
Lecture 2: Single electron tunneling and Coulomb

blockade

March 2025

1a. What is the relevant energy-scale for Coulomb blockade?
The Coulomb blockade effect in quantum dots is characterized by an interplay
of several energy scales, like- Coulomb energy, Confinement energy, Comparison
of Coulomb energy and quantization energy, Source-drain coupling and temper-
ature.

1b. How large is the capacitance (to infinity) of a sphere with
radius r = 1 nm. Compare this to kBT at room temperature and at
T = 50 mK.

The capacitance C of a conducting sphere of radius r in a vacuum (or air,
approximated as vacuum) is given by:

C = 4πϵ0r

where:

• ϵ0 is the vacuum permittivity (8.854× 10−12 F/m),

• r is the radius of the sphere.

For a sphere with radius r = 1nm = 1× 10−9 m, the capacitance is:

C = 4π(8.854× 10−12 F/m)(1× 10−9 m) ≈ 1.11× 10−19 F.

Charging Energy EC

The charging energy EC is given by:

EC =
e2

2C

where e is the elementary charge (1.602× 10−19 C). Substituting the capac-
itance:
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EC =
(1.602× 10−19 C)2

2× 1.11× 10−19 F
≈ 1.15× 10−19 J.

To convert this to electron volts (eV), divide by 1.602× 10−19 J/eV:

EC ≈ 0.72 eV.

Comparison to kBT

The thermal energy kBT is given by:

• kB is the Boltzmann constant (1.381× 10−23 J/K),

• T is the temperature.

At Room Temperature (T = 300K):

kBT = (1.381× 10−23 J/K)(300K) ≈ 4.14× 10−21 J.

Convert to eV:

kBT ≈ 4.14× 10−21 J

1.602× 10−19 J/eV
≈ 0.026 eV.

At T = 50mK = 0.05K:

kBT = (1.381× 10−23 J/K)(0.05K) ≈ 6.91× 10−25 J.

Convert to eV:

kBT ≈ 6.91× 10−25 J

1.602× 10−19 J/eV
≈ 4.31× 10−6 eV.

Comparison:

• At room temperature (T = 300K):

– EC ≈ 0.72 eV,

– kBT ≈ 0.026 eV.

– EC is much larger than kBT (EC ≫ kBT ), so Coulomb blockade
effects are significant.

• At T = 50mK:

– EC ≈ 0.72 eV,

– kBT ≈ 4.31× 10−6 eV.

– EC is vastly larger than kBT , making Coulomb blockade effects even
more pronounced.
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2a. An amount of charge Q0 is placed on a capacitor with ca-
pacitance C. There is a resistance R to ground. What is the time-
dependent charge Q(t) on the capacitor? What is the characteristic
time-scale for this problem?

To determine the time-dependent charge Q(t) on the capacitor and the char-
acteristic time-scale for this problem, we analyze the discharge of the capacitor
through the resistor R.

1. Time-Dependent Charge Q(t):

The system can be described by the differential equation for the discharge of a
capacitor through a resistor. Using Kirchhoff’s voltage law, we have:

Q(t)

C
+R

dQ(t)

dt
= 0,

where:

• Q(t) is the charge on the capacitor at time t,

• C is the capacitance,

• R is the resistance.

This is a first-order linear differential equation. Rearranging:

dQ(t)

dt
= −Q(t)

RC
.

The solution to this equation is an exponential decay:

Q(t) = Q0e
−t/τ ,

where:

• Q0 is the initial charge on the capacitor at t = 0,

• τ is the characteristic time-scale of the system (explained below).

2. Characteristic Time-Scale τ :

The characteristic time-scale for this problem is the time constant τ , which is
given by:

τ = RC.

This is the time it takes for the charge on the capacitor to decay to 1/e
(approximately 36.8%) of its initial value Q0.
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3. Final Expression for Q(t):

Combining the results, the time-dependent charge on the capacitor is:

Q(t) = Q0e
−t/RC .

4. Interpretation:

• At t = 0, Q(t) = Q0, as expected.

• As t → ∞, Q(t) → 0, meaning the capacitor fully discharges over time.

• The rate of discharge is determined by the time constant τ = RC. Larger
R or C results in a slower discharge.

Summary:

• The time-dependent charge on the capacitor is Q(t) = Q0e
−t/RC .

• The characteristic time-scale is the time constant τ = RC.

2b. The Heisenberg uncertainty principle states that the energy
of an electron is ill defined when the electron stays in a state only for
a short time:

δEδt ≥ ℏ/2 (1)

What is the uncertainty in energy for the system discussed in a?

So, uncertainty energy,
δE = ℏ/2RC (2)

2c. This uncertainty has to be compared with the charging energy
EC = e2/2C. In which case can Coulomb blockade be observed

δE ≫ EcorδE ≪ Ec? (3)

:
The charging energy should be larger than uncertainty energy -

δE ≪ Ec (4)

2d. Which relation should hold for the resistance to observe
Coulomb blockade? Do you recognize this value? Does it depend
on the capacitance?

Charging the island with an additional charge takes the time ∆ t= RtC
which is the RC-time constant of the quantum dot. If we wish to resolve the
charging energy

∆Ec =
e2

C
(5)
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the system will respect Heisenberg’s uncertainty relation

∆Ec∆t > h (6)

which leads to the condition

Rt >
h

e2
(7)

This result means that the tunneling resistance Rt of the quantum dot has to be
significantly larger than the resistance quantum h/e2 implying that the quan-
tum point contacts coupling the system to source and drain have to be deep in
the tunneling regime.

2e. The network is connected to a voltage source and a current
meter. Draw the IV characteristics for R = 1kΩ and R = 100 k Ω.

Initially (t = 0) when voltage V is applied:

• The capacitor acts like a short circuit (zero resistance), and the initial
current is high.

• Ohm’s law gives the initial current as:

I0 =
V

R

During Charging (t > 0)

• The capacitor charges up over time, and the current decreases exponen-
tially following:

I(t) =
V

R
e−t/RC

• The voltage across the capacitor increases, eventually reaching V , and
current approaches zero.

Steady State (t → ∞)

• The capacitor is fully charged, and current stops flowing.

• The I-V curve flattens to zero current.
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Figure 1: I-V graph (a) blue graph represents 1k Ω and (b) red graph represents
100kΩ
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3a. The stability diagram shown on the right is measured on a
small gold grain. (K.I. Bolotin et al., APL 84, 2004, 3154). What is
the charging energy and the total capacitance of the grain?

1. Charging Energy EC

The charging energy is related to the width of the Coulomb diamonds along the
bias voltage axis at zero gate voltage: From the Coulomb diamond plot, the
width in bias voltage (VB) is approximately 180mV (-90mV to + 90mV)

EC = eVdiamond = 90 meV

Calculation of Total Capacitance C

We use the formula:

Step 1: Convert EC to Joules

EC = 90× 10−3 × (1.6× 10−19)

EC = 1.44× 10−20 J

Step 2: Solve for C

C =
e2

EC

Substituting values:

C =
(1.6× 10−19)2

1.44× 10−20

C =
2.56× 10−38

1.44× 10−20

C = 1.78× 10−18 F = 1.78 aF

Final Answer:

C ≈ 1.78 aF

3b. Use the slopes of the diamonds to find the gate coupling
Cg/Ctot. What are the gate, source and drain capacitances?
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Capacitance Calculations

Step 1: Gate Coupling Ratio

The gate coupling ratio is given by:

Cg

Ctot
=

∆Vd

∆Vg

Given:

∆Vg = 625 mV = 0.500 V, ∆Vd = 180 mV = 0.180 V

Cg

Ctot
=

0.180

0.5
= 0.36

Thus,

Cg = Ctot ∗ 0.36

Step 2: Total Capacitance Calculation

Using the charging energy formula:

Ec =
e2

Ctot

Rearrange for Ctot:

Ctot =
e2

Ec

Given that Ec = 90 meV = 90× 10−3 eV:

Ctot =
(1.6× 10−19C)2

(90× 10−3 × 1.6× 10−19J)

Ctot = 1.78× 10−18 F = 1.78 aF

Step 3: Compute Individual Capacitances

- Gate capacitance:

Cg = 0.6408 aF

- Source and Drain capacitances (assuming Cs ≈ Cd):

Cs + Cd = Ctot − Cg = 1.78− 0.6408 = 1.1392 aF
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3c. At Vg = -0.5 V a switch occurs. How much is the change in
the induced (offset) charge? Is this an integer multiple of e?

so, ∆VG = 0.25V Gate capacitance = CG = 0.6408 aF
Use, Q = CG * VG = 1* e C where, e = 1.6* 10−19 C
3d. Suppose that the switch is due to the charging of another

island nearby by a single electron. What is the capacitance between
the two islands?

Change in Gate Voltage:

The switch occurs at

Vg = −0.5V

This corresponds to a change in the gate voltage:

∆Vg = 0.5V

Change in Charge:

The change in charge on the nearby island is:

∆Q = e

where

e = 1.6× 10−19 C

is the elementary charge.

Capacitance Between the Two Islands:

The capacitance C12 between the two islands is given by:

C12 =
∆Q

∆Vg

Substituting the values:

C12 =
1.6× 10−19 C

0.5 V

= 3.2× 10−19 F
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Final Answer:

The capacitance between the two islands is:

C12 = 3.2× 10−19 F (or 0.32 aF).

4a. A metallic sphere with radius R is placed at the origin. An
electron is placed at r = a > R. Use the method of image charges to
calculate its potential energy. Sketch the charge distribution on the
sphere. Calculate the difference in energy for the electron located
at r = ∞ and when the electron is located on the sphere. Is the
difference positive of negative?

Figure 2: Image charge

Step 1: Method of Image Charges

A metallic sphere (radius R) is placed at the origin. An electron (charge −e)
is placed at a distance r = a > R. To calculate the potential energy of the
electron, we use the method of image charges.

The image charge q′ is located at a distance

b =
R2

a

from the center of the sphere.
The magnitude of the image charge is

q′ = −R

a
e.

10



Step 2: Potential Energy of the Electron

The potential energy U of the electron at r = a is due to the interaction between
the electron and its image charge. The potential energy is given by:

U(a) =
1

4πϵ0
· (−e) · q′

a− b
.

Substituting q′ = −R
a e and b = R2

a :

U(a) =
1

4πϵ0
·
(−e) ·

(
−R

a e
)

a− R2

a

.

U(a) =
1

4πϵ0
· Re2

a2 −R2
.

Step 3: Potential Energy at r = ∞
When the electron is at infinity (r = ∞), the potential energy due to the sphere
is zero:

U(∞) = 0.

Step 4: Potential Energy on the Sphere (r = R)

When the electron is on the surface of the sphere (r = R), the potential energy
is:

U(R) = − 1

4πϵ0
· e2

2R
.

Step 5: Energy Difference

The difference in energy between the electron at r = ∞ and the electron on the
sphere (r = R) is:

∆U = U(∞)− U(R) =
1

4πϵ0
· e2

2R
.

Since ∆U is positive, work must be done to move the electron from infinity
to the sphere.

4b. What is the electrostatic potential of the sphere? Calculate
its capacitance.
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Electrostatic Potential and Capacitance of a Con-
ducting Sphere

Step 1: Electrostatic Potential

The electrostatic potential V of the sphere is the potential at its surface due to
the image charge. The potential at the surface of the sphere (r = R) is:

V =
1

4πϵ0

q′

R

Substituting q′ = R
a e:

V =
1

4πϵ0

R

a

e

R

V =
1

4πϵ0

e

a

Step 2: Capacitance of the Sphere

The capacitance C of the sphere is given by:

C =
Q

V
= 4πϵ0R.

4c. Repeat 3a for the situation where an electron is already on
the sphere.

Potential Energy of an Electron on a Conducting
Sphere

If an electron is already on the sphere, the total charge on the sphere is −e.
The potential energy of the system is:

U(R) = − 1

4πϵ0
· e2

2R
.

The energy difference ∆U remains the same as in part (a):

∆U = − 1

4πϵ0
· e2

2R
.

4d. Repeat 3a for the situation where the sphere is grounded.
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Potential Energy of an Electron Near a Grounded
Sphere

If the sphere is grounded, it is held at zero potential. The image charge q′ is
still:

q′ = −R

a
e,

and the potential energy of the electron at r = a is:

U(a) =
1

4πϵ0
· Re2

a2 −R2
.

The potential energy on the sphere (r = R) is zero because the sphere is
grounded:

U(R) = 0.

The energy difference ∆U is:

∆U = U(R)− U(∞) = 0− 0 = 0.

5a. What is the total energy of N electrons on a large metallic is-
land? Take both the charging energy and gate potential into account.

The potential of the island is, however, unknown in general, but its charge
is known to be an integer multiple of the elementary charge. We can therefore
write

V0(Q0) =
Q0 −Q

(0)
0

CΣ
−

n∑
j=1

C0j

CΣ
Vj ,

where CΣ ≡ C00 = −
∑n

i=1 C0i > 0. The electrostatic energy needed to add
N additional electrons to the quantum dot is given by

Eelstat(N) =

∫ Q
(0)
0 −|e|N

Q
(0)
0

dQ0V0(Q0) =
e2N2

2CΣ
+ |e|N

n∑
j=1

C0j

CΣ
Vj .

5b. Now the size of the island is made much smaller and the level-
spacing becomes important. What is the total energy U(N) in this
case?

If we assume that the solution of this single-particle problem gives energy

levels ϵ
(0)
n , the total energy of the island with N additional electrons is

E(N) =

N∑
n=1

ϵ(0)n +
e2N2

2CΣ
+ |e|N

n∑
i=1

C0i

CΣ
(Vi − V

(0)
i ). (8)
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5c. What does the word “chemical potential” mean? How is it
defined when only a small number of electrons is in the system?
Definition of Chemical Potential

In a system with many particles, the chemical potential is defined as the
change in the total energy (E) when an additional electron is added, while
keeping entropy (S) and volume (V ) constant:

µ =

(
∂E

∂N

)
S,V

where N is the number of electrons.
When only a small number of electrons is present in the system (such as in

a quantum dot or a small metallic island), the chemical potential is influenced
by both the charging energy and the discrete quantum energy levels. In such a
system, the chemical potential is given by:

µ(N) = E(N)− E(N − 1)

For a small metallic island (where quantum effects are important), the energy
levels are discrete, and the chemical potential takes the form:

µ(N) = ϵ
(0)
N +

e2N

CΣ
+ |e|

n∑
i=1

C0i

CΣ
(Vi − V

(0)
i )

5d. Calculate the chemical potential for the total energy in a and
b. Is it the same for each electron?

The chemical potential is defined as the energy required to add an additional
electron to the system:

µ(N) = E(N)− E(N − 1).

For a large metallic island, using the total energy expression from part (a),
the chemical potential is:

µ(N) =
e2N

CΣ
+ |e|

n∑
i=1

C0i

CΣ
(Vi − V

(0)
i ).

For a small island with discrete energy levels (from part b), the chemical
potential includes both the charging energy and the quantum energy levels:

µ(N) = ϵ
(0)
N +

e2N

CΣ
+ |e|

n∑
i=1

C0i

CΣ
(Vi − V

(0)
i ).
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Since the quantum energy levels ϵ
(0)
N vary with N , the chemical potential is

not the same for each electron in the small island case.

5e. Calculate the gate voltages of the charge degeneracy points.

The charge degeneracy points occur when the chemical potential aligns such
that the system can fluctuate between N and N + 1 electrons. This happens
when:

µ(N) = µext

where µext is the external electrostatic potential. Setting µ(N) = µ(N + 1)
gives the gate voltage Vg at which the charge degeneracy point occurs:

Vg = V (0)
g +

e

Cg

(
N +

1

2

)
.

This defines the gate voltages at which transitions between charge states occur.
Proof:
The total energy of a metallic island with N electrons, considering both

charging energy and gate potential, is:

E(N) =
e2N2

2CΣ
+ |e|N

n∑
i=1

C0i

CΣ
Vi.

For a system with a single gate capacitor Cg, the energy can be written
as:

E(N) =
e2N2

2CΣ
− eN

Cg

CΣ
Vg.

where Vg is the applied gate voltage.
The chemical potential µ(N) is the energy cost of adding one more elec-

tron to the system:

µ(N) = E(N)− E(N − 1).

Substituting the energy expressions:

µ(N) =

[
e2N2

2CΣ
− eN

Cg

CΣ
Vg

]
−

[
e2(N − 1)2

2CΣ
− e(N − 1)

Cg

CΣ
Vg

]
.

Expanding the terms:

µ(N) =
e2

2CΣ

[
N2 − (N − 1)2

]
− e

Cg

CΣ
Vg [N − (N − 1)] .

Since:
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N2 − (N − 1)2 = 2N − 1,

we get:

µ(N) =
e2

CΣ

(
N − 1

2

)
− e

Cg

CΣ
Vg.

Step 3: Charge Degeneracy Condition

Charge degeneracy occurs when the energy to add an electron equals the exter-
nal potential influence, meaning:

µ(N) = 0.

Setting the equation to zero:

e2

CΣ

(
N − 1

2

)
− e

Cg

CΣ
Vg = 0.

Solving for Vg:

Vg =
e

Cg

(
N − 1

2

)
.

Thus, the charge degeneracy points occur at gate voltages:

Vg = V (0)
g +

e

Cg

(
N +

1

2

)
.

where V
(0)
g accounts for any offset voltage or background charge.

6a. Electrons that tunnel to a quantum dot have to pay the charg-
ing energy and the charging energy and the level spacing, which re-
sults in diamonds in the stability diagram. The stability diagram
shown below is measured here in Delft in a carbon nanotube quan-
tum dot (Sapmaz et al.Phys. Rev. B 71, 153402, 2005). Find the
addition energies for each of the four different diamonds.

∆µ1 = ∆µ2 = Ec+ dU + J (9)

∆µ2 = Ec + δ − dU (10)

∆µ4 = Ec +∆− δ − dU (11)

in this pictureb three small diamonds are same size. So,

δ ≈ J + 2dU (12)

So,These values we will use to calculate additional energies- Ec = 6.6 meV,
∆ = 8.7 meV δ = J = 2.9 meV and dU ≈ 0 meV.
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∆µ1 = ∆µ2 = 6.6 + 2.9 = 9.5meV (13)

∆µ3 = 6.6 + 2.9 = 9.5meV (14)

∆µ4 = 6.6 + 8.7− 2.9 = 12.4meV (15)

6b. There are many more lines visible in this stability diagram
than one would expect for a simple quantum dot. Lines running par-
allel to the diamond edges can be used to find values for the energy
difference between the ground state and excited states in a given
charge state. Use a sketch of an energy diagram of the leads and the
dot to explain how this works.

Figure 3: Energy states

In this system, we observe a fourfold degeneracy with four electrons, leading
to a fourfold periodicity. Each Coulomb diamond in the diagram represents
the addition of a single electron. Due to the non-uniform level spacing, the
energy required to add each electron varies, resulting in distinct heights for the
Coulomb diamonds. The diagram illustrates the sequential filling of electron
states, clearly demonstrating how electrons are added to the system one by one.

6c. The band structure in a metallic nanotube is linear and given
by E(k) = vFhk/2 π. Calculate the level spacing for a nanotube with
length L = 350 nm. Which lines would correspond to this energy?

Energy Dispersion Relation

The energy dispersion relation for a metallic nanotube is given by:

E(k) =
vFhk

2π
(16)
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where:

• vF is the Fermi velocity (vF ≈ 106 m/s for graphene-based nanotubes),

• h is Planck’s constant (h ≈ 6.626× 10−34 J·s),

• k is the wavevector.

Step 1: Quantization of k

For a nanotube of length L, the allowed wavevectors are quantized due to the
boundary conditions:

kn =
2π

L
n, n = 0,±1,±2, . . . (17)

Thus, the energy levels are:

En =
vFh

2π
· 2π
L

n =
vFh

L
n (18)

Step 2: Energy Level Spacing

The level spacing is the energy difference between two consecutive energy levels:

∆E = En+1 − En =
vFh

L
(19)

Substituting values:

∆E =
(106 m/s)(6.626× 10−34 J·s)

350× 10−9 m
(20)

∆E ≈ 1.89× 10−3 eV = 1.89 meV (21)

Step 3: Corresponding Spectral Lines

The corresponding spectral line wavelength is given by:

E =
hc

λ
(22)

Solving for λ:

λ =
hc

∆E
(23)

Substituting values:

λ =
(6.626× 10−34 J·s)(3.0× 108 m/s)

(1.89× 10−3 × 1.6× 10−19 J)
(24)
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λ ≈ 656µm = 0.656 mm (25)

This places the spectral line in the **far-infrared (terahertz) region** of the
electromagnetic spectrum.

6d. When the effect of interactions between the electrons is on the
dot neglected, each level has a four fold degeneracy (2x due to spin,
2x due to clockwise/anticlockwise). Find the charging energy of this
nanotube from the sizes of the diamonds.

Charging energy, Ec , If we consider one electron is in one level then,
[12.1+7.1+5.1+2.1] /4 =6.6 meV

6e. What is the gate capacitance of the tube? Calculate the length
of the tube using the equation for the gate capacitance in the slides.
Is this in agreement with the length found from the level spacing?

The gate capacitance Cg can be calculated using the relation:

Cg =
e

∆Vg

= 3.2 aF
Length calculation:

Cg =
2πϵ0ϵrL

ln(4h/d)

where:
- ϵ0 is the permittivity of free space, - ϵr is the relative permittivity of the

dielectric, - h is the distance between the nanotube and the gate, - d is the
diameter of the nanotube.

Rearranging for L:

L =
Cg ln(4h/d)

2πϵ0ϵr

19


