
Lecture 5: Ballistic transport

March 2025

1a. The measured current through a point contact with two available channels,
when a voltage of 20 µV is applied, is shown below; what is the conductance in
Siemens, and in units of the quantum of conductance, G0 ?

To calculate conductance, we can use Ohm’s Law:

G =
I

V

From the plot:

I ≈ 2.00 nA = 2.00× 10−9 A

V = 20µV = 20× 10−6 V

Conductance in Siemens:

G =
2.00× 10−9

20× 10−6
= 1.00× 10−4 S = 100µS

Conductance in units of G0: The quantum of conductance is given by:

G0 =
2e2

h
≈ 7.748× 10−5 S

G

G0
=

1.00× 10−4

7.748× 10−5
≈ 1.29

1b. Transmission Probabilities

The noise formula is:

SI = 2eI ·
∑

n Tn(1− Tn)∑
n Tn

Given:
SI = 2.0× 10−28 A2/Hz, I = 2.00× 10−9 A, e = 1.6× 10−19 C

From part (a), the total transmission is:

T1 + T2 =
G

G0
= 1.29

Let us compute the right-hand side of the noise equation:

SI

2eI
=

2.0× 10−28

2 · 1.6× 10−19 · 2.0× 10−9
= 0.3125

So:
T1(1− T1) + T2(1− T2)

1.29
= 0.3125 ⇒ T1(1− T1) + T2(1− T2) = 0.4031
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Assuming T1 + T2 = 1.29, try values numerically:
Example:

T1 = 0.85, T2 = 0.44

T1(1− T1) = 0.1275, T2(1− T2) = 0.2464, Sum = 0.3739 ≈ 0.4031

So approximate transmissions:
T1 ≈ 0.85, T2 ≈ 0.44

1c. Johnson (Thermal) Noise

Johnson noise power spectral density:
SI = 4kBTG

Where:
kB = 1.38× 10−23 J/K, T = 4K, G = 1.00× 10−4 S

SI = 4 · 1.38× 10−23 · 4 · 1.00× 10−4 = 2.208× 10−26 A2/Hz

To convert to current noise, assume a bandwidth ∆f . For example, if:

Irms = 10pA = 10−11 A

Then:

∆f =
(10−11)2

2.2× 10−26
≈ 4.55 kHz

1d. Shot Noise Comparison

Shot Noise in a Resistor

For a classical resistor, shot noise is given by:

SI = 2eI

Noise in a Quantum Point Contact

The noise in a quantum point contact is given by:

SI = 2eI ·
∑
Tn(1− Tn)∑

Tn

Since ∑
Tn(1− Tn) ≤

∑
Tn

the noise is always smaller than 2eI, unless all transmission probabilities Tn = 1. In that special case:

Tn = 1 ⇒
∑

Tn(1− Tn) = 0 ⇒ SI = 0

Thus, the shot noise in a quantum point contact is always:

SI ≤ 2eI

with equality only when all Tn = 0.5 (maximum noise), and SI = 0 when all Tn = 1 (fully transmitted
without partition).
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2.Electrons in a high magnetic field form Landau levels. In this
exercise it will be shown that this can be described quantum me-
chanically as a harmonic oscillator.

a. Hamiltonian for an Electron in a Uniform Magnetic Field

The Hamiltonian for an electron in a magnetic field is given by:

H =
1

2m∗ (p− eA)
2
+ V (z),

where:

• p = −iℏ∇ is the momentum operator,

• A is the vector potential,

• V (z) is the scalar potential (depends only on z).

Expanding the squared term:

(p− eA)
2
= p2 − e(p ·A+A · p) + e2A2.

Since ∇ ·A = 0 (Coulomb gauge), p ·A = A · p, so:

H =
1

2m∗

(
−ℏ2∇2 − 2iℏeA · ∇+ e2A2

)
+ V (z).

b. General Form of the Vector Potential

For a magnetic field B = Bz ẑ, the vector potential A can be chosen in different gauges. Two common
choices are:

• Landau gauge: A = (−Bzy, 0, 0),

• Symmetric gauge: A =
(
−Bzy

2 , Bzx
2 , 0

)
.

Here, the symmetric gauge is used:

A = −Bzy

2
x̂+

Bzx

2
ŷ.

c. Separation of the Hamiltonian

With the symmetric gauge, the Hamiltonian becomes:

H =
1

2m∗

((
px +

eBzy

2

)2

+

(
py −

eBzx

2

)2

+ p2z

)
+ V (z).

Since V (z) depends only on z, the Hamiltonian separates as:

H = Hxy(x, y) +Hz(z),

where:

• Hz(z) =
p2
z

2m∗ + V (z),

• Hxy(x, y) =
1

2m∗

((
px + eBzy

2

)2
+
(
py − eBzx

2

)2)
.

The wave function can be written as:

ψ(x, y, z) = ψ(x, y)χ(z).
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d. Wave Function and Schrödinger Equation

Assume ψ(x, y) = u(y)eikx. Substituting into Hxyψ = Exyψ:(
− ℏ2

2m∗
∂2

∂y2
+

ℏ2k2

2m∗ − ℏkeBzy

m∗ +
e2B2

zy
2

2m∗

)
u(y) = (Exy − E0

z )u(y).

e. Harmonic Oscillator Form

Let η = y − y0, where y0 = ℏk
eBz

. The equation becomes:(
− ℏ2

2m∗
∂2

∂η2
+

1

2
m∗ω2

cη
2

)
u(η) = (Exy − E0

z )u(η),

where the cyclotron frequency is:

ωc =
eBz

m∗ .

Level Spacing and Zeeman Energy

The energy levels of the harmonic oscillator are:

En =

(
n+

1

2

)
ℏωc.

For m∗ = 0.07me, Bz = 1T:

ωc =
eBz

m∗ =
1.6× 10−19 × 1

0.07× 9.11× 10−31
≈ 2.5× 1012 rad/s.

The level spacing is:

∆E = ℏωc ≈ 1.05× 10−34 × 2.5× 1012 ≈ 2.6× 10−22 J ≈ 1.6meV.

The Zeeman energy is:
EZ = gµBBz,

where µB = eℏ
2me

≈ 5.8× 10−5 eV/T. For g ≈ 2:

EZ ≈ 0.12meV.

The Landau level spacing (1.6meV) is larger than the Zeeman energy (0.12meV).

f. Electron Position in the 2DEG

In the absence of a magnetic field, the electron is centered in the 2DEG. With Landau levels, the electron’s
wave function is localized around y0 = ℏk

eBz
, shifting its average position toward one edge of the 2DEG.

3 The Hall Effect

In the lectures we have encountered the Hall effect three times as:

• The classical diffusive Hall effect,

• The classical ballistic Hall effect,

• The (integer) quantum Hall effect.

What are the differences and similarities in these different effects?
Hint: Consider what is measured in each case, what the relevant length scales are, and make sketches

of typical electron paths for each regime. Compare the role of scattering, magnetic field strength, and the
quantum mechanical nature of transport.
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a. Comparison of Hall Effects

Effect Type Classical Diffusive Classical Ballistic Integer Quantum Hall (IQHE)
Measurement Rxx, Rxy Rxx, Rxy Quantized Rxy, Rxx = 0

Length Scales ℓ≪ L ℓ≫ L ℓB =
√

ℏ/eB
Electron Paths Scattered trajectories Ballistic edges Landau orbits

b.Classical Diffusive Hall Effect

Resistance Measurements

For a 2D bar of length L, width W , and sheet resistance R0:

Rxx = R0
L

W
(1)

Rxy =
B

nse
(2)

where ns is the 2D electron concentration.

Electron Dynamics

The force on an electron:
F = −e(E+ v ×B) (3)

Current density and average velocity:
J = −nse⟨v⟩ (4)

c.Integer Quantum Hall Effect

Landau Level Quantization

Energy spacing between Landau levels:

∆E = ℏωc =
ℏeB
m∗ (5)

For B = 1T and m∗ = 0.07me:
∆E ≈ 1.7meV (6)

Density of States

• Zero field: Continuous parabolic density of states

• High field: Discrete Landau levels at En = (n+ 1
2 )ℏωc

Electron Count

Number of electrons per Landau level:

N =
eB

h
·A (7)

where A is the sample area.
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Sketches of Hall Effects

Figure 1: Hall Effect in different regime.

1. Classical Diffusive Hall Effect

4(a) The resistance Rxx of the two dimensional bar shown in the figure is mea-
sured. Express the resistance Rxx in the resistance of a square R□· and the
dimensions of the bar. How does the resistance depend on the length L?

Let:

• RXX : Longitudinal resistance of the bar

• R□: Sheet resistance (resistance of a square segment)

• L: Length of the bar

• W : Width of the bar

The resistance of a rectangular 2D conductor is given by:

RXX = R□ · L
W

Thus, the resistance increases linearly with the length L, assuming the width W is constant:

RXX ∝ L

6



4(b) In the classical diffusive limit, what is the force F on an electron in an
electric and magnetic field? How are the average velocity of the electrons and
the current density related?

In the classical diffusive limit, the force on an electron in an electric field E⃗ and magnetic field B⃗ is given
by the Lorentz force:

F⃗ = −e(E⃗ + v⃗ × B⃗)

In steady state (no acceleration), the average force on the electrons vanishes:

E⃗ + v⃗ × B⃗ = 0 ⇒ E⃗ = −v⃗ × B⃗

For a current flowing in the x-direction and magnetic field B⃗ = Bẑ, this yields a transverse electric field
E⃗y:

Ey = vxB

The current density j⃗ is related to the average velocity by:

j⃗ = −nev⃗ ⇒ v⃗ =
−j⃗
ne

4(c) Now the Hall voltage Vy is measured and divided by the applied current
Ix to obtain the Hall resistance Rxy. Can a net current flow in the y direction?
Use the answer to b to express the Rxy in the 2D electron concentration.

The Hall resistance is defined as:

RXY =
VY
IX

From the result in (b), using vx = IX
−neW , we get:

Ey = vxB =
IXB

−neW
⇒ VY = Ey ·W =

IXB

−ne

So:

RXY =
VY
IX

=
B

−ne
For a 2D electron system, define the 2D electron density n2D (units: electrons/m2). Then:

RXY =
B

n2De

Net Current in y-Direction?

No, a net current cannot flow in the y-direction. In steady state, the Lorentz force is exactly balanced by
the transverse electric field (the Hall voltage), so electrons accumulate on the sides but do not continue to
move in the y-direction. Hence, the net transverse current is zero:

jy = 0

5a: Landau Level Spacing and Density of States

The energy of the n-th Landau level in a 2D electron gas under a perpendicular magnetic field B is given
by:

En = ℏωc

(
n+

1

2

)
, n = 0, 1, 2, . . .
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where the cyclotron frequency is defined as:

ωc =
eB

m∗

Thus, the spacing between two adjacent Landau levels is:

∆E = ℏωc =
ℏeB
m∗

This is the energy spacing in terms of magnetic field B, Planck’s constant ℏ, electron charge e, and the
effective mass m∗.

For B = 1T, using e = 1.602× 10−19 C, and assuming m∗ = me (free electron mass, 9.109× 10−31 kg):

∆E =
(1.054× 10−34)(1.602× 10−19)(1)

9.109× 10−31
= 1.854× 10−22 J

Converting to electron volts (eV):

∆E =
1.854× 10−22

1.602× 10−19
≈ 1.16× 10−3 eV = 1.16meV

5b. Landau Level Degeneracy and Fermi Energy Behavior in 2DEG

Formi the 2D case the number of states for an area S and per unit energy is given by

N2D(B = 0) = ρ2D(B = 0) · S = gs
m∗

2πℏ2
· S (4.16)

with gs = 2 for the spin-degeneracy. Thus the number of states available in a single Landau state and
within the area S becomes

NL,n = N2D(B = 0) · ℏωc = gs
m∗

2πℏ2
· S · ℏωc = gs

e

h
BS = gs

e

h
Φ = gs

Φ

Φ0
(4.17)

In an isolated two-dimensional electron gas (2DEG), where the number of electrons remains constant
when the magnetic field is turned on, the Fermi energy shifts in order to accommodate the same total
electron density.

The Landau level just below the Fermi energy is completely filled, and the Fermi energy lies in the gap
between the highest filled and the next empty Landau level.
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Figure 2: 5a. Sketch the density of states for B = 0 and for high magnetic fields. 5b Sketch the magnetic
field dependence of the Fermi energy.

5c. Highest Occupied Landau Level When Connected to Leads

When the 2DEG is connected to leads with a fixed chemical potential µ, the number of electrons in the
highest occupied Landau level depends on how µ aligns with the Landau levels. If µ lies between two
Landau levels, the highest occupied level is completely filled. If µ is within a Landau level, the level is
partially filled. The exact number depends on the alignment of µ with the Landau levels and the degeneracy
g.

5d. Use the number of filled Landau levels to calculate the 2D electron concen-
tration and insert this into the answer to 6c. Is the result what you expect?
Was the derivation done correctly or have we been cheating?

The 2D electron concentration n2D is related to the number of filled Landau levels ν (filling factor) by:

n2D = ν
eB

h

6a. The extent of the wavefunctions in a harmonic oscillator are
related to the zero point uncertainty:

u0 =

√
ℏ

2mω
.

Its value for a Landau level is called the magnetic length. Express
it in terms of fundamental constants and the strength of WVthe
magnetic field.

1. Harmonic Oscillator Zero-Point Uncertainty:
For a harmonic oscillator with frequency ω, the zero-point uncertainty is:
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u0 =

√
ℏ

2mω
.

Here, the factor of 2 in the denominator arises from the ground state energy 1
2ℏω of the oscillator.

2. Landau Level Case:
For an electron in a magnetic field B, the cyclotron frequency is ωc = eB

m∗ . The magnetic length ℓB
replaces u0 and is derived from the ground state energy of the Landau level ( 12ℏωc):

ℓB =

√
ℏ

m∗ωc
=

√
ℏ
eB

.

Note: The factor of 2 disappears because the Landau level energy 1
2ℏωc is already accounted for in the

quantization, and the spatial extent depends on ℏ/(m∗ωc) directly.
3. Final Expression:
In terms of fundamental constants and B:

ℓB =

√
ℏ
eB

.

6b. Hall Resistance (RH) for Given Parameters

Given Parameters:

• Fermi energy: EF = 5 eV

• Effective mass: m∗ = me (free electron mass)

• Voltage probe width: WV = 50nm

• Magnetic field: B (variable)

Calculate 2D Electron Concentration (n2D)

The 2D electron density is determined from the Fermi energy:

n2D =
m∗EF

πℏ2

Substituting the given values:

n2D =
me · (5 eV)

πℏ2
=

(9.11× 10−31 kg)(8.01× 10−19 J)

π(1.05× 10−34 J s)2
≈ 1.14× 1015 cm−2

Determine Filling Factor (ν)

The filling factor depends on the magnetic field B:

ν =
n2Dh

eB

Substituting n2D:

ν =
(1.14× 1015 m−2) · (6.63× 10−34 J s)

(1.6× 10−19 C) ·B
=

4.71× 10−3 T−1

B
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Quantized Hall Resistance (RH)

The Hall resistance in the integer quantum Hall effect is:

RH =
h

νe2

Substituting ν:

RH =
h(

n2Dh
eB

)
e2

=
B

n2De

RH =
B

(1.14× 1015 m−2) · (1.6× 10−19 C)
=

B

1.82× 10−4 Ω−1 T−1

RH = (5.49× 103 ΩT−1)B

The Hall resistance as a function of B is:

RH(B) =
B

n2De
= (5.49× 103 ΩT−1)B

• Linear B-dependence: RH ∝ B

• No dependence on Vx: Quantization is robust against longitudinal voltage variations

• Consistency: Matches both quantum and classical Hall effects for the given n2D

Conclusion:

The derivation shows that:

• In the quantum limit, RH = h/νe2 (quantized for integer ν)

• In the classical limit, RH = B/(n2De) (valid for any B)

The result aligns with experimental observations in the integer quantum Hall effect.
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