
Lecture 3: Ballistic transport

March 2025

1a. What is the order of the length-scales for classical ballistic
transport: L, λF , le and lϕ??

The classical ballistic regime is characterised by the following relation be-
tween length scales:

λF ≪ L < li, le

i.e., the size of the system, L, is taken to be considerably smaller than any of
the characteristic scattering lengths. The Fermi wavelength is assumed to play
no role at all.

1b. How does the resistance of a channel change when the length
is increased for a quasi and true ballistic channel?

The resistance of a channel behaves differently when the length is increased,
depending on whether the transport is quasi-ballistic or truly ballistic. Below
is a detailed explanation for both cases:

1. True Ballistic Transport

In a truly ballistic channel, electrons travel through the conductor without any
scattering events. This means that the mean free path (le) is much larger than
the length of the channel (L).

• Resistance in True Ballistic Transport:

– The resistance is primarily determined by the contacts and the quan-
tum conductance of the channel.

– The resistance does not depend on the length of the channel because
there are no scattering events within the channel.

– The resistance R can be expressed as:

R =
h

2e2
· 1

N

where h is Planck’s constant, e is the elementary charge, and N is
the number of conducting channels (modes).
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• Effect of Increasing Length:

– In a truly ballistic channel, increasing the length L does not change
the resistance because the electrons do not experience any scattering
within the channel.

2. Quasi-Ballistic Transport

In a quasi-ballistic channel, electrons experience some scattering events, but the
mean free path (le) is still relatively large compared to the length of the channel
(L).

• Resistance in Quasi-Ballistic Transport:

– The resistance has contributions from both the contacts and the scat-
tering within the channel.

– The resistance R can be expressed as:

R =
h

2e2
· 1

N
+Rscattering

where Rscattering is the additional resistance due to scattering events
within the channel.

• Effect of Increasing Length:

– As the length L of the channel increases, the probability of scattering
events increases, leading to an increase in Rscattering.

– Therefore, the resistance of a quasi-ballistic channel increases with
increasing length, but the increase is not as pronounced as in a dif-
fusive transport regime where scattering is frequent.

1c. A ballistic nanotube is measured in a four-terminal geometry.
What is larger, the two-terminal or the four-terminal resistance and
what causes the difference.

• Two-terminal resistance: This includes both the intrinsic resistance
of the nanotube and the contact resistance between the nanotube and
the electrodes. The two-terminal resistance is typically larger because it
accounts for the resistance at the contacts, which can be significant in
nanoscale devices.

• Four-terminal resistance: This measurement is designed to eliminate
the contact resistance by using separate pairs of electrodes for current
injection and voltage measurement. The four-terminal resistance is there-
fore smaller than the two-terminal resistance because it only measures the
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intrinsic resistance of the nanotube.

1d. First the two-terminal resistance is measured. What values
for the four point-measurements can you expect?

Figure 1: (a) Atomic force microscopy image of a SWNT con- tacted by 2
MWNTs and 2 Au electrodes (b) Schematic of the R4pt measurement. (c), (d)
Levels of the electrochemical potential for the 4 electrodes that give a positive
R4pt in (c) and a negative R4pt in (d).

The current Iα in each electrode is related to the electrochemical potential
µβ of other electrodes by

Iα =
4e2

h

∑
β

Tβαµα − Tαβµβ

with Tαβ the total transmission between the α and the β electrodes [Figs.
1(c) and 1(d)]. The condition I3 = 0 for a voltage probe gives

µ3 =
T31µ1 + T32µ2

T31 + T32
.

The transmission between electrodes 3 and 4 has been neglected since
it corresponds to a second-order process. The potential of the voltage
electrode µ3 can thus take any value between µ1 and µ2. Since the same
holds for µ4, R4pt can be negative [see Figs. 1(c) and 1(d)].

R2pt =
µ1 − µ2

I

and

R4pt =
µ3 − µ4

I
,
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R4pt takes any value between

−R2pt ≤ R4pt ≤ R2pt.

2a. Express the chemical potential of the left reservoir (µL) of
the Hall bar shown on the right in terms of the voltage drop
between the left and right lead and µR.

To express the chemical potential of the left reservoir (µL) in terms of the
voltage drop between the left and right lead and the chemical potential
of the right reservoir (µR), we can use the relationship between chemical
potential and voltage.

The chemical potential µ is related to the voltage V by the equation:

µ = −eV

where e is the elementary charge.

Given that the voltage drop between the left and right lead is VLR, we can
express the chemical potential of the left reservoir (µL) as:

µL = µR − eVLR

Here, µR is the chemical potential of the right reservoir, and VLR is the
voltage drop from the left to the right lead. This equation assumes that
the voltage drop is defined as

VLR = VL − VR

where VL and VR are the voltages at the left and right leads, respectively.

So, the chemical potential of the left reservoir is:

µL = µR − eVLR

2b. A perpendicular magnetic field is applied to the ballistic Hall
bar. Sketch the trajectories of electrons when the cyclotron ra-
dius is much smaller than the width of the bar. What are the
chemical potentials µ1 and µ2 and the Hall resistance VH/I in
this case?
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Chemical Potentials

In the presence of a magnetic field, the chemical potentials at the edges of
the Hall bar will differ due to the Hall effect. If a current I is applied along
the length of the bar, a Hall voltage VH will develop across the width of
the bar. The chemical potentials at the two edges (let’s say µ1 and µ2)
will be related to this Hall voltage:

µ1 = µR +
eVH
2

(1)

µ2 = µR − eVH
2

(2)

Here, µR is the chemical potential of the right reservoir, and VH is the
Hall voltage.

Hall Resistance

The Hall resistance RH is given by the ratio of the Hall voltage VH to the
applied current I:

RH =
VH
I

(3)

For a ballistic Hall bar in a strong magnetic field, the Hall resistance is
quantized and given by:

RH =
h

e2ν
(4)

where h is Planck’s constant, e is the electron charge, and ν is the filling
factor (an integer in the case of the integer quantum Hall effect).

2c. Sketch the electron trajectories for lower magnetic fields.
What happens with the Hall resistance when the field is de-
creased? Is it possible that the Hall resistance becomes negative
(when B > 0)?

Hall resistance

As the magnetic field decreases, the Hall resistance RH = VH

I typically
decreases. This is because the Hall voltage VH is proportional to the
magnetic field B (from the relation VH = BI

ned , where n is the carrier
density and d is the thickness of the bar). Thus, reducing B reduces VH ,
leading to a lower RH .
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Figure 2: 2(b) Sketch the trajectories of electrons when the cyclotron radius is
much smaller than the width of the bar. 2(c) Sketch the electron trajectories
for lower magnetic fields..

Possibility of Negative Hall Resistance

In certain materials or under specific conditions (e.g., in systems with both
electrons and holes, or in materials with complex band structures), it is
possible to observe a negative Hall resistance even when B > 0. This can
happen if the dominant charge carriers change from electrons to holes, or
due to anomalous Hall effects in magnetic materials.

Anomalous Hall Effect

In ferromagnetic or topological materials, the Hall resistance can have con-
tributions from the material’s intrinsic magnetization or Berry curvature,
leading to a Hall voltage that is not simply proportional to B. In such
cases, the Hall resistance can become negative even for B > 0.
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3. A one dimensional conductor contains a single scatterer with
transmission t and an electron with wavefunction ψ(x) = exp(ikx) is
sent into the wire.
a. The probability current J determines how fast the probability of
finding the electron in the right reservoir changes and is given by:

J =
ℏ

2mi

(
ψ∗ ∂ψ

∂x
− ψ

∂ψ∗

∂x

)
(5)

Express the probability current in terms of t and the velocity of the
electron.

To solve for the probability current J in terms of the transmission coefficient
t and the velocity of the electron, let’s follow these steps:

Wavefunction Description: - The incident wavefunction is ψinc(x) = eikx. -
After encountering the scatterer, the transmitted wavefunction is ψtrans(x) =
teikx.

Probability Current Formula: The probability current J is given by:

J =
ℏ

2mi

(
ψ∗ ∂ψ

∂x
− ψ

∂ψ∗

∂x

)
.

Calculate the Derivatives: - For the transmitted wavefunction ψtrans(x) =
teikx:

∂ψtrans

∂x
= ikteikx.

∂ψ∗
trans

∂x
= −ikt∗e−ikx.

Substitute into the Probability Current Formula:

J =
ℏ

2mi

(
t∗e−ikx · ikteikx − teikx · (−ikt∗e−ikx)

)
.

Simplifying inside the parentheses:

J =
ℏ

2mi

(
ik|t|2 + ik|t|2

)
=

ℏ
2mi

· 2ik|t|2.

J =
ℏk|t|2

m
.

Express in Terms of Velocity: The velocity v of the electron is related to the
wave number k by v = ℏk

m . Therefore:

J = v|t|2.

3b. What is the density of states of a one dimensional conduc-
tor? How many electrons flow in the channel from the left reservoir
when a small voltage V is applied between the left and right reservoir?
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Density of States in a One-Dimensional Conduc-
tor

The density of states (DOS) in a 1D conductor describes the number of
available quantum states per unit energy per unit length. For a 1D system, the
DOS g(E) is given by:

g(E) =
1

π

√
2m

ℏ2E
,

where:

• m is the effective mass of the electron,

• ℏ is the reduced Planck’s constant,

• E is the energy of the electron.

Number of Electrons Flowing in the Channel

When a small voltage V is applied between the left and right reservoirs, electrons
flow from the left reservoir to the right reservoir. The number of electrons
flowing in the channel can be calculated as follows:

1. Fermi-Dirac Distribution

• The left reservoir has a Fermi energy EF , and the right reservoir has a
Fermi energy EF − eV , where e is the electron charge.

• The probability of an electron occupying a state at energy E is given by
the Fermi-Dirac distribution:

f(E) =
1

1 + e(E−EF )/kBT
,

where kB is the Boltzmann constant and T is the temperature.

2. Number of States

• The number of available states in the energy range dE is g(E) dE.

• The number of electrons in this energy range is f(E) g(E) dE.

3. Current Carried by Electrons

• The current I is proportional to the number of electrons flowing through
the channel. For a small voltage V , the number of electrons flowing from
the left reservoir is:

N =

∫ EF

EF−eV

g(E) f(E) dE.
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• At low temperatures (T → 0), the Fermi-Dirac distribution becomes a
step function, and the integral simplifies to:

N = g(EF ) eV,

where g(EF ) is the density of states at the Fermi energy.

4. Final Expression

• Substituting the 1D density of states g(EF ) = 1
π

√
2m

ℏ2EF
, the number of

electrons flowing in the channel is:

N =
1

π

√
2m

ℏ2EF
eV

3c. Calculate the current through the wire. Does it depend on
the electron velocity?

Current Through the Wire

The probability current J is given by:

J = v|t|2,

where:

• v is the electron velocity,

• t is the transmission coefficient.

The electric current I is related to the probability current J and the
electron charge e:

I = eJ.

Substituting the expression for J :

I = ev|t|2.

Dependence on Electron Velocity

The current I depends on:

• The electron velocity v,

• The transmission coefficient t,

9



• The electron charge e.

Thus, the current through the wire does depend on the electron veloc-
ity v. Specifically, the current is directly proportional to the electron velocity.

3d. When the width of the wire is larger than λF , more than one
conduction channel is open. For each channel, the transmission can
be different. Show that the conductance of the wire is given by:

G =
2e2

ℏ
∑
n

|tn|2. (6)

When the width of the wire is larger than the Fermi wavelength λF , the
electron wavefunctions can form standing waves across the width of the wire.
These standing waves correspond to different transverse modes or conduction
channels. Each channel n has its own transmission coefficient Tn.

Current in Each Channel

For each conduction channel n, the current In can be expressed using the Lan-
dauer formula:

In =
2e

h

∫
Tn(E)(fL(E)− fR(E)) dE,

where:

• Tn(E) = |tn(E)|2 is the transmission probability for channel n at energy
E,

• fL(E) and fR(E) are the Fermi-Dirac distribution functions in the left
and right reservoirs, respectively,

• The factor of 2 accounts for spin degeneracy.

Total Current

The total current I through the wire is the sum of the currents through all
individual channels:

I =
∑
n

In =
2e

h

∑
n

∫
Tn(E)(fL(E)− fR(E)) dE.
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Conductance at Zero Temperature

At zero temperature, the Fermi-Dirac distribution functions become step func-
tions, and the integral simplifies. For a small applied voltage V , the difference
in the Fermi functions fL(E)− fR(E) is non-zero only in a small energy range
around the Fermi energy EF . The conductance G is then given by:

G =
I

V
=

2e

h

∑
n

Tn(EF ).

Since Tn(EF ) = |tn(EF )|2, we can write:

G =
2e2

h

∑
n

|tn(EF )|2.

3e. Assume that the scatterer is a rectangular potential of height
V0 > EF and size d. Calculate the (energy-dependent) transmission
coefficient t(E) and the make a plot of the voltage dependence of the
differential conductance.

1 Schrödinger Equation in Different Regions

Consider a potential barrier defined as:

V (x) =


0, x < 0 (Region I)

V0, 0 ≤ x ≤ d (Region II)

0, x > d (Region III)

(7)

The time-independent Schrödinger equation is given by:

− ℏ2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = EFψ(x). (8)

2 Wavefunctions in Each Region

Region I (x < 0):
ψI(x) = Aeikx +Be−ikx, (9)

where k =
√
2mEF

ℏ .
Region II (0 ≤ x ≤ d):

ψII(x) = Ceκx +De−κx, (10)

where κ =

√
2m(V0−EF )

ℏ .
Region III (x > d):

ψIII(x) = Feikx, (11)

assuming no reflected wave in this region.
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3 Boundary Conditions

The wavefunction and its derivative must be continuous at x = 0 and x = d:

ψI(0) = ψII(0), ψ′
I(0) = ψ′

II(0), (12)

ψII(d) = ψIII(d), ψ′
II(d) = ψ′

III(d). (13)

Applying the boundary conditions at x = 0:

A+B = C +D, (14)

ik(A−B) = κ(C −D). (15)

Applying the boundary conditions at x = d:

Ceκd +De−κd = Feikd, (16)

κ(Ceκd −De−κd) = ikFeikd. (17)

4 Transmission Coefficient t(EF )

The transmission coefficient t(EF ) is defined as:

t(EF ) =
F

A
. (18)

By solving the system of equations obtained from the boundary conditions, we
get:

t(EF ) =
2ikκe−ikd

(k2 − κ2) sinh(κd) + 2ikκ cosh(κd)
. (19)

Differential Conductance

The differential conductance G is defined as the derivative of the current I with
respect to the voltage V :

G =
dI

dV
.

Substituting the expression for I:

G =
d

dV

(
2e

h

∫ EF+eV

EF

|t(E)|2dE

)
.

Using the Leibniz rule for differentiation under the integral sign:

G =
2e

h
|t(EF + eV )|2 · e.

Simplifying, we get:

G =
2e2

h
|t(EF + eV )|2.
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Magnitude Squared of t(EF + eV )

To find |t(EF +eV )|2, we take the magnitude squared of the complex expression:

|t(EF + eV )|2 =

∣∣∣∣ 2ikκe−ikd

(k2 − κ2) sinh(κd) + 2ikκ cosh(κd)

∣∣∣∣2 .
This simplifies to:

|t(EF + eV )|2 =
4k2κ2

|(k2 − κ2) sinh(κd) + 2ikκ cosh(κd)|2
.

Denominator Calculation

The denominator is:

∣∣(k2 − κ2) sinh(κd) + 2ikκ cosh(κd)
∣∣2 =

[
(k2 − κ2) sinh(κd)

]2
+[2kκ cosh(κd)]

2
.

|t(EF + eV )|2 =
4k2κ2

[(k2 − κ2) sinh(κd)]
2
+ [2kκ cosh(κd)]

2 . (20)

Substituting this into the formula for G:

G =
2e2

h
· 4k2κ2

[(k2 − κ2) sinh(κd)]
2
+ [2kκ cosh(κd)]

2 . (21)

Thus, the final expression for the conductance is:

G =
8e2

h
· k2κ2

(k2 − κ2)2 sinh2(κd) + 4k2κ2 cosh2(κd)
. (22)

Thus,

k =
ℏ√

2m(EF + eV )

κ =

√
2m(V0 − (EF + eV ))

ℏ
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Figure 3: Conductance vs voltage plot.
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