
Lecture 1: Introduction, Level Spacing and

Density of States

March 2025

1a. When was the field of mesoscopic physics born? (which
decade)
The field of mesoscopic physics was born in 1980s.

1b. Which development made the field possible?
The field of mesoscopic physics became possible due to several key developments:

1. Advances in Nanofabrication Techniques:
The ability to fabricate structure at nano meter scale like, quantum dot,
nano-wires by using ebeam-lithography and molecular beam epitaxy.

2. Discovery of Quantum Effects in Small Systems:
The observation of quantum phenomena, such as , quantum tunneling, dis-
crete energy levels and quantum confinement in this small system (Quan-
tum dots, nano wires) demonstrated the behavior of electrons.

3. Development of Low-Temperature Measurement Techniques: Many
masoscopic phenomena like coulomb blockade and quantum coherence,
are only observable at low temperature. The development of cryogenic
techniques and dilution refrigerators enabled to study these effects exper-
imentally.

2a. Which fundamental equation is used to calculate the level
spacing?
The time independent Schrödinger equation:[

Es +
(px + eBy)2

2m
+

p2y
2m

+ U(y)

]
Ψ(x, y) = EΨ(x, y) (1)

where px = −iℏ ∂

∂x
and py = −iℏ ∂

∂y
(2)

From time independent Schödinger equation we got fundamental Equation
for Level Spacing. The energy levels of a quantum harmonic oscillator are given
by:
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En =

(
n+

1

2

)
ℏω, where n = 0, 1, 2, 3, . . .

The energy level spacing is defined as:

∆E = En+1 − En

Substituting the energy expression:

∆E =

(
n+ 1 +

1

2

)
ℏω −

(
n+

1

2

)
ℏω

∆E = ℏω

Thus, the fundamental equation used to determine the level spacing is:

∆E = ℏω

2.b What are the eigenvalues of an one-dimensional harmonic os-
cillator with V(x) = 1/2 m ω2 x2?

0.0.1 Method

Now, the time independent Schrödinger equation will be:

1

2m

[(
ℏ
i

d

dx

)2

+ (mωx)2

]
ψ = Eψ. (3)

The idea is to factor the term in square brackets. If these were numbers, it
would be easy:

u2 + v2 = (u− iv)(u+ iv). (4)

Here, however, u and v are operators, and operators do not, in general,
commute (uv is not the same as vu).

a± ≡ 1√
2m

(
ℏ
i

d

dx
± imωx

)
. (5)

(a−a+)f(x) =
1

2m

(
ℏ
i

d

dx
− imωx

)(
ℏ
i

d

dx
+ imωx

)
f(x) (6)

=
1

2m

(
ℏ
i

d

dx
− imωx

)(
ℏ
i

d

dx
+ imωx

)
f(x) (7)

=
1

2m

[
−ℏ2

d2

dx2
+ ℏmω

d

dx
(xf)− ℏmωx

d

dx
+ (mωx)2f

]
(8)

=
1

2m

[(
ℏ
i

d

dx

)2

+ (mωx)2 + ℏmω

]
f(x). (9)
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[use, d(xf)/dx = x(df/dx) + f ]

a−a+ =
1

2m

[(
ℏ
i

d

dx

)2

+ (mωx)2

]
+

1

2
ℏω. (10)

There’s an extra term (1/2)ℏω. However, if we pull this over to the other
side, the Schrödinger equation becomes

(a−a+ − 1

2
ℏω)ψ = Eψ. (11)

The ordering of the factors a+ and a− is important here; the same argument,
with a+ on the left, yields

a+a− =
1

2m

[(
ℏ
i

d

dx

)2

+ (mωx)2

]
− 1

2
ℏω. (12)

Thus,
a−a+ − a+a− = ℏω. (13)

and the Schrödinger equation can also be written

(a+a− +
1

2
ℏω)ψ = Eψ. (14)

Now, here comes the crucial step: I claim that if ψ satisfies the Schrödinger
equation, with energy E, then a+ψ satisfies the Schrödinger equation with energy
(E + ℏω). Proof:

(a+a− +
1

2
ℏω)(a+ψ) = (a+a−a+ +

1

2
ℏωa+)ψ

= a+(a−a+ +
1

2
ℏω)ψ

= a+[(a−a+ − 1

2
ℏω)ψ + ℏωψ]

= a+(Eψ + ℏωψ) = (E + ℏω)(a+ψ). QED (15)

[Notice that whereas the ordering of a+ and a− does matter, the ordering
of a± and any constants (such as ℏ, ω, and E) does not.] By the same token,
a−ψ is a solution with energy (E − ℏω):

(a−a+ − 1

2
ℏω)(a−ψ) = a−(a+a− − 1

2
ℏω)ψ

= a−[(a+a− +
1

2
ℏω)ψ − ℏωψ]

= a−(Eψ − ℏωψ)
= (E − ℏω)(a−ψ). (16)
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There must occur a “lowest rung” (let’s call it ψ0) such that

a−ψ0 = 0. (17)

That is to say,

1√
2m

(
ℏ
i

dψ0

dx
− imωxψ0

)
= 0. (18)

or
dψ0

dx
= −mω

ℏ
xψ0. (19)

This differential equation for ψ0 is easy to solve:∫
dψ0

ψ0
= −mω

ℏ

∫
x dx ⇒ lnψ0 = −mω

2ℏ
x2 + constant, (20)

so
ψ0(x) = A0e

−mω
2ℏ x2

. (21)

To determine the energy of this state, we plug it into the Schrödinger equa-
tion (in the form of Equation 14),

(a+a− + (1/2)ℏω)ψ0 = E0ψ0,

nd exploit the fact that a−ψ0 = 0. Evidently,

E0 =
1

2
ℏω. (22)

(the ground state of the quantum oscillator), we simply apply the raising oper-
ator to generate the excited states:

ψn(x) = An(a+)
ne−

mω
2ℏ x2

, with En =

(
n+

1

2

)
ℏω. (23)

2c. Calculate the density of states for a small frequency ω. The
density of states g(E) is defined as the number of quantum states per unit energy
interval:

g(E) =
dN

dE

For a one-dimensional quantum harmonic oscillator, the energy levels are
given by:

En =

(
n+

1

2

)
ℏω.

At large n, we approximate n ≈ E
ℏω , so the number of states up to energy E

is:
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N(E) ≈ E

ℏω
.

Differentiating this with respect to E gives the density of states:

g(E) =
d

dE

(
E

ℏω

)
=

1

ℏω
.

For small ω the level spacing ℏω becomes smaller, meaning the density of
states increases. In the limit ω → 0 the density of states approaches infinity,
resembling a continuous energy spectrum. Thus, for small ω.

2d. Compare the energy dependence of the d.o.s. with that of a
particle in an one-dimensional box.

N =

∫ kF

0

gsρ1D(k)dk = gs
L

π
kF (24)

or

kF = N
π

gsL
=
N

L

π

gs
= n

π

gs
= n

π

2
(25)

This immediately yields the Fermi energy

EF ≡ ℏ2

2m
k2F =

ℏ2

2m

(
Nπ

2L

)2

=
ℏ2

2m

(
n
π

2

)2
(26)

To calculate the DOS in energy space, ρ1D(E), we have to take into account the
quadratic E-k relation, given by

k =

√
2mE

ℏ2
(27)

and so one finds

ρ1D(E) ≡ dN

dE
=
dN

dk

dk

dE
= ρ1D(k) ·

√
m

2ℏ2E
=
gsL

π
·
√

m

2ℏ2
· 1√

E
(28)

i.e. the 1-dimensional E-DOS follows an inverse square root dependence on
energy.
For a quantum harmonic oscillator, the energy levels are given by:

En =

(
n+

1

2

)
ℏω, n = 0, 1, 2, . . .

The energy spacing between adjacent levels is constant:

∆E = ℏω.

The density of states is inversely proportional to ℏω, meaning:
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g(E) ∝ 1

ℏω
.

Thus, the difference is that the harmonic oscillator has a constant DOS,
while the particle in a box has a DOS that decreases with energy.

2e. What would you take as the size L of the system when it is
filled with 1000 non-interacting electrons?
For a one-dimensional system, the Fermi wavevector kF is related to the number
of electrons N by:

kF =
πn

2

where

n =
N

L

is the electron density (number of electrons per unit length). For N = 1000
electrons, the Fermi wave-vector is:

kF =
π · 1000

2L
.

The size L of the system filled with 1000 non-interacting electrons is approxi-
mately:

L ≈ 1000 · π
2kF

where kF is the Fermi wave-vector. The exact value of L depends on the
specific Fermi energy or Fermi wave-vector of the system, which in turn depends
on the material and confinement conditions.

3a. Calculate the Fermi wavenumber kF for a two dimensional
electron gas (2DEG), expressed in the electron concentration n. Do
the same for 1D.
The units in which the electron “concentration” is expressed changes
with the dimensionality of the system. To compare systems with
different dimensionalities, the concentration can be expressed in the
effective distance between electrons de−e by assuming that each elec-
tron lives in a box of size de−e.

For 2D, It is common to use the periodic boundary conditions which require
kx and ky to take on quantized values depending on the dimensions Lx and Ly

of the sample (nx and ny are integers):

kx = nx

(
2π

Lx

)
and ky = ny

(
2π

Ly

)
(29)
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Preliminary concepts
Thus the area in the kx − ky plane ‘occupied’ by an individual state is given

by ( S: area of the conductor)

2π

Lx
× 2π

Ly
=

4π2

S
(30)

while the area enclosed by the circle is πk2. Hence (for E > Es):

NT (E) = 2 (for spin)× πk2

4π2/S
= S

k2

2π
=
mS

πℏ2
(E − Es) (31)

This is the total number of states. The density of states per unit area per
unit energy is given by:

N(E) =
1

S

d

dE
NT (E) =

m

πℏ2
ϑ(E − Es) (32)

At equilibrium, the available states in a conductor are filled up according to
the Fermi function:

f0(E) =
1

1 + exp
(

E−Ef

kBT

) (33)

There are two limits in which the Fermi function inside the band (E ¿ E,) can
be simplified somewhat making it easier to perform numerical calculations. One

is the high temperature or the non- degenerate limit exp
(

Es−Ef

kBT

)
≫ 1 where

f0(E) ≈ exp

[
− (E − Ef )

kBT

]
(34)

The other is the low temperature or the degenerate limit exp
(

Es−Ef

kBT

)
≪ 1

where,

f0(E) ≈ ϑ(Ef − E) (35)

In this book, we will mainly be discussing degenerate conductors. To relate
the equilibrium electron density ns (per unit area) to the Fermi energy, we make
use of the relation

ns =

∫
N(E)f0(E)dE (36)

For degenerate conductors, it is easy to perform the integral to obtain

ns = Ns(Ef − Es) where Ns =
m

πℏ2
(37)

where we have made use of Eqs. (32) and (35).
At low temperatures, the conductance is determined entirely by electrons

with energy close to the Fermi energy. The wavenumber of such electrons is
referred to as the Fermi wavenumber (kf ):
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Ef − Es =
ℏ2k2f
2m

⇒ ℏkf =
√
2m(Ef − Es) (38)

Using Eq. (37), we can express the Fermi wavenumber in terms of the
electron density:

kf =
√
2πns (39)

For 1D, The longest wave compatible with this condition forms a half wave
spanning the length L, i.e. λ1 = 2L: this forms the first or lowest (1D) eigenstate
|1⟩. The second state results for one full wave of wavelength fitting the length,
i.e. with a wavelength λ2 = 2L

2 = L. Similarly three half waves of wavelength

λ3 = 2L
3 for the third state, etc. can be set up, i.e. in general for the state |j⟩

λj =
2L

j
(j = 1, 2, 3, ...) (40)

For the associated k-vector of the state |j⟩ we thus find

kj =
2π

λj
=
jπ

L
(41)

To see how we have to accommodate all the electrons available in the 1D-
wire we need to see how many states there are within a certain range of k-values.
From (41) we see that the k-vectors are equally spaced at intervals ∆k = π/L,
and so we obtain for the density-of-states or DOS in 1D k-space

ρ1D(k) ≡ dNk

dk
=

1

∆k
=
L

π
(42)

Now assume that the wire contains N electrons in total, that are uniformly
distributed along the chain yielding a linear electron density n = N/L (per unit
length, i.e., in units m−1).

To evaluate how many states are occupied by the N electrons we have to
recognise that each k-state may contain more than one electron. We assume
that the degeneracy is only 2-fold, with each k-state occupied by two electrons
of opposite spin, denoted by the spin-degeneracy gs = 2.

So, by integrating eq. (42) we immediately obtain the Fermi momentum kF ,
which by definition equals the largest k value for any occupied state.

Thus,

N =

kF∫
0

gsρ1D(k)dk = gs
L

π
kF (43)

or

kF = N
π

gsL
=
N

L

π

gs
= n

π

gs
= n

π

2
(44)
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From the Fermi wave vector kF in eq. (41) we can derive the Fermi wavelength

λF =
2π

kF
∼ 2-3 times the interelectron distance dee (45)

3b. Express the results for kF in one, two and three dimensions
in de-e and calculate the numerical value of the prefactors. Are you
surprised that they are close to one?

Expression for kF in Terms of de−e

The effective inter-electron distance de−e is given by:

de−e = n−1/D

where n is the electron concentration and D is the system dimensionality.

1D Case

In one dimension, the electron concentration is:

n =
2kF
π

Solving for kF :

kF =
πn

2

Expressing in terms of de−e:

kF =
π

2de−e

2D Case

In two dimensions, the electron concentration is:

n =
k2F
2π

Solving for kF :

kF =
√
2πn

Expressing in terms of de−e:

kF =
√
2π

1

de−e
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Numerical Values of the Prefactors

• π
2 ≈ 1.57 (1D)

•
√
2π ≈ 2.51 (2D)

Interpretation

The prefactors are all close to 1, which is not surprising because de−e represents
a characteristic length scale of the system. The differences arise from the geo-
metric factors associated with different dimensionalities.

4. Graphene is recently discovered material, consisting of an one
carbon atom thick layer. The atoms are positioned in a hexagonal
lattice with a distance dCC = 1.4 Å between the atoms.
a. Each carbon atom has one free electron. Find the value for the
Fermi energy and Fermi wavelength using the free electron model.

Graphene has a hexagonal lattice structure with a carbon-carbon bond dis-
tance:

dCC = 1.4 Å = 1.4× 10−10 m

Area of the Hexagonal Unit Cell

The area of a hexagonal unit cell is given by:

Ahex =
3
√
3

2
d2CC

Substituting dCC = 1.4× 10−10 m:

Ahex =
3
√
3

2
× (1.4× 10−10)2

≈ 5.24× 10−20 m2

Electron Density n

Each unit cell contains 2 carbon atoms, with each atom contributing 1 free
electron. Thus, the electron density n (number of electrons per unit area) is
given by:

n =
2

Ahex
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Substituting Ahex = 5.24× 10−20 m2:

n =
2

5.24× 10−20

≈ 3.82× 1019 m−2

Fermi Wave Vector kF in 2D

In two dimensions, the Fermi wave vector kF is related to the electron density
n by:

kF =
√
2πn

Substituting n ≈ 3.82× 1019 m−2:

kF =
√

2π × 3.82× 1019

≈ 1.54× 1010 m−1

Fermi Energy EF

The Fermi energy EF is given by:

EF =
ℏ2k2F
2me

where:

• ℏ = 1.054× 10−34 Js (reduced Planck’s constant),

• me = 9.11× 10−31 kg (electron mass).

Substituting kF ≈ 1.54× 1010 m−1:

EF =
(1.054× 10−34)2(1.54× 1010)2

2× (9.11× 10−31)

≈ 1.36 eV

Fermi Wavelength λF

The Fermi wavelength λF is related to kF by:

λF =
2π

kF

11



Substituting kF ≈ 1.54× 1010 m−1:

λF =
2π

1.54× 1010

≈ 4.08× 10−10 m = 4.08 Å

b The band structure can also be calculated with a tight-binding
model. Look up what the band structure E(k) is in this case. What
is the effective mass?

1 Tight-binding Hamiltonian

Considering only nearest-neighbor hopping, the tight-binding Hamiltonian for
graphene is

Ĥ = −t
∑
⟨ij⟩

(
â†i b̂j + b̂†j âi

)
, (46)

where i (j) labels sites in sublattice A (B), the fermionic operator â†i (âi)
creates (annihilates) an electron at the A site whose position is ri, and similarly

for b̂†j , b̂j . We can rewrite the sum over nearest neighbors as∑
⟨ij⟩

(â†i b̂j + b̂†j âi) =
∑
i∈A

∑
δ

(â†i b̂i+δ + b̂†i+δâi), (47)

where the sum over δ is carried out over the nearest-neighbor vectors δ1, δ2, δ3,
and the operator b̂i+δ annihilates a fermion at the B site whose position is ri+δ.

Using

â†i =
1√
N/2

∑
k

eik·ri â†k, (48)

where N/2 is the number of A sites, and similarly for b̂†i+δ, we can write the
tight-binding Hamiltonian for graphene (Eq. 46) as

Ĥ = − t

N/2

∑
i∈A

∑
δ,k,k′

[
ei(k−k′)·rie−ik′·δâ†k′ b̂k +H.c.

]
(49)

= −t
∑
δ,k

(
e−ik·δâ†kb̂k +H.c.

)
(50)

= −t
∑
δ,k

(
e−ik·δâ†kb̂k + eik·δ b̂†kâk

)
, (51)

where in the second line we have used∑
i∈A

ei(k−k′)·ri =
N

2
δkk′ . (52)
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We can therefore express the Hamiltonian as

Ĥ =
∑
k

Ψ†h(k)Ψ, (53)

where

Ψ ≡
(
âk
b̂k

)
, Ψ† ≡ (â†k b̂†k). (54)

and

h(k) ≡ −t
(

0 ∆k

∆∗
k 0

)
(55)

is the matrix representation of the Hamiltonian and

∆k ≡
∑
δ

eik·δ. (56)

2 Energy bands

The eigenvalues of this matrix are E± = ±
√

∆k∆∗
k. We can compute this by

writing ∆k out more explicitly:

∆k = eik·δ1 + eik·δ2 + eik·δ3 (57)

= eik·δ3

[
1 + eik·(δ1−δ3) + eik·(δ2−δ3)

]
(58)

= e−ikxa
[
1 + ei3kxa/2ei

√
3kya/2 + ei3kxa/2e−i

√
3kya/2

]
(59)

= e−ikxa
[
1 + ei3kxa/2

(
ei

√
3kya/2 + e−i

√
3kya/2

)]
(60)

= e−ikxa

[
1 + 2ei3kxa/2 cos

(√
3

2
kya

)]
. (61)

The energy bands are therefore given by

E±(k) = ±

√√√√1 + 4 cos

(
3

2
kxa

)
cos

(√
3

2
kya

)
+ 4 cos2

(√
3

2
kya

)
. (62)

or, as it is sometimes written,

E±(k) = ±t
√

3 + f(k), (63)

where

f(k) = 2 cos(
√
3kya) + 4 cos

(
3

2
kxa

)
cos

(√
3

2
kya

)
. (64)
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3 Dirac Points

The band structure has two distinct Dirac points (often labeled K and K′)
at the corners of the hexagonal Brillouin zone. Near these points, the energy
dispersion is linear and can be approximated as:

E(k) ≈ ±ℏvF |k|, (65)

where:

• vF ≈ 106 m/s is the Fermi velocity,

• k is measured relative to the Dirac point.

This linear dispersion relation is a hallmark of graphene and is responsible
for its unique electronic properties, such as massless Dirac fermion behavior.

4 Effective Mass in Graphene

The effective mass m∗ of electrons in a material is defined by the curvature of
the energy bands:

1

m∗ =
1

ℏ2
∂2E

∂k2
. (66)

4.1 Near the Dirac Points

In graphene, the linear dispersion relation near the Dirac points implies that

the second derivative ∂2E
∂k2 is zero. Therefore, the effective mass m∗ is:

m∗ = 0. (67)

This means that electrons in graphene behave as massless Dirac fermions
near the Dirac points, which is a unique feature of graphene’s band structure.

4C. Find the density of states from the band structure. Compare
the result to the results for a free electron gas.

The density of states g(E) is defined as the number of states per unit energy
per unit area. For a 2D system, the general formula for DOS is given by:

g(E) =
dN

dE

where N is the number of states. Number of States N :
In 2D, the number of states with wave vector |k| ≤ k is given by:

N(k) =
A

(2π)2
· πk2 =

Ak2

4π
,

where A is the area of the system.
Energy Relation:
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From the linear dispersion relation:

E = ℏvF k,

we can express k in terms of E as:

k =
E

ℏvF
.

Substituting k into N(k):
By substituting k = E

ℏvF into N(k), we get:

N(E) =
A

4π

(
E

ℏvF

)2

.

Density of States g(E):
Differentiating N(E) with respect to E:

g(E) =
dN

dE
=

A

2π

E

(ℏvF )2
.

The DOS per unit area is:

g(E) =
E

2π(ℏvF )2
.

The DOS in graphene is linear in energy E, unlike the constant DOS in a
2D free electron gas.
Density of States for a 2D Free Electron Gas

For a 2D free electron gas, the energy dispersion is quadratic:

E(k) =
ℏ2k2

2m
.

Number of States N The number of states with wave vector |k| ≤ k is:

N(k) =
A

(2π)2
· πk2 =

Ak2

4π
.

Energy Relation
From the quadratic dispersion relation:

E =
ℏ2k2

2m
,

we can express k in terms of E:

k =

√
2mE

ℏ
.

Substituting k into N(k)
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N(E) =
A

4π

(
2mE

ℏ2

)
.

Density of States g(E)
Differentiating N(E) with respect to E:

g(E) =
dN

dE
=

A

2π

m

ℏ2
.

The DOS per unit area is:

g(E) =
m

πℏ2
.

The DOS for a 2D free electron gas is constant.

5a. Argue in which case the infinite square well describes reality
the best: a metallic or a semiconducting material.

The infinite square well is a simplified quantum mechanical model used
to describe the behavior of particles confined in a potential well with infinitely
high walls. While it is an idealized model, it can provide insights into the
electronic properties of materials. Let’s analyze whether it describes metallic
or semiconducting materials better.

1. Infinite Square Well Model

In the infinite square well model:

• Electrons are confined to a region of space with infinitely high potential
barriers at the boundaries.

• The energy levels are quantized and given by:

En =
n2π2ℏ2

2mL2
,

where n is a positive integer (quantum number), m is the electron mass,
and L is the width of the well.

• The wavefunctions are standing waves with nodes at the boundaries.

2. Comparison with Metallic Materials

Properties of Metals:

• Metals have a partially filled conduction band, meaning there are
available states for electrons to move freely.

• The Fermi level lies within the conduction band, and electrons near the
Fermi level can be excited to higher energy states with minimal energy
input.
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• The electronic states in metals are delocalized, and electrons behave as a
”free electron gas.”

Applicability of Infinite Square Well:

• The infinite square well model can describe the quantization of energy
levels in confined systems, such as electrons in a thin metallic film or
nanowire.

• However, metals are characterized by a continuum of states near the
Fermi level, which is not fully captured by the discrete energy levels of the
infinite square well.

• The model does not account for the band structure of metals, which is
crucial for understanding their conductivity and other properties.

Conclusion for Metals:

The infinite square well model is not a good description of metallic materi-
als because it oversimplifies the electronic structure and does not capture the
continuum of states or the delocalized nature of electrons in metals.

3. Comparison with Semiconducting Materials

Properties of Semiconductors:

• Semiconductors have a band gap between the valence band (filled with
electrons) and the conduction band (empty at zero temperature).

• The Fermi level lies within the band gap, and electrons need to be excited
across the band gap to contribute to conduction.

• The electronic states in semiconductors are more localized compared to
metals, especially in nanostructures like quantum dots or thin films.

Applicability of Infinite Square Well:

• The infinite square well model is better suited for describing confined
systems such as quantum dots, nanowires, or thin semiconductor films,
where electrons are spatially confined and exhibit quantized energy levels.

• In semiconductors, the discrete energy levels of the infinite square well can
approximate the quantum confinement effects observed in nanostruc-
tures.

• The model can also describe the formation of discrete states within the
band gap of semiconductors, which is relevant for understanding optical
and electronic properties of nanostructures.
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Conclusion for Semiconductors:

The infinite square well model is a better description for semiconducting mate-
rials, especially in nanostructures where quantum confinement effects dominate.

4. Final Argument

The infinite square well model describes semiconducting materials better
than metallic materials because:

• Semiconductors often exhibit quantum confinement effects in nanos-
tructures, which are well-described by the discrete energy levels of the
infinite square well.

• Metals, on the other hand, have a continuum of states near the Fermi
level, which is not captured by the infinite square well model.

• The infinite square well is more applicable to systems where electrons
are strongly confined, such as quantum dots or thin semiconductor films,
rather than the delocalized electrons in metals.

Thus, the infinite square well model is more relevant for semiconducting
materials, particularly in the context of nanoscale systems.

5b. Calculate the level spacing for a cubic gold cluster with size
1×1×1 and 10×10×10 nm3 and compare this with its charging en-
ergy.
We calculate the level spacing and charging energy for two cubic gold clus-
ters: one with size 1× 1× 1 nm3 and another with size 10× 10× 10 nm3.

1. Level Spacing in a Cubic Potential Well

The energy levels for an electron in a 3D infinite potential well (cubic box) are
given by:

Enx,ny,nz =
ℏ2π2

2meL2
(n2x + n2y + n2z),

where:

• nx, ny, nz are positive integers (quantum numbers),

• L is the side length of the cubic box,

• me is the electron mass (me ≈ 9.11× 10−31 kg),

• ℏ is the reduced Planck’s constant (ℏ ≈ 1.054× 10−34 J s).

The level spacing ∆E is the energy difference between the ground state
(nx = ny = nz = 1) and the first excited state (nx = 2, ny = nz = 1):

∆E = E2,1,1 − E1,1,1 =
ℏ2π2

2meL2
(22 + 12 + 12 − 12 − 12 − 12) =

3ℏ2π2

2meL2
.
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2. Charging Energy

The charging energy EC is the energy required to add an electron to the
cluster. For a small metallic cluster, it is given by:

EC =
e2

2C
,

where:

• e is the elementary charge (e ≈ 1.602× 10−19 C),

• C is the capacitance of the cluster.

For a cubic cluster, the capacitance is approximated as:

C ≈ 4πϵ0
L

2
,

where L is the side length of the cube, and ϵ0 is the vacuum permittivity (ϵ0 ≈
8.854× 10−12 Fm−1).

Thus, the charging energy becomes:

EC =
e2

4πϵ0L
.

3. Calculations for 1× 1× 1nm3 Gold Cluster

Level Spacing:

For L = 1nm = 1× 10−9 m:

∆E =
3ℏ2π2

2meL2
=

3(1.054× 10−34 J s)2π2

2(9.11× 10−31 kg)(1× 10−9 m)2
.

∆E ≈ 1.13× 10−19 J ≈ 0.71 eV.

Charging Energy:

EC =
e2

4πϵ0L
=

(1.602× 10−19 C)2

4π(8.854× 10−12 Fm−1)(1× 10−9 m)
.

EC ≈ 2.30× 10−19 J ≈ 1.44 eV.

4. Calculations for 10× 10× 10nm3 Gold Cluster

Level Spacing:

For L = 10nm = 10× 10−9 m:

∆E =
3ℏ2π2

2meL2
=

3(1.054× 10−34 J s)2π2

2(9.11× 10−31 kg)(10× 10−9 m)2
.

∆E ≈ 1.13× 10−21 J ≈ 0.0071 eV.
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Charging Energy:

EC =
e2

4πϵ0L
=

(1.602× 10−19 C)2

4π(8.854× 10−12 Fm−1)(10× 10−9 m)
.

EC ≈ 2.30× 10−20 J ≈ 0.144 eV.

5c. Calculate the values for EF (in eV), kF (in nm−1) and D(EF )
(in eV−1) in both cases. Look up the values that you need.

Electron Density of Gold (n)

Gold has a face-centered cubic (FCC) structure with a lattice constant:

a = 4.08 Å

The electron density is given by:

n =
4

a3
≈ 4

(4.08× 10−10 m)3
≈ 5.90× 1028 m−3.

Effective Mass of Electrons in Gold (m∗)

For gold, the effective mass is close to the free electron mass:

m∗ ≈ me = 9.11× 10−31 kg.

Fermi Energy EF

The Fermi energy for a 3D free electron gas is given by:

EF =
ℏ2

2m∗

(
3π2n

) 2
3 .

Substituting the values:

EF =
(1.054× 10−34 J s)2

2× 9.11× 10−31 kg

(
3π2 × 5.90× 1028 m−3

) 2
3 .

EF ≈ 5.53 eV.
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Fermi Wave Vector kF

The Fermi wave vector is given by:

kF =
(
3π2n

) 1
3 .

Substituting the values:

kF =
(
3π2 × 5.90× 1028 m−3

) 1
3 .

kF ≈ 1.20× 1010 m−1 = 12.0 nm−1.

Density of States at the Fermi Level D(EF )

The density of states at the Fermi level for a 3D free electron gas is:

D(EF ) =
m∗

π2ℏ3
· 2m∗EF .

Substituting the values:

D(EF ) =
9.11× 10−31 kg

π2(1.054× 10−34 J s)3
·2(9.11×10−31 kg)(5.53 eV×1.602×10−19 J eV−1).

D(EF ) ≈ 1.14× 1047 J−1 m−3 ≈ 1.82× 1022 eV−1 cm−3.

Results for Both Clusters

1× 1× 1 nm3 Cluster

• Fermi energy (EF ): 5.53 eV

• Fermi wave vector (kF ): 12.0 nm
−1

• Density of states at EF (D(EF )): 1.82× 1022 eV−1 cm−3

10× 10× 10 nm3 Cluster

• Fermi energy (EF ): 5.53 eV

• Fermi wave vector (kF ): 12.0 nm
−1

• Density of states at EF (D(EF )): 1.82× 1022 eV−1 cm−3
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5d. Find the level spacing and density of states for a spherical gold
cluster with radius R. See p129 of introduction to quantum mechan-
ics by Griffiths and use a computer to find the roots. Compare the
results to the cubic case. Does the exact shape of the system matter
when calculating the density of states?

To find the level spacing and density of states for a spherical gold cluster
with radius R, we solve the Schrödinger equation for a particle confined in a
spherical potential well. The steps are as follows:

1. Solving the Schrödinger Equation for a Spherical Well

For a spherical potential well of radius R, the Schrödinger equation in spherical
coordinates is:

− ℏ2

2m
∇2ψ = Eψ

The solutions are given by spherical Bessel functions jl(kr), where k =√
2mE/ℏ. The boundary condition requires that the wavefunction vanishes at

r = R, so:

jl(kR) = 0

The roots of the spherical Bessel functions jl(x) determine the allowed energy
levels. Let xn,l be the n-th root of jl(x). Then:

kn,l =
xn,l
R

The corresponding energy levels are:

En,l =
ℏ2

2m

(xn,l
R

)2
2. Level Spacing

The level spacing ∆E is the difference in energy between adjacent levels. For a
spherical well, the spacing depends on the quantum numbers n and l. For large
n and l, the spacing can be approximated as:

∆E ≈ ℏ2

2m

(
xn+1,l − xn,l

R

)2

The roots xn,l can be computed numerically using a computer (e.g., Python,
MATLAB, or Mathematica).
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3. Density of States

The density of states g(E) is the number of states per unit energy interval.
For a spherical well, the density of states can be approximated by counting
the number of states with energy less than E. This involves summing over all
quantum numbers n and l such that En,l ≤ E.

For large E, the density of states for a 3D system scales as:

g(E) ∝
√
E

This is similar to the cubic case, as the density of states depends on the
dimensionality of the system rather than its exact shape.

4. Comparison to the Cubic Case

For a cubic potential well of side length L, the energy levels are:

Enx,ny,nz =
ℏ2π2

2mL2
(n2x + n2y + n2z)

The density of states for a cubic well also scales as
√
E in 3D. Thus, the

density of states is similar for both spherical and cubic systems, as long as they
are both 3D.

5. Does the Exact Shape Matter?

The exact shape of the system does not significantly affect the density of states
in the limit of large systems (large R or L). The density of states is primarily
determined by the dimensionality of the system (e.g., 3D for both spherical and
cubic wells). However, for small systems or specific energy ranges, the shape
can influence the level spacing and degeneracies of the states.

——————————————————————
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