Lecture 1

Concepts in Mesoscopic Physics

1.1 Drude Conductivity, Einstein Relation

When an electric field F is applied on a diffusive conductor, scattering randomizes the
momenta of electrons on a length scale of the mean free path ¢, but a drift velocity vg
results as well. Electrons are accelerated for a time 7,,, the momentum relaxation time.
Then they are scattered and are assumed to lose their momentum. In equilibrium, the
rate at which electrons receive momentum from the external field is exactly equal to the
rate at which they loose momentum:
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giving for the drift velocity:
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The mobility w is defined via:
va=pE, = p=— (1.3)
m

Via the current density j = nevq = o E one obtains the Drude conductivity,

nezr,

o=enp = (1.4)

m*

the classical expression for conductivity in a diffusive metal. Here, current is carried by
drift of all the electrons. However, for a degenerate Fermi-gas kT < Er, we have seen
that the Fermi sea is filled up to Fermi wave-vector kr and Fermi energy Ep:

/4 h2k?2 R?
krp = gﬂ:gn =+V2mn, FEp= F_T n (1.5)

* *
9s=2,gv=1 2m m

with g, the spin degeneracy (in GaAs, at B =0, g5 = 2), and g, the valley degeneracy (in
GaAs, g, = 1). One finds that nonzero current is carried only by electrons within some
kT around the Fermi energy, since at lower energies into the filled Fermi sea, right moving
states +k exactly cancel left moving states —k. To understand the conduction properties,

1



Mesoscopic Fundamentals 2

one does not need to worry about the dynamics of all the electrons in the Fermi see, it is
sufficient to consider electrons close to the Fermi surface, where electrons move with the

Fermi velocity

m*

Current is then carried by only a small fraction of electrons: j = e(nvy/vp)vp. Scattering
still occurs with an average time 7,,,, giving a mean free path

EZ?)FTm (17)

Using Eq. 1.5 and the above expression for ¢, the conductivity can then be written in the
following convenient form:

2 kpl B 2e? kpt
h 2  h 2
i.e. the conductivity is expressed by the ratio of mean free path £ and the Fermi wavelength
Ap = 27 /kp. In metals, kpf is much greater than one, and 62/h ~ 25.812k2. Recalling
our expression for the 2D density of states

0 = gsQv (1.8)

* *
gsgom- M

pPDOS = = 5= = (1.9)
and introducing the diffusion constant
1 1
D = §U%Tm = §UF€ (1.10)
the conductivity can also be written as
o = eppos(E)D, (1.11)

expressing the conductivity in terms of density of states at the Fermi level (Einstein
relation), which in 2D is independent of energy since the density of states is independent
of energy. It is worth noting that in 2D—unlike in 3D or 1D—the resistivity p, a material
parameter independent of sample shape and size, and the resistance R of a given sample
have the same units (Ohms, ) and are related via a dimensionless quantity L/W, the
number of length L and width W of a sample:

L L
R=p— =po—, 1.12
Py = PO (1.12)
where we introduced the resistance or resistivity per square pg = p. The resistance of a
sample can therefore conveniently be calculated by counting the number of squares that
fit into the sample region since the resistance R of a square is independent of the size of
the square (again, this is only applicable in 2D).
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1.2 Mesoscopic Time and Length Scales

There are several important length and time scales that commonly appear in mesoscopic
physics. Here is a short description:

1.2.1 Femi wavelength \p

As we have seen, at low temperatures k1" < Ep, current is carried by electrons a few kT
around Er. The relevant length associated with these electrons is the Fermi wavelength

Ar =27/kp = /27/n (1.13)

which depends only on the carrier density n. Typically, n ~ 2x 10" ecm™2 = 2x 10 m—2,
giving a Fermi energy Er ~ 7meV (using the effective mass m* = 0.067m.) and A\p ~
56 nm. Electrons below the Fermi energy have correspondingly longer wavelengths. Typ-

ical Fermi velocities are vp= hkp/m* = 195’000 m/s.

1.2.2 Mean free path ¢

As we have seen, electrons get scattered due to phonons, impurities, interface effects etc,

resulting in a mean free path

m*

{=vpTy, = e (1.14)

using pu = T,e/m*. Since the mobility is defined via the resistivity, it is a measure of
backscattering, rather than small angle scattering. For a mobility of y = 100m?/(Vs) =
1'000’000 cm?/(Vs), a backscattering time of 7, = 38 ps, a mean free path of ¢ = 7.4 um
and a diffusion constant of D = 0.72m?/s result. A device of size L is called ballistic if
> L and diffusiveif £ < L.

1.2.3 Phase coherence time 7,

In a quantum mechanical (or at least semi-classical) description, electrons carry not only
momentum, energy and spin but also a phase. For example, for a plane wave e*rz+ie
the phase ¢ is some well defined value (often chosen ¢ = 0 for convenience). When
waves are interfered, for example in the paradigmatic double slit experiment, the resulting
interference pattern is |A; + As|?* ~ Reexp (ikp(L1 — La) +i(p1 — ¢2)), i.e. the relative
phase ¢1 — @2 becomes relevant. If in some way @12 are randomized efficiently, then the
time-averaged interference will be zero, due to the loss of phase coherence. The phase
coherence time 7, is the average time by which any such interference term is suppressed
by e~!, and by exp(—t/ 7,) after a time ¢. In mesoscopic physics, quantum interference
effects are often of central importance, making 7, an essential time scale of the system.

Scattering on rigid impurities might add an additional phase to an electron in, say,
one arm of an interferometer, but, since it is static, it will always be the same phase
throughout the experment, still leading to a stationary, unsuppressed interference pattern
(though shifted). Therefore, rigid scatterers do not cause decoherence. On the other hand,
dynamic or fluctuating scatterers lead to a time dependent ¢(¢). If the timescale of the
measurement is much longer than the coherence time 7, over which ¢(t) is randomized:
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() = f(f @(T)dt ~ 0, the interference term (exp(ip(7)))s ~ exp(—t/7,) is exponentially
suppressed due to loss of phase coherence.

The nature of decoherence can be complicated, involving various dynamic scattering
mechanisms with different effectiveness that might depend on parameters such as tem-
perature and magnetic field: lattice vibrations (electron-phonon scattering), scattering
off the Coulomb potential created by other electrons (electron-electron interactions) and
impurities with an internal degree of freedom (for example spin), to name just a few. At
low temperatures (T < 1K), often phonons are frozen out (though they might still be
emitted) and electron-electron interactions are are the dominant decoherence mechanism
(assuming negligible impurity scattering). Within electron-electron scattering, one distin-
guishes between scattering with large energy exchange, where phase coherence can be lost
in one event (often weak at low temperature due to lack of phase space), and the Nyquist
mechanism, where phase coherence is lost only after many quasi-elastic scattering events.

In ballistic samples, the associated coherence length is trivially given by
L@:UFTw, (1.15)

while in diffusive samples
L, =+/Dt,. (1.16)

A quasi one-dimensional sample has one dimension L much smaller than the relevant
coherence length: L < L.

1.2.4 Thermal length L

At finite temperature, electrons within a few k7T around Ep contribute to transport.
Starting at a common location with momentum in the same direction, an electron at
Fermi energy Er will get out of phase by one radian with an electron at Er + kT after
traveling the thermal length L1 (because the two wavelengths are slightly different). In a
ballistic sample, this length is easily calculated using (k(Er + kT') — k(EF))x = 1 and the
dispersion relation k(E) = v/2m*E/h. Assuming Er > kT, one finds

hvp
Ly = — 1.1
T= (1.17)

corresponding to a thermal time 70 = h/(kT'), which we could have also guessed from a
consideration using the time-domain Heisenberg uncertainty relation At - AE > h with
AFE = kT. With similar sample parameters as before at T' = 0.1 K, one obtains Lp ~
15 pm, which is larger than the calculated mean free path, rendering the ballistic approach
incorrect. Maybe a diffusive approach would be more appropriate. In a diffusive sample,

the thermal time 77 will be used to diffuse through the sample, giving a diffusive thermal
length

hD

Ly =] —
T kT’

(1.18)

corresponding to Ly ~ 7.4 um (for T'= 0.1K). This is equal to the mean free path, so
neither a purely diffusive nor purely ballistic treatment appears appropriate here.
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1.2.5 Interaction parameter rg

We have treated the 2D electron gas so far as am ideal, non-interacting Fermi gas. One
way to quantify whether this is an appropriate approximation is the ratio between average
(unscreened) Coulomb energy and kinetic energy of electrons in the gas.

e e2m* 1

_ Lpaoem L e 1.19
s Admeger F eeoh? \/n (1.19)

where the average spacing between electrons is taken as r = y/1/n ~ 22nm and Ep =
h?k%/(2m*). The non-interacting approximation is exact in the limit 7, — 0 and is not
valid for rs 2 1, called the strongly interacting regime. The above expression might be
corrected somewhat towards smaller 74 due to screening, but it is obvious that particularly
for low carrier densities the strongly interacting regime is reached in GaAs 2D electron

gases.

TABLE T Electronic properties of the 2DEG in GaAs-AlGaAs heterostructures and Si inversion layers.

GaAs(100) Si(100) Units

Effective Mass m 0.067 0.19 me = 9.1 x 10728 g
Spin Degeneracy Js 2 2
Valley Degeneracy G 1 2
Dielectric Constant = 13.1 11.9 c0=89x 1072 Fm™!
Density of States p(E) = gsge(m/27h?) 0.28 1.58 10" em ™2 meV !
Electronic Sheet Density® kg 4 1-10 10" em™?
Fermi Wave Vector kr = (47?11.\/(1_\,(]V)J/2 1.58 0.56-1.77 10° et
Fermi Velocity vp = hkr/m 2T 0.34-1.1 107 cm/s
Fermi Energy Er = (hkp)?/2m 14 0.63-6.3 meV
Electron Mobility® Jle 10* — 10° 10* cm?/Vs
Scattering Time T = mpe/e 0.38-38 Lt ps
Diffusion Constant D =v37r/2 140-14000 6.4-64 cm? /s
Resistivity p = (nseps) ! 1.6-0.016 6.3-0.63 kQ
Fermi Wavelength Ar = 27 /kp 40 112-35 nm
Mean Free Path l=vpT 10% — 10* 37-118 nm
Phase Coherence Longth" e <DT{_))J/2 200—... 40-400 nm('[/K)*l/Z
Thermal Length Iy = (hD/kpT)"/? 330-3300 70-220 nm(7T/K) /2
Cyclotron Radius loyel = hkr/eB 100 37116 nm(B/T)~*
Magnetic Length lm = (h/eB)"/? 26 26 nm(B/T)~'/?

krl 15.8-1580 2.1-21

WeT 1-100 1 (B/T)

Er/hw. 7.9 1-10 (B/T)~*

“A typical (fixed) density value is taken for GaAs-AlGaAs het-
erostructures, and a typical range of values in the metallic con-
duction regime for Si MOSFET’s. For the mobility, a range of
representative values is listed for GaAs-AlGaAs heterostructures,
and a typical “good” value for Si MOSFET’s. The variation in the
other quantities reflects that in ns and pe.

bRough estimate of the phase coherence length, based
on weak localization experiments in laterally confined
heterostructures?3:24:25:26.27 4nd Si MOSFET’s.2%29 The stated
T—1/2 temperature dependence should be regarded as an indica-
tion only, since a simple power law dependence is not always found
(see, for example, Refs.?" and?%). For high-mobility GaAs-AlGaAs
heterostructures the phase coherence length is not known, but is
presumably?! comparable to the (elastic) mean free path [.
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1.2.6 Magnetic Length /p
In many instances involving magnetic fields, the area A = h/(eB) through which one flux

quantum is threaded is of relevance, giving a corresponding length scale

| h

This is also the spatial extent of wavefunctions in a magnetic field, of importance in the

(1.20)

quantum Hall effect.

1.3 Classical Hall Effect

It is easy to include a magnetic field B perpendicular to the 2DEG in the classical resistivity

consideration, using the equilibrium relaxation condition:
d d
D
dt scattering dt field
which can be written out as .
MY _ e[E+wgA B, (1.22)
Tm
or, using a matrix notation:
m*
eTm ;*B ve Y = Be ) (1.23)
+B o Uy E,

where v, and v, are the x- and y- components of the drift velocity and E, and E, are the
x- and y- components of the electric field. Using j = evgn, 0 = enp and p = ey, /m*, one

obtains the resistivity tensor:
(1.24)

(Em>_1< 1 _NB><jx)_(pmx pxy)(]z)
=0 , = _ .
Ly +uB 1 Jy Pyxz Pyy Jy
One then finds for the longitudinal resistivity p,, and transverse resistivity puy:
B
-1
= = Py = ——. 1.25
Pxx o 5  Pxy Pyzx en ( )

In a Hall bar geometry of width W and length L, with a current I, = W, driven in the x-
direction (jy = 0), Ey = prejr and Ey = pyzj, results. Using V, = LE,, V, = Vg = E,IWV
one gets:
Vo = Ragly, i (126)
Ve =V, = pyale= %LE = Ryl,. (1.27)
Here, we introduced the Hall resistance Ry = B/(en). The carrier density n can therefore
be measured from a transverse measurement alone via the Hall slope dRy/dB = 1/(en),
which scales as inverse density. Once the density is know, the mobility p follows from an
additional measurement of the longitudinal resistance via u = (neR.,W/L)™1. Note that
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Vx

-

the sample dimensions do not enter the expressions for density or Hall-Voltage Vi, Ry,
again only true in 2D (in 3D, a thickness would appear). The Hall effect is comparatively
large in typical 2D electron gases due to low carrier densities compared to bulk 3D mate-
rials: Ry ~ 3.1kQ/Tesla for n ~ 2 x 10~ em~2. The classical Hall effect is very useful
for determining carrier concentration and mobility of a given sample.

1.4 Quantum Hall Effect

1.4.1 Phenomenological Treatment

Due to the (classical) Lorentz-Force F' = ev x B in a magnetic field B perpendicular to the
2D electron gas, electrons traveling with velocity v will move in circles. First we assume
that the motion is ballistic, without any scattering. On the circle, the zentrifugal force is
equal to the Lorentz force, evB = mw?r, and using v = wr, one easily finds the angular
frequency w,, the so-called cyclotron Frequency and the radius r. of the circle of electron

motion, the cyclotron radius
eB v
m*, Te = ;C (128)

We =

Note that this corresponds to an energy hw. = (1.73meV /Tesla) - B which very eas-
ily is larger than k7T in many experiments (remember that 1meV/kp = 11.6K). The
relevant velocity here is again the Fermi velocity vg, giving a cyclotron radius of r. ~
(74nm Tesla)/B. Classically, any radius r. would be allowed. Quantum mechanically,
however, the circumference must be an integer number n of Fermi wavelengths Ap to
result in a standing wave:

277,
= . 1.29
e = (1.29)
Using r. = vm*/(eB), v = hk/m*, k = vV2m*E/h and Ar = 27 /kp one easily finds
E, = n%hwc, in other words, the energy will be quantized in units of the cyclotron

frequency. These energy levels E,, are referred to as Landau levels. The correct quantum
mechanical treatment will result in a slightly modified quantization condition

En = (n+1/2)hw, (1.30)

but this simple argument is giving a qualitatively correct picture. Instead of having a
constant density of states as at B = 0, now the allowed energies are quantized, and the
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Figure 1.1: left: density of states in a 2DEG in a perpendicular magnetic field. The filled Landau levels are
filled bars, empty Landau levels are white bars. Disorder may broaden the Landau levels leading to a nonzero
density of states between the peaks (from Beenakker and van Houten (1991)). right: schematic dependence
of the normalized longitudinal resistivity p../p(0) and the Hall Resistance Ry = p.y (normalized to h/(2¢?))
on the reciprocal filling factor v~ = 2eB/(hn) for the case of a single valley with twofold spin degeneracy.
Deviations from the classical result are visible at large fields in the form of Shubnikov-deHaas oscillations in
pze and quantized plateaus in pgy . (from Beenakker and van Houten (1991)).

density of states is a series of delta functions spaced by hw:

ppos(E, B) = NOZ(S — (n+1/2)hw,) (1.31)

with a prefactor Ny that denotes the number of states per area in each Landau level. From
the observation that all zero field states within a range in energy of hw. are condensed
into a single Landau level at B # 0 one obtains Ny = hAw, x (m/(wh?)) = 2eB/h. As we
change magnetic field, the energy and density of states in the Landau levels change. The
Landau level filling factor at a given field is defined as

n

= 5B (1.32)

The filling factor does not have to be an integer, whereas the number N of Landau levels
with E,, < Ep is an integer. As the field is changed, the filling factor will change, and
number of occupied Landau may change, too. When the Fermi energy is in the middle
of a Landau level (v = N), states are available for scattering and a maximum in pg,
results. When the Fermi energy lies between Landau levels, all Landau levels below Er
are completely full and above Er completely empty. If temperature is small enough
to suppress thermal excitation to the next empty Landau level, Aw. > kT, then the
longitudinal resistance pg, is zero because there is absolutely no phase-space for electron
scattering that could cause resistance.

Hence, as the field is ramped up from B = 0 to hAw. > kT, oscillations in p,, will
occur, with peaks in p;; whenever the Fermi energy is located in a Landau level: the
Shubnikov-deHaas oscillations. Between two successive peaks at By and By > Bj, the
number of Landau levels has changed by one, yielding

n n _26 1

%Bi/h  2eBajh " h (1/B1) — (1/Ba)

(1.33)




Mesoscopic Fundamentals 9

Note that the number of occupied Landau levels scales as 1/B, i.e. if we choose
B = (1/B) as our variable to plot p,, against, then then peaks will be spaced equidistant
with a period AB = 81 — (2 and the density will be given by

21
~ h AB

n (1.34)
Shubnikov-deHaas oscillations can be a very useful tool to determine sample properties
such as effective masses, small angle scattering times and subband populations.

The quantization into Landau levels also affects the Hall voltage measurement and
results in the quantum Hall effect, namely the occurrence of plateaux in Ry as a function
of magnetic field B at precisely

1 Al h 1

— = 1.
B gsgu €2 N 2e2 N (1.35)

where N is an integer denoting the number of Landau levels with F, < Er, which changes
abruptly as the field is changed. The quantization of the resistance is a more subtle effect
that one cannot derive in a few lines.

So far we have neglected disorder causing scattering that can kick electrons off their
circular orbits, thus causing broadening of the Landau peaks in the density of states. At a
magnetic field where the disorder broadening—given via Heisenberg relation as i/7,,—is
much smaller than the Landau level spacing,

hw> B T, (1.36)

the Shubnikov-deHaas oscillations can be resolved. Another way to put this: an electron
should be able to go around it’s circle at least a few times before scattering, i.e. w, 1 < 7.
Using we = eB/m* and u = er,,,/m*, one obtains:

B>t (1.37)

The cleaner the sample is, the less disorder broadened are the Landau peaks, an intuitive
result. For some of the cleanest samples today (u ~ 30x 10° cm?/(Vs)), Shubnikov-deHaas
oscillations can are visible at B ~ 50mT.

Observation of two distinct periods AB; and Afs can be an indication of several things:

- two different populated subbands (e. g. in the z direction) with corresponding partial
densities n; = (2¢/h)(1/AB1) and ny = (2¢/h)(1/ABs). Often the density of the
lower energy subband is significantly larger than the higher energy subband carrier
density, giving a fast oscillating component (lower subband, high carrier density,
small period in 1/B) modulated with a much slower envelope (higher subband, low
carrier density, large period in 1/B). However, the mobility in the higher subband
might be lower compared to the lower subband, and it might be hard to observe the
oscillations from the higher subband.

- spin effects. When the Zeeman energy reaches gupB 2 kT, each Landau level will
be spin-polarized, giving a doubling of the frequency of the p,, oscillations. (The
factor 2 in Ny = 2eB/h is due to spin degeneracy). Note that the Zeeman energy
(g ~ 0.44, giving E; ~ 25 peV /Tesla) is much weaker than the Landau quantization
energy (1.7meVT/B)
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- spin-orbit coupling can cause a (in GaAs small) spin splitting of the conduction band,
equivalent to two carrier populations with slightly different carrier concentrations.
This might appear as the beating of similar frequencies in the Shubnikov-deHaas
oscillations.

1.4.2 Quantum Mechanical Treatment

We consider electrons in the 2DEG in a constant magnetic field in the z-direction perpen-
dicular to the plane of the 2DEG in a potential U(y) in the y-direction which is uniform
in the x-direction. The Schrodinger equation in the effective mass approximation is

(ihV + eA)?

2m*

+UW) | ¥(z,y) = EY(z,y), (1.38)
where we employ the following gauge for the vector potential

A=-2By — A,=-By and A,=0. (1.39)
Obviously this gauge is not unique, and the solutions we might find in another gauge

might look very different, though the physics of course must remain the same. This gauge
will result in plane waves in the x-direction. We can rewrite the Schrodinger equation

(pz + eBy)2 p?2/
+
2m* 2m

CHUW)| v(a,y) = Ep(z,y) (1.40)

where we have used

Dy = —z'haax and p, =ih (1.41)

aiy .
The solutions for Eq. 1.40 can be expressed in the form of plane waves which we normalize
over the length L of the conductor,

b(z,y) = —= explike)x(y)- (1.42)

VL

The transverse function x(y) satisfies the equation

(hk + eBy)? N v
2m* 2m

- +UW) | x(y) = Ex(y) (1.43)

We will be interested in the resulting energy spectrum and the transverse eigenfunctions
for some combinations of the confining potential U and the magnetic field B. A general
analytical solution is of course futile, but for a harmonic potential

1 *
Uly) = gm"wiy” (1.44)

we can write down the solutions. We start with
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1.4.3 Free electrons in a magnetic field

We set U = 0 and obtain

2
o1,
o T M Wiy )’ | x(v) = Ex(v). (1.45)
with - 5
&
Yk = B and we = ool (1.46)

This is basically the Schodinger equation of the one-dimensional harmonic oscillator, with
a shift yx. In an elementary quantum mechanics book, one can look up the solutions

Xnk(y) = un(qg+aqr) where quy = /m*w./hyy (1.47)

un(q) = exp(—q*/2)Hy,(q) (1.48)
1

E(nk) = (n+2)hwc, n=01,2,.... (1.49)

i.e. we just got the Landau-levels, or magnetic subbands. The H,(q) are the Hermite-
polynomials. The first few are:

Ho(q) = ﬁ (1.50)
m = Y (1.51)
Hy(q) = ?/q;_l/i (1.52)
The velocity with which electrons in these states move is given by:
v(n, k) = ;W =0. (1.53)

Even though the eigenfunctions are plane waves, the group velocity is zero, since the bands
have no k-dependence. This is consistent with our classical picture of electrons moving in
circles that don’t move in any particular direction. The spatial extent of the wavefunction

is approximately
\/ h v hwe /m* _ v (1.54)
m*w, ’ '

We We

i.e. the same as the radius of the classical orbit (see Eq. 3.28). (One obtains this by setting
the ground state (n = 0) cyclotron energy 1/2hw. equal to a kinetic energy (1/2)m*v?,
obtaining v = \/hw./m*). As we change the wavevector k in the longitudinal direction,
the wavefunctions shift in the transverse coordinate as given in Eq. 3.47. The wavevector
k is quantized, spaced by 2m/L, where L is the longitudinal size. The corresponding
wavefunctions are then spaced by

hAkE  2mh
Ay = —5 = 57 (1.55)
along the y-coordinate. Hence, the total number of states is given by
2eB
N =2 (for spin) X AVVyk = eh & (1.56)

where S = WL is the area. Thus, the quantum mechanical result is in agreement with
our heuristic result for the density of states. It can also be seen as one spin degenerate
state for each flux quantum through the device area S.
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1.5 Electrons Confined in a Constriction

Next, we consider the case of a parabolic confinement potential in the y-direction U =
1/2m*w3y? at zero magnetic field. This is the situation of a quantum point contact (QPC).
The Schrodinger equation then reads

K2 pd 1,
lzm* + 5+ ymiwsy’ | x() = x(v) (1.57)
and the solutions are:
Xnk(y) = un(q) where ¢=+/m*wy/hy (1.58)
E(n,k) = h2k2+ n—i—1 hwe, m=0,1,2 (1.59)
) - Qm* 2 CH - b b 9 .

i.e. we get bands parabolic in k just as for free electrons, with a second quantization
index n and an energy spacing hwg due to the parabolic confinement, also called one-
dimensional subbands or transverse modes. This is very similar to the subbands due to the
confinement in the z-direction, and analogous to the transverse modes of electromagnetic
waveguides. The tighter the confinement is, the larger the subband spacing hwg. The
transverse confinement in a quantum point contact is typically of order of half the Fermi
wavelength, or about ~ 25nm, giving subband spacings of order meV. The velocity of an
electron is as in the free electron case given by

10E(n,k) Tk
v(n’k):hék):m*

When a voltage Vsq = (s — pq)/e is applied between the source and drain reservoirs, the

(3.60)

TN

M

\/

Figure 1.2: Dispersion relation E,, (k) of one-dimensional subbands formed in a constriction as a function of
the longitudinal wavevector k. Electrons in the source and drain fill the available state up to the chemical
potentials ps and pq, respectively. When a finite source-drain voltage is applied, a net current results from
the uncompensated occupied electron states in the interval between ps and pg. (from S. Cronenwett, thesis
(2001)).

resulting current I through the QPC is carried by the uncompensated states in the energy
interval defined by ps and pg. At zero temperature, the net current is

I:eZ/ dE%pn(E)vn(E)Tn(E), (1.61)


mitali
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where p,(E) = 2/n(dE,/dk;)~! is the 1D density of states and T,,(E) is the transmission
probability of the n*" subband. The factor of 1/2 in Eq. 1.61 is to take into account that only
half the k states are filled between us and ug. For small values of V4, we can approximate
T.(E) = T,,(EF ), independent of energy. The sum over n counts the number of occupied
subbands, where the last occupied subband N is determined by the condition Ey (k, = 0) <
Er . The key to the conductance quantization is that the energy dependence of the 1D
density of states exactly cancels that of the velocity, giving the same current for each
subband, independent of energy:

Norps 12 (9E,\ "' 10E
I = E-Z n) o CZrT(B
ez/ d 27r<8k$> B ok, [n(EF)
n=1"YHd
N s
_ 262%(%)/ dE
h n=1 Hd
2e N
= h;Tn(EF)eVsd. (1.62)

G=="") Tu.Ep) (1.63)

n=1
and for the case of fully transmitting modes >~ _| T,,(Ef) = 1

9 2
G="N, (1.64)
h
where each occupied subband contributes 2¢2/h to the conductance through the constric-

tion. The factor 2 is due to spin degeneracy, which can be lifted with a magnetic field, for
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Figure 1.3: Quantized conductance of a QPC at B =0and By=8T.Ia large in-pane magnetic field, the
spin-degenerate conductance plateaus at multiples of 2e? /h split into plateaus quantized in units of e2 /h.
(from S. Cronenwett, thesis (2001)).

example with a magnetic field B in the plane of the 2DEG (to get (to first order) only a
Zeeman energy term). Finite temperature smears what would otherwise be sharp steps in
conductance by convolving this zero temperature limit with the derivative of the Fermi-
Dirac distribution, resulting in quantized conductance plateaus like those in figure 1.3.
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When Ez = gupB) 2 kT, the spin degeneracy is lifted, the subbands then correspond
to spin-polarized modes and conductance is quantized in units of €2/h. Going from zero
conductance onto the first plateau, the transmission probability 77 is going from zero at
g =0 to one on the first plateau.

1.6 Landau-Buttiker Formalism

Equation 1.63 is also known as the 2-terminal Landauer formula. It can also be written
in the form

2 9 2
S Tu(Er) = - ltmn|® = TTmT (1.65)

were now the transmission probabilities T;, were expressed in terms of the matrix t of
transmission probability amplitudes from mode n to mode m.

N

m=1

Equation 1.65 refers to a two-terminal resistance measurement, in which the same two
contacts or reservoirs are used to drive a current through the system and to measure the
voltage drop. More generally, one can consider a multireservoir conductor as in Figure $.4
to model, for example, four-terminal resistance measurements in which the current source
and drain are distinct from the voltage probes. This generalization is due to Biittiker. Let
T,—p denote the total transmission probability from reservoir a to reservoir 3, then

No Ns

Top = > ltsamnl™ (1.67)

n=1m=1

Here, N, is the number of propagating modes in the channel (or “lead”) connected to
reservoir «, which in general may be different from the number Ng in lead 3, and tgqa,mn
is the transmission probability amplitude from mode n in lead o to mode m in lead (.
The leads are modeled by ideal electron waveguides, in the sense discussed before for the

-
o

Ky Mg

M3

Us

Figure 1.4: Generalized multilead conductor. (from Beenakker and van Houten, thesis (1991)).
case of a quantum point contact, so that the reservoir « at chemical potential u, above

Er injects into lead « a charge current (2e/h)Ngptq . A fraction Ty, 3/N, of that current
is transmitted to reservir 3, and a fraction Ty—o/No = Ra/N, is reflected back into
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reservoir « before reaching one of the other reservoirs. The net current in I, in lead « is

thus given by
h
5, Lo (Nog — Ra) o g T3altp (1.68)
B(B#a)

The chemical potentials of the reservoirs are related to the currents via a matrix of trans-
mission and reflection coefficients. Current conservation and the requirement that an
increase of all the chemical potentials by the same amount should have no effect on the net
currents in the leads results in constraints that the set of linear Equations 1.68 has to fulfill.
Given additional constraints in the problem one is considering, one can then solve for the
unknowns and obtain the four-terminal resistance Ragq5 = V/I, in which current flows
from lead « to lead (§ and a voltage difference Vis measured between leads v and §. The four-
terminal resistance Rog.5 = (ity — p5)/(€el) is then obtained as a rational function of the
transmission and reflection probabilities. This procedure is referred to as Landauer-Bittiker
formalism. It provides a unified description of electrical transport phenomena in coherent,
mesoscopic conductors.

Due to current conservation (unitarity of t and time reversal symmetry, one can show
that the transmission probabilities have the symmetry

tﬁa,nm(B) = toaﬂ,mn(_B) = Ta—»B(B) = Tﬁ—mc(_B) (1'69)

As shown by Biittiker, a four terminal reciprocity relation for the four-terminal resistances
follows:

Raﬁﬁfs(B) = R'y&aﬁ(_B)a (1.70)

i.e. the resistance is unchanged if current and voltage leads are interchanged with simul-
taneous reversal of the magnetic field direction. As a special case, it follows that the
two-terminal resistance Rngq8 is even or symmetric in B, G(B) = G(—B). Reciprocity
holds only in the linear response regime where the conductor is in or very near equilibrium.
In the Landauer-Biittiker formalism, inelastic scattering is assumed to take place only in
the reservoirs, which is reasonable if the size of the conductor is much smaller than the
phase inelastic scattering or coherence length, often the case in mesoscopic devices.
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1.7 Confined electrons in nonzero magnetic field

Finally, we consider the combination of both a confining potential and a magnetic field.
We again write down the Schodinger equation:

2 2
D eBy + hk 1
v (cBythk) mwgyzl x(y) = Ex(y) (1.71)

2m* 2m* 2

It is easy to see that once again, this is basically a one-dimensional Schodinger equation
with a parabolic potential and the eigenenergies and eigenfunctions look very similar to
the results for electric and magnetic subbands:

w2
rls) = (04 % ) (172
co
where the electric and magnetic potentials now add in quadrature:
wl = w4 (1.73)
hk
q = Vmrwe/hy and g = mrweo/hyk, Yp = B (1.74)
1 h2k? Wi
E(n,k) = =) hw 2. 1.75
k) = (g ) b+ e 2 (1.75)
The velocity is then given by
10E(n,k)  hk w?
A — -0 1.76
vl k) = £ 5% m* w2, (1.76)

i.e. for large magnetic fields w. > wy the magnetic field quenches the momentum to zero,
while for small magnetic fields w. < wp the dispersion of the confined electron is not

affected, where we recover the purely electric sub-
bands discussed earlier. The wavefunctions corre-
sponding to a state (n,k) are centered around y =

—yr, Where
g hk w2 + w?
5 = = = v(n, k)L—< 1.77
Yk oB Yk ( ) wcwg ( )

one can write the transverse location of the wavefunc-
tion in terms of it’s velocity. Consider a current carry-
ing state with a given, fixed velocity v. As the field is

-04  -02 00 02 04

k (1/nm) increased, it shifts away from the center towards the

| edge of the sample. In fact, states carrying current

O W along the +x direction shift to one side of the sample
{ while states carrying current in the other direction

shift to the other side of the sample. From a classical
Figure 1.5: Dispersion relation of con- point of view, this seems reasonable, since the Lorentz
fined electrons in a magnetic field. Left-  force ev x B is opposite for electrons moving in op-
and right moving states are spatially sep- posite directions. Increasing the magnetic field thus
arated into chiral edge states. .. .

causes a reduction in spatial overlap between forward
and backward propagating states, resulting in a suppression of backscattering that can
be very pronounced. The current carrying states will be so called edge states that keep
bouncing off the same edge and always move towards the same end of the sample, see Figure
L.5.





