ryw, Ry Ryy, Ry

Quantized Ry, Ryz =0

Length Scales | /< L {>1L

EB = \/h/@B

Electron Paths | Scattered trajectories | Ballistic edges

Landau orbits

b.Classical Diffusive Hall Effect

Resistance Measurements

For a 2D bar of length L, width W, and sheet resistance Ry:

L
Rx.r = ROW
B
R, =
Y nge

where ng is the 2D electron concentration.

Electron Dynamics

The force on an electron:
F=—-e(E+vxB)

Current density and average velocity:
J = —nge(v)

c.Integer Quantum Hall Effect

Landau Level Quantization

Energy spacing between Landau levels:

AE = hw, = 8

*

For B=1T and m* = 0.07 m,:
AFE ~ 1.7meV

Density of States

e Zero field: Continuous parabolic density of states

e High field: Discrete Landau levels at E,, = (n + % )hw,

Electron Count

Number of electrons per Landau level:

where A is the sample area.



Sketches of Hall Effects

a. Diffusive

—-»I b —>
----- -« -

b. Ballistic

Figure 1: Hall Effect in different regime.

Figure 3. The Hall effect
of a 2D electron system in

the diffusive regime. As usual
two current contacts (2 and 4)
are used for supplying the
current; two voltage contacts
(I and 3) allow measurement
of the Hall voltage via pi) - p13.
Dashed lines are equipotential
lines.

Figure 3. The Hall effect in
a 2DEG in the ballistic

regime. The Hall voltage (from
py and pi3) now follows from
the particular electron
trajectories and the
requirement of zero net current
at the two voltage contacts 1
and 3. Three pairs of
trajectories a,b and ¢ are
shown for increasing magnetic
fields.

1. Classical Diffusive Hall Effect

Figure 3.. . Hall effect in the
ballistic regime at large magnetic
fields. As the cyclotron radius is
small compared to the system
sizes the electrons contributing
to the current will flow along the
walls in "skipping orbits".

4(a) The resistance R,, of the two dimensional bar shown in the figure is mea-
sured. Express the resistance R,, in the resistance of a square Rg- and the
dimensions of the bar. How does the resistance depend on the length L?

Let:

e Rxx: Longitudinal resistance of the bar

e Rpo: Sheet resistance (resistance of a square segment)

e [: Length of the bar
o W: Width of the bar

The resistance of a rectangular 2D conductor is given by:

L
RXX:RI:I'W

Thus, the resistance increases linearly with the length L, assuming the width W is constant:

RX)(O(L



4(b) In the classical diffusive limit, what is the force F on an electron in an
electric and magnetic field? How are the average velocity of the electrons and
the current density related?

In the classical diffusive limit, the force on an electron in an electric field E and magnetic field Bis given

by the Lorentz force:
F=—-eE+7xB)
In steady state (no acceleration), the average force on the electrons vanishes:
E4+ixB=0=>E=-txB
For a current flowing in the z-direction and magnetic field B= Bz, this yields a transverse electric field
E .

Y
E,=v,B

The current density j is related to the average velocity by:

4(c) Now the Hall voltage V, is measured and divided by the applied current
Ix to obtain the Hall resistance R,,. Can a net current flow in the y direction?
Use the answer to b to express the R,, in the 2D electron concentration.

The Hall resistance is defined as:

Wy
Rxy = —
Xy = o
From the result in (b), using v, = ﬁ, we get:
IxB IxB
B, =v,B = V=B, W=
y =Y —neW Y Y —ne
So: A B
Rxy = Il =—
X —ne

For a 2D electron system, define the 2D electron density nap (units: electrons/m?). Then:

B
naope

Rxy =

Net Current in y-Direction?

No, a net current cannot flow in the y-direction. In steady state, the Lorentz force is exactly balanced by
the transverse electric field (the Hall voltage), so electrons accumulate on the sides but do not continue to
move in the y-direction. Hence, the net transverse current is zero:

jy:()

5a: Landau Level Spacing and Density of States

The energy of the n-th Landau level in a 2D electron gas under a perpendicular magnetic field B is given
by:

1
E, = hw, (n+2), n=0,12,...



where the cyclotron frequency is defined as:
eB

m*

We =
Thus, the spacing between two adjacent Landau levels is:

heB

*

AFE = hw, =

This is the energy spacing in terms of magnetic field B, Planck’s constant &, electron charge e, and the
effective mass m*.
For B = 1T, using e = 1.602 x 1071 C, and assuming m* = m,, (free electron mass, 9.109 x 10731 kg):

(1.054 x 1073%)(1.602 x 10~19)(1)

AE = . =1.854 x 10722J
9.109 x 1031 x
Converting to electron volts (eV):
1.854 x 10—22
=T  ~116x103%eV=1.1
1602 x 10-1° 6 x107°eV 6 meV

5b. Landau Level Degeneracy and Fermi Energy Behavior in 2DEG

Formi the 2D case the number of states for an area S and per unit energy is given by
m*

QSW
with g; = 2 for the spin-degeneracy. Thus the number of states available in a single Landau state and

within the area S becomes

Nop(B =0) = pap(B=0) - § = % (4.16)

m* e P
PR o =gy (417
In an isolated two-dimensional electron gas (2DEG), where the number of electrons remains constant
when the magnetic field is turned on, the Fermi energy shifts in order to accommodate the same total
electron density.
The Landau level just below the Fermi energy is completely filled, and the Fermi energy lies in the gap
between the highest filled and the next empty Landau level.

N = Nop(B =0) - hw, = -smc:gs%Bszgs



Sa. and 5b.

~ E(in units ha,)

E(B+0) E(B=0)

Figure 2: 5a. Sketch the density of states for B = 0 and for high magnetic fields. 5b Sketch the magnetic
field dependence of the Fermi energy.

5c. Highest Occupied Landau Level When Connected to Leads

When the 2DEG is connected to leads with a fixed chemical potential p, the number of electrons in the
highest occupied Landau level depends on how p aligns with the Landau levels. If u lies between two
Landau levels, the highest occupied level is completely filled. If p is within a Landau level, the level is
partially filled. The exact number depends on the alignment of p with the Landau levels and the degeneracy

g.

5d. Use the number of filled Landau levels to calculate the 2D electron concen-
tration and insert this into the answer to 6¢c. Is the result what you expect?
Was the derivation done correctly or have we been cheating?

The 2D electron concentration nyp is related to the number of filled Landau levels v (filling factor) by:

eB
Nop = V——

h

6a. The extent of the wavefunctions in a harmonic oscillator are
related to the zero point uncertainty:

B h
o= V 2mw’

Its value for a Landau level is called the magnetic length. Express
it in terms of fundamental constants and the strength of WVthe
magnetic field.

1. Harmonic Oscillator Zero-Point Uncertainty:
For a harmonic oscillator with frequency w, the zero-point uncertainty is:



h
Ug = \/ ——.
0 2mw

Here, the factor of 2 in the denominator arises from the ground state energy %ﬁw of the oscillator.

2. Landau Level Case:

For an electron in a magnetic field B, the cyclotron frequency is w, = <2. The magnetic length 5
replaces ug and is derived from the ground state energy of the Landau level (5hw.):

e [T
B m*w. V eB’

Note: The factor of 2 disappears because the Landau level energy %hwc is already accounted for in the
quantization, and the spatial extent depends on fi/(m*w,.) directly.

3. Final Expression:
| h
Ip =1 —.
B eB

In terms of fundamental constants and B:
6b. Hall Resistance (Ry) for Given Parameters

Given Parameters:
e Fermi energy: Fp = 5eV
e Effective mass: m* = m, (free electron mass)
e Voltage probe width: Wy = 50 nm

e Magnetic field: B (variable)

Calculate 2D Electron Concentration (nqp)
The 2D electron density is determined from the Fermi energy:

m*EF

Nna2p =
mh?

Substituting the given values:

~me-(5eV)  (9.11 x 1073 kg)(8.01 x 10719 J) 5 o
2D = mh? n m(1.05 x 10=34 Js)2 ~ L1 107 em

Determine Filling Factor (v)

The filling factor depends on the magnetic field B:

’IlgDh
eB

Substituting nop:
(114 x 10 m™2) - (6.63 x 107** Js) 471 x 1073 T

v (1.6 x 10-1°C) - B B

10



Quantized Hall Resistance (Ry)

The Hall resistance in the integer quantum Hall effect is:

h
Ry=—
B De2
Substituting v:
h B
Ry — -
T (gt e mape

B B

Ry =

(114 x 105 m-2) - (1.6 x 10-19C)  1.82x 10 4Q-1T-!

Ry = (549 x 10°QT 1B

The Hall resistance as a function of B is:

B
Ru(B) = o (549 x 10°QT " HB

e Linear B-dependence: Ry «x B
e No dependence on V,: Quantization is robust against longitudinal voltage variations

e Consistency: Matches both quantum and classical Hall effects for the given nsp

Conclusion:

The derivation shows that:
e In the quantum limit, Ry = h/ve? (quantized for integer v)
e In the classical limit, Ry = B/(nype) (valid for any B)

The result aligns with experimental observations in the integer quantum Hall effect.

11



