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ABSTRACT

The Oberbeck-Boussinesq equations are reduced to a two-dimensional form governing “roll” convection
between two free surfaces maintained at a constant temperature difference. These equations are then trans-
formed to a set of ordinary differential equations governing the time variations of the double-Fourier coeffi-
cients for the motion and temperature fields. Non-linear transfer processes are retained and appear as
quadratic interactions between the Fourier coefficients. Energy and heat transfer relations appropriate to
this Fourier resolution, and a numerical method for solution from arbitrary initial conditions are given.
As examples of the method, numerical solutions for a highly truncated Fourier representation are presented.
These solutions, which are for a fixed Prandtl number and variable Rayleigh numbers, show the transient
growth of convection from small perturbations, and in all cases studied approach steady states. The steady
states obtained agree favorably with steady-state solutions obtained by previous investigators.

1. Introduction

With but little exception, the motions of the atmos-
phere, on all scales, are of convective origin. This is to
say that the primary causes for air motions are the
thermal inequalities which are constantly being imposed
upon the atmosphere, mainly by solar heating. The
particular forms which these motions take vary greatly
in scale and character, ranging from chaotic thermal
“turbulence” to highly organized systems such as
hurricanes. For all cases, however, thereis,amongothers,
the common property that the motions which develop
will transport heat and vorticity (or momentum) and
it is these processes which introduce a basic non-linear
content to atmospheric behavior.

As a first step towards understanding the complicated
forms of this non-linearity it seems necessary to study
model systems of much greater simplicity than are
actually encountered. One class of such simple systems,
capable of elucidating the non-linear properties of the
convective process, is that formed by representing the
spatial variations of the motion and temperature which
evolve in Bénard-type experiments by a fixed and
limited number of Fourier components. Similar Fourier
methods have already been applied to the steady-state
aspects of the Bénard-convection problem by Malkus
and Veronis (1958), Kuo and Platzman (1960), and
Kuo (1960), and have been applied extensively to other
hydrodynamical and meteorological problems (e.g.,
Kampé de Fériet, 1948; Gambo e al., 1955; Wipper-
mann, 1956; Lorenz, 1960, 1962 ; Baer, 1961 ; Baer and
Platzman, 1961; Bryan, 1959; and Saltzman, 1959).

We propose now to extend the application of this
method to the case of time-dependent convective

motions, using the same two-dimensional geometrical
framework as considered by Malkus and Veronis (1958),
Kuo and Platzman (1961), Malkus and Witt (1960),
and Kuo (1961). Our aim in this first article is primarily
to set forth the procedure, i.e., to formulate the mathe-
matical model and method of solution. Solutions for a
series of very simple cases in which the number of
degrees of freedom is greatly restricted, will be given
as examples. These solutions, which are for variable
Rayleigh numbers, show the evolution of convection
from small perturbations to a finite-amplitude steady
state, and include as a special case the marginally
unstable condition studied by Rayleigh (1916).

2. The governing equations

Let us define symbols as follows:
x,y=horizontal coordinates
z=vertical coordinate
t=time
u=dzx/dt
v=dy/dt
w=dz/dt
p=density
p=pressure
T =temperature
v=kinematic viscosity
k= coeflicient of thermal diffusivity
g=acceleration of gravity
e=coefhicient of volume expansion
H =height of fluid

f=average of f over a horizontal plane
/ :

(f)asv=average of f over the entire fluid
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fi=f—= e
fo=initial value of f
Pro= gpav(z— H) =hydrostatic pressure corresponding
to (p)av
P=(p—pm)(p)av’

Then, according to the approximations of Oberbeck
(1879) and Boussmesq (1903) we can write the equa-
tions governing convection in a liquid in the form,

du AP
—4+—— V=0, (1
dt ox
dv 9P
—— V=0, (2)
dt dy
dw 9P
—+t——geT 1 —vVw=0, 3)
dt 0z
aTy
——KV2T1=0, (4)
dt
ou Jv Jdw
—t= +—=0. &)
ox dy Oz

In this system we have made use of the relation,
o= (p)av (1 +€T), (6)

which is the equation of state for our problem.

The liquid under consideration is taken to be of
height H, with a rigid lower boundary and a free or
rigid upper boundary, between which a temperature
contrast AT o= T(0)— To(H) is maintained externally.
To simplify the problem we shall constrain the con-
vective motions to develop only in the form of two-
dimensional “rolls” in the x-z plane (i.e., v=49/9y=0).

In this case the governing equations become,

du Ouw 9du 9P
—tu—+w—Ft——2Vu=0, (7)
o0t ox dz Ox

dw Jw dw oP
—tu—Aw—F——gel1— V=0, @®
at dx dz 03z

0Ty 0Ty 4Ty
—tp—Fw——kVT1=0, (9)
a¢ ox 03
du Jdw
—+4—=0. (10)
ox 0z

By virtue of (10) we can define a stream function y
as follows:

(11)
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The temperature departure Ty can be expanded into
an average value along the horizontal and a departure
therefrom, according to the relation,

Tl (.’XJ,Z,t) = Tl(z,t)—l_ Tl’ (x’z7t)7 (12)
and, in turn, we can expand T'; into a part representing
a linear variation between the upper and lower
boundary and a departure from this linear variation
which we call 7", i.e.,

_ _ AT, _
T = T0)-—s [+ 1. 19
If we substitute (13) in (12) we obtain
_ AT,
Ti(x,3,t)= [T;(O,t) —?z]-l-o, (14)
where _
0="T1"(2,0)+ Ty (x,2,0). (15)

For this model we shall assume that the temperature
at the upper and lower boundaries are kept constant
by external heating (i.e., 37:(0)0t=aT(H)/3t=0).
Hence, if we eliminate P from (7) and (8) by forming
the vorticity equation for our problem, and introduce
(11) and (14) we obtain,

0 oy a oy a a6
—V—— — Vi — — VA —ge—— V=0, (16)
at dz 0x dx 03 dx

30 o9 oyal AT,y

——— e —_——— ——V%=0. (17)
0t 9z9x Odxdz H Ox ]

These are the governing equations for our model (cf.,
Malkus and Witt, 1960). We note that V3 represents
the vorticity of the motions in the x-z plane (i.e.,
VA = 0u/dz— dw/0x), and that V4= V2Viy=a4/oxt
+ 0%/ 0z*+20%/ 042322, We can introduce a further
notational simplification by writing the non-linear
advective terms in the form of a Jacobian operator,

d(a,b) <6a b b 60,)
d(x,2) \9x 9z O« 0z
in which case (16) and (17) take the form

] AW, v) 9
V2 —

— —ge——vV4=0, (16")
at d(x,2) dx
6 a0 AT,

| WO AT _ o, a7
o 9(xz2) H dx

Following the procedure of Malkus and Veronis
(1958) for example, we shall measure length in units
of H, time in units of (&?%/k), and temperature in units
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of (kv/gell®) so that we can rewrite the variables of the
problem in terms of non-dimensional variables, to be
denoted by an asterisk, as follows:

x=Hx*

z=Hz*

1= (H%/x)t*
V2= (1/H2)V*
y=xp*

6= (xv/geH®)6*.

)

By the introduction of these transformations into (16')
and (17’) we obtain the non-dimensional equations,
a6*

% ¥ 72, 1%
V*za‘/f +3(‘f" V) __Uv*%//*
ar*  d(x*z*) dx*
W
R

dx*

(19)

o (6%
+
a*  d(x*z%)

vRgE=0, (20)

where

14
o= (The Prandtl Number)

14 EmATo
=———+-—(The Rayleigh Number).

Ky

The boundary conditions. At a “free” (no-stress)
boundary the vertical velocity and tangential stress
vanish so that

Y=a constant=0

and
ou
0z
which implies that
V=0, (21)
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m=—w n=—uw0

Pt = Y S Wmmn) exp[Zer(%x*'i-—HZ*):l,

Pt = T % O(mn, ) exp[z,ryz(zxwr?*)]

M=00 =00
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or

Yr= V=0

At a rigid (no-slip) boundary the vertical velocity and
the tangential velocity vanish so that

¥=0
and
o
—=0, (22)
0z
or
3k
.
ds*

At both the upper and lower boundaries, whether taken
to be free or rigid, the temperature is assumed to be
maintained at a constant value, so that

§=0%=0. (23)
It is implied that at the upper and lower boundaries
W, VHF)  o(r6%)
(x*,5%) B d(x*,2%) B

We shall here adapt the free boundary condition at
both upper and lower boundaries (cf., Kuo and Platz-
man, 1961) and we shall dispense with lateral boundaries
by considering that the liquid extends to infinity in the
horizontal.

3. The Fourier representation

Let us assume that the stream function and tempera-
ture departure can be represented as a sum of double-
Fourier components having a fundamental wave-length
L in the x-direction and 2H in the z-direction. Formally,
we can then expand ¢* and 6* as follows:

(29)

(25)

where m is the wave number in the x-direction, # is the wave number in the z-direction, and the complex Fourier

coefficients are given by

Y(mmn t*)——— / P¥ (5%, 1*) expl: 2sz(zx*+?*):|dxdz,

1 L oH m 7
O (m,n,t*)=——-o / / 0% (x*,2*,4%) expl: —2rHi (—x*+—z*> ]dxdz.
2LH Jo J-H L 2H
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Thus, by requiring, as the free boundary condition, that =0 be a node for ¢* and 6%, we can represent cellular

convection in the region z=0 to H.
In order to obtain equations governing the Fourier coefficients we transform (19) and (20) by multiplying these

equations by
1 . m n
exp[ —2zH i(—x*—l——z*)]
2LH . L 2H

and integrating over the fundamental region 2LH. Then if we apply the Fourier transform relations (24) to (27)
we obtain the following set of ordinary differential equations:

kol » C W o ’ ail*

pmpy= 5 52 SOPPDERD oy nm gy O ) —oatm Hm) (28)
o0 g=—c0 a?(m,n) a2(m,n

Omm)=— 3. 5 Clmm,p,q)¥(p,q)® (m—p, n—g)+RImi (m,n)—c(m,n) © (m;n) (29)

Pp=—=00 g==—00

where C(m,n,p,q)=Uh*(mg—mnp), 1¥=2xH/L, h*=m, a*(a,b) = (I**a®+h**b*) = (2rH/L)*a®+=*%?, and (") =d()/di*.
If we write ¥ and O in terms of their real and imaginary parts, respectively, as follows,

U (myn) = () — % (m,0) ' (30)
O (m,n)= @1(1’”,%)—'1'@2(7}1,”), (31)

we can write (28) and (29) as follows:

o(p,q al*m
Wy (mym) = Z > C(m,n,p,9) ))[‘I’x(f), Y1 (m— p, n—q)—V2(p,)¥a(m— b, n—q)]— Oz(m,n)

P — a?(m, a*(m,n)

—oa (m7n)‘1,1(man) (32)

l*
()= Z ): C(mn,ﬁ,q) Ao )[‘Ifx(ﬁq)‘lfz(m—ﬁ,n P+T:2(p,q)¥1(m—p, n—q) ]+ )®1(mn)

o g0 o?(mm

—oad? (m:n)\I’2 (myn) (33)

Ouimm)=— % 5 Clmn,pd)[¥1(p,0)Or(m—p, n—)—Ts(p,g)@s(m—p, n—g) ]+ REm¥s(m,n)
p=—w0 g=—» —a?(mn) O (m,nm) (34)

o

®2(m)n5= - Z i C(myn:Pﬂ)[\I,l(p,Q)@?(m_Pr n—Q) +‘I’2(PyQ)®1(m_—P’ n—q)]—Rl*m\I’l(m,n)

—a?(m,n)Oy(m,n). (35)

From the definitions (26), (27), (30) and (31) we have, Oy(m,m)=—Os(m, —n)=—Os(—m,n)  (42)
W) =Hm =) 6O Guma)=—Bulm, —)=sm ). (&
Wy (mm)=—T3(—m, —n) (37)  As special cases of (36) to (43) we have
O1(mmn)=0y(—m, —n) (38)  W1(0,8) = ©1(0,0) =3 (1,0) = W3 (m,0) = @, (,0)
B (m,m)=—Oy(—m, —n), (39) = 05(m,0)=0.
and from the free boundary conditions (21) and (23) Eq (32) to (43) are the basic Fourier relations which

. _ h constitute the simple convection model to be studied
applying at 2=0, H, we have, here. Note that in the stream function Fourier Equa-~

Ty (mm) = —T1(m, —n)=—¥(—m, n) (40) t_ions (32) anq (33), the quadratic terms represent non-
- linear interactions among the spectral components of the
Vo(mmn)=—To(m, —n)=Vy(—m, n) (41) motion field, the first of the two linear terms represents
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the effects of bouyancy in generating motion, and the
second linear term represents viscous damping. In
the temperature Fourier Equations (34) and (35), the
quadratic terms represent non-linear heat transports
associated with interaction among spectral components
of the motion and temperature fields, the first of the
two linear terms represents the effects of the basic heat
transfer, and the second linear term represents the
damping effect of conduction.

We shall next set down the general energy equations
and heat transfer relations appropriate to the model.

4, Energy and heat transfer equations

We define two forms of energy averaged over the
fundamental region, measured per unit mass:

u2+w? 1Ir/7oynN?  /0¢\?
=[] HG) G ]
2 v 2L\OX 02/ day

(kinetic energy),

(44)

geld
24T,

A=_

[62].y (available potential energy).  (45)

Note that the available energy, 4, is a maximum when
[6*].v=0, which means that any departures from the
initial linear variation of temperature between z=0
and H constitute a diminution of 4 below the un-
disturbed condition, where 4 =0.

We may further resolve both K and 4 into com-
ponents representing, respectively, the energies of the
mean vertical stratification (Kv and Ay) and the
energies of the mean horizontal variations along x

(K g and Ag). Thus,
K=Ky+Ky (46)

A=Av+A4nu, (47)

-ﬁ2+ 'II)Z K2 ?Z*2+ w*2
{257
L 2 J. H? 2 av

—u’2+wf2 K2 u*/2+w*’2
{52 ]
L 2 o H? 2 av

- geH _ K2 [ 6+
L 2A T 0 av H 2R 2 av

- geH k2o [6*"?
L 24T, du H?RL 2 J,,
(u*=—08y*/dz* and w*=08y*/dx*). Since we shall

exclude laminar flows along x from present consider-
ations (i.e., #=w=Ky=0), we can take K=Kpy.

where
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From (7), (8), (9), (10) and (14) we can then write
energy equations in the form:

dK
‘E={AH'K}—D (48)
dAv
dAx
where
K3
. — —_— KOk
{An K} =ge(wh)ay H4<r(w %) v
geH L B o ab*
thra) =) 5 L™
AT() 9z av H*R dz* av
D= —yp(uVu+wVw).ay
K3
— __40 (u*V*%*-{—w*V*Zw*)“
kged B o )
Gy = ——— (V) gy = —— —(F*V*2%),,
0 H*R
kgeH o kgeH
Gp=-— CAG A 6V26) oy = — @'V )ay
A 0 A 0
K o
= _3_4 E(e*/v*ze*l)av_
In terms of the non-dimensional variables we can
define
HZ u*2+w*2
K*=—7K= |:———:| (51)
K 2 av
2 o
Av*=—A»4y=——(6*2), 52
=== (52)
2 T
Apg*=—Apg=——(0"*), 53
A=~ (0", (53)

which, by applying (24)-(27), can be expanded into
spectral components as follows:

K*= Y 3 3K(mn)

m= p=—~00

(54)

where
K (m,n)=c2(mn) | ¥ (m,n)|2,
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or expanding further, we have:

K*=Ky*+Kg* (55)
Ky*=3 %(0n) (56)
KH*=i; {3{’,(m,0)+i I:SC(m,n)

+x(m, —n)]. (57)

A*=¥ 3 ta(mm) (58)

m=—c0 p=—oco

where

@ (m,n)=——| @ ()|,
R

or expanding further, we have,

dxX(mm) = =
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A*= Ay A g (59)
AV*=§:; @(0,1) (60)
A= 3 (@lm0)+ 3 [almm)+am, -] (61)

If now we apply the boundary conditions (40)-(43),
we have the relations X(mn)=X(m, —n) and
Q(mm)= @(m, —n) so that,

Ki*=3% (R0+E 2Kmm) (6
A=Y (amO)+3 2a(mm)}.  (63)

m=1 n=1

From (28) and (29) we obtain the following equations
for the rates of the change of X(m,n) and Q(m,n):

= Z Z C(m,n,j),q)a?(p,q)[\I/(——m, —749)‘1’(?;9)‘1’(’”“?, n—Q)—‘Il(myn)\Il(P:Q)\I’(_m_Pr '—‘ﬂ—Q)]

dt p=—w g=—c0

—il*m[ ¥ (—m, —n)O (mn)— ¥ (mm)O(—m, —n) ]—20a?(mn)K(mmn) (64)

d@(m,n) 0 o

= 3 % Lemmpg[O(—m, —n)¥(p,0)0(m—p, n—q)— O (mu)¥ (p,0)O(—m—p, —n—q)]

dat p=—w0 g=—

Foil*m[¥ (—m, —n)O(mmu)—¥ (mn)0(—m, —n)]—2a*(mn)Q(m,n). (65)
We now set down several relationships for the vertical J(Z)=7,(0)
heat transfer. From (9) and (10) we have oT,
_ =—y [—
aTl a] [( az )z:O]E
—t—=0, (66) )
at 0z AT, a0
E] e
where H 02/ 20
___ T In terms of the non-dimensional variables (18),
J=wl1——, (67)
0z K2y ag*
rel o)) 70
which is the total rate of vertical heat transfer by both geH 0%/ 20 e

convection (first term) and conduction (second term).
If we let the subscript s denote the steady-state con-
dition, we have

4],
az

=0, (68)

from which it follows, by integration from the lower
boundary z=0 to an arbitrary level z=Z and appli-
cation of the lower boundary condition, that
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The first term, which we denote by
K21/ KATo

J"=—-———' =
geH* H

]

is the steady-state heat transfer in the absence of
convection, and the second term,

a0 kv /90*
Js"= _"K(_> = (_> )
02/ .m0 geH*\05*/ .9




JuLy 1962

is the component due to the presence of convection.
This latter component is a function of R and is to be
determined by solution of (19) and (20) subject to
the boundary conditions.

It is usually of interest to measure the importance
of the convective motions in transporting heat by the
ratio called the Nusselt Number

Js
N,=—
JJ

1 /96*
()
R 32* 2=0

or the heat transfer ratio, S, given by S=AN, (cf., Kuo,
1961), where \ is defined below.

According to the Fourier expansion (25) we have

(71)

o= i 0(0,1) exp[irnz*]

= i [20,(0,7) cosmnzg*+20,(0,%) sinwnz*]. (72)

n=l

The boundary conditions require that ©,(0,2)=0 so
that we can write,

b =3 20,(0) sinTnz®, (73)
n=1

from which it follows that

*
—=3" 27n0,(0,n) cosrnz*
9z*  n=1

and

K%

geH*

T [R=21 S n®:0)], (74)

N,,=1—%7r 3 [0 ],

n=1

(75)

For a pure cellular convection, #=2 and

K

Je=

TR—4r0:(0,2)],

gel’ (76)

in which case the steady-state rate of heat transport
due to the presence of convection is given by

drrk?

14
¢ 4 '.—_@2(0:2)]8:
€.

T=— (77)

Brought to you by EPFL BIBLIOTHEQUE-01 USD | Unauthenticated | Downloaded 02/22/22 02:10 PM UTC

BARRY SALTZMAN

335

and

47
N,=1——0,(0,2) .. (78)
R

The mean temperature profile in the vertical can be
written in the form,

T1(s*)=T1(0)+ATQ(z*), (79)

where
Ty*(z%)— T1*(0)
R

1
]
R

—[z"‘—i i ®.(0,n) sinmrz*]. (80)
R )

n=1

0@=")=

5. A special model

In order to specialize the model we must now select
the fundamental region by fixing the ratio L/H. We
shall be guided in this selection by Rayleigh’s (1916)
solution of the eigenvalue problem posed by the
linearized form of (19) and (20) (cf., Malkus and
Veronis, 1958). The result for two ‘“free’” boundaries is
that for a critical minimum value of the Rayleigh
number,

27
R=R,=—7n*,

4

a steady solution of the form

T
Y*=A sin—ux* sinwz*

K
0*= B cos—x* sinwz*
V2

4,B=constants

obtains, representing cellular convection of horizontal
wavelength equal to 2v2 times the depth of the fluid.

We shall choose our fundamental region such that
this Rayleigh solution corresponds to m=3 and n=1
in our Fourier expansion, which is to say L/H=6V2.
Thus values of m less than three represent horizontal
cells larger than the critical Rayleigh mode and values
of m greater than three represent smaller horizontal
cells.

At this time we have computed coefficients for a
truncated system consisting of the components included
by wave numbers <6 and #<2. In the special case
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of ©@,(0,2) (which represents the departure of the
vertical temperature stratification from the basic linear
variation) the additional wave numbers #=3 and 4
are included.

To complete the specialization we have assumed we
are dealing with a liquid of Prandtl number, ¢=10,
which is about twice that of water (¢=4.8). The
Rayleigh number will be treated as a wvariable
parameter.

With these specifications we can write (32) to (43)
as a set of 52 ordinary differential equations of the form

axX;
——=3 CinX;Xx, (81)
ar* gk

where X;, X; and X, denote the variables ¥,(m,n),
Wo(m,n), O1(m,m), and Ox(m,n) according to the sub-
script assignments given in Table 1, and Cij denote
the coefficients. The linear terms are represented by
k=0, Xo=1. In terms of this notation the 52 equations
can be written most conveniently in the form of a table
(Table 2). In this table the values entered for the
coefficients of the first of the two linear terms in the
thermal equations (=25 to 48) are for R=R,. Values
for other values of R can be obtained simply by multi-
plying these coefficients by A=R/R..
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(Xi)n+1=%[(Xi)n+ (Xd)n+2'f]
=%[(X:)n+ (Xi)ﬂ+1f
+At* Zk Cijk(Xj)n_;_lf(X]g),H.lf]. (84)

7. Examples of solutions for a highly truncated
system

We now present some examples of numerical solutions
for the growth of cellular convective motions from small
perturbations. The following conditions apply to all
the cases:

(1) The vertical nodal surfaces of the convection
cells are fixed by excluding ¥y(m,n) and ©;(m,n) for
all m, n.

(2) The initial conditions consist of small pertur-
bations of the stream field only, given numerically by
¥y (m,1,0)=0.0005. [O2(m,1,0)=0].

(3) The non-dimensional finite time increment is
At*=0.001. This permits the integrations to proceed
to steady states without any computational instability.

(4) The only components permitted are the seven
variables given in Table 1 as 5, 7, 13, 30, 32, 38 and 50.
For convenience we shall assign letters to these variables
as follows:

Variable

6. Numerical methods 5=0,(31) =4

The set of equations represented by (81) and Table 2 7=¥,(4,1) =B
can be solved by numerical procedures as a ‘“‘marching” 13=0,(12) =C
problem, given the initial conditions. The particular =¥(1,2) =
procedure used here is the ‘“‘double approximation 30=0.(3,1) =D
forward difference method” used by Bryan (1957) and 32=0,(4,1) =E
Saltzman (1959), for example. 18— B

Specifically, let A#* be an increment of #*, let # be =0.(1,2) =F
the number of such increments, and let the value of 50=0,(0,2) =G.

X, at *=nAr* be denoted by (X.).. To procede from
n to n+1 we first compute two preliminary approxi-
mations for the first and second steps beyond #:

(.Xi)n+1/= (Xi>n+At* Zk Cijk(X:i)n<Xk)n> (82)
(X ne’ = (X)nsa  +A* Zk: Ciit(X)ntr" (Xi)nit?.  (83)

The second of these is then combined with (X;). to
give (X)n41:

Then, from Table 2, we can write the governing equa-
tions for ¢=10 and variable Rayleigh number in the
form,

A =23.521BC—1.500D—148.046 4

B=—22.0304C—1.580E—186.429B
C=1.5614B—0.185F—400.276C

D=—16.284CE—16.284BF —13.9584G
—1460.63124 — 14.805D

TaBLE 1. Subscripts Z, of X;, assigned to the Fourier coefficient variables, ¥,(m,n), ¥2(m,n), ©,(m,n), and Bo(m,n).

mn) 1) 210 G G G 61 (L2) 22) G32) 42) (52) (62) (1) (0,2) (03) (04)
¥ 1 3 5 7 9 11 13 15 17 19 21 23 — — _  _
¥, 2 4 6 8 10 12 14 16 18 20 22 24 — _— . _
© 25 27 20 31 33 35 37 39 4 43 45 g — _— _ _
© 2 28 30 32 34 36 38 40 42 44 46 48 49 50 51 52
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TasrE 2. Coefficients for Fourier equations, l%i' = Zk Cij1X jXx. Coefficients of linear terms denoted by k= 0, Xo=1. See Table 1.
H

i= 1 2 3 4 5 6
C gk C ik C ik o gk o gk C ik
36.851 11,21 36.851 12,21 28.761 11,19 28.761 12,19 20935 11,17 20935 12,17
36.851 12,22  —36.851 11,22 28761 1220  —28.761 11,20 20935 1218  —20.935 11,18
33.055 919 33.055 10,19 28.126 9,17 28.126 10,17 22744 915 22744 10,15
33.055 1020  —33.055 9,20 28.126 10,18  —28.126 9,18 22744 1016 ~ —22744 9,16
28770 117 28770 817 26.646 7,15 26.646 8,15 23.521 713 23521 813
28770 818  —28770 7.8 26646 816  —26.646 7,16 23521 814  —23521 7,14
23.986 515 23996 6,15 24.320 513 24320 613  —21970 313  —21.970 4,13
2398 616  —23.996 516 24320 614  —24320 5,14 21970 414  —21.970 3,14
18732 313 18732 413  —17.130 113  —17.130 213  —19.643 115  —19.643 2,15
18732 414  —18732 314 17130 214  —17.130 1,14 19643 216  —19.643 1,16
—7.224 317 7.224 417 6.556 1,17 —6.556 2,17 11.889 119  —11.889 2,19
—7.224 418 —7224 318 6.556 2,18 6.556 118 11.889 2,20 11.889 1,20
—14936 5,19 14.936 6,19 —7.402 521 7402 6,21 6.462 321 ~6462 421
—14936 620  —14.936 520 —7.402 622 —7.402 522 6.462 4,22 6462 322
—23139 721 23139 821 —15.650 7,23 15.650 8,23 ~1.500 30,0 1.500 29,0
—23.130 822  —23130 722  —15.650 824  —15650 7,24 —148.046 50 = —148.046 60
—~31.831 923 31.831 10,23 —1228 28,0 1.288 27,0
—31.831 1024  —31.831 924 —120.627 30  —120.627 40
—0.711 26,0 0.711 25,0
—104.185 10  —104.185 2,0
i= 7 8 9 10 11 12
c gk c ik C ik o ik c Gk c Gk
15.051 11,15 15.051 12,15 11.306 11,13 11306 12,13  —14216 9,13  —14.216 10,13
15051 1216  —15.051 11.16 11306 1214  —11.306 11,14 14216 1014  —14216 914
18473 913 18473 1013  —18.987 713  —18987 813  —18092 715  —18.092 8§15
18473 1014  —18473 914 18987 814  —18.987 714 18002 816  —18.092 7,16
—22030 513  —22030 613  —21.205 515  —21205 615  —20936 517  —20936 6,17
22030 614  —22030 514 21205 616  —21.205 516 20036 618  —20936 518
—22167 315  —22167 415 = —22342 317  —22.342 417  —22745 319  —22.745 419
22167 416  —22.167 3,16 22342 418  —22.342 318 22745 420  —22745 320
—21200 117  —21209 217  —22395 119  —22.395 219  —23520 121  —23.520 2,21
21200 218  —21209 118 22305 220  —22.395 120 23520 222  —23520 122
16000 121 —~16009 221 19258 123  —19258 2,23 ~1.500 36,0 1500 350
16009 2,22 16.009 1,22 19258 224 10258 124  —296001 110  —296.091 12,0
11768 321  —~11768 421 —1570 340 1570 330
11768 4,22 11768 322  —235777 90  —235777 100
—1.589 320 1589 31,0
—186420 70  —186.429 80
i= 13 14 15 16 17 18
C ) c gk C gk C Gk c Gk c ik
3.856 9,11 3.856 9,12 6.117 7,11 6.117 7,12 6979 5,11 6979 5,12
3.856 10,12 —3.856 10,11 6.117 812 —6.117 811 6979 6,12 —6979 6,11
2581 7.9 2.581  7.10 3915 59 3915 510 4222 319 4222 310
2.581 810 —2581 89 3915 610 —3915 69 4222 410 —4222 49
1.561 5.7 1561 58 2202 37 2202 38 2154 17 2154 18
1561 68 —1561 67 2202 4,8 —2202 47 2.154 28 —2.154 27
0797 3.5 0797 3.6 0979 1,5 0979 1.6 —0.08 13 —0.086 14
0797 46 —0797 45 0979 2,6 —0979 25 0.086 2.4 —0.086 23
0287 13 0287 14 —0.355 40,0 0.355 39,0 —0.500 42,0 0.500 41,0
0287 24 —0287 23  —416718 150  —416718 160  —444.137 17,0  —444.137 180
—0.185 380 0.185 37,0
—400276 13,0  —400276 14,0
i= 19 20 21 2 23 2
o Gk C Gk C Gk C Gk C ik C Gk
6767 3,11 6.767 3,12 5876 1,11 5876 1,12 —2.068 1,9 —2.068 1,10
6.767 412 —6.767 411 5876 212 —5876 211 2068 210 —2068 29
3806 19 3806 110 —1.079 17 —1079 18 —0517 37 —~0517 38
3.806 210 —3.806 2.9 1079 2.8 —1.079 27 0517 48 —0517 47
—-0422 15 —0422 16 —0.120 35 —0120 36 —0.750 48,0 0.750 47.0
0422 2.6 —0422 23 0120 4.6 —0120 45  —592182 230  —592.182 24,0
—0.614 440 0614 430 —0.696 46,0 0.606 45,0
—482.520 19,0  —482.520 20,0  —531.868 21,0  —531.868 22,0
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TaBLE 2 (continued).
i= 25 . 26 27 28 29 30

c Ik C gk C Jik c gk C gk c Jk
—16.284 21,35 16.284 21,36 —18.610 19,35 —18.610 19,36 ~20.936 17,35 —20.936 17,36
—16.284 22,36 16.284 22,35 —18.610 20,36 18.610 20,35 ~20.936 1836 20936 1835
—13.958 19,33 —13.958 19,34 —16.284 17,33 —16.284 17,34 —18.610 15,33 —18.610 1534
—13.958 20.34 —13.958 20,33 —16.284 1834 16.284 18,33 ~18.610 16,34 18.610 16,33

- —11.631 17,31 —11.631 17,32 —13.958 15,31 —13.958 15,32 ~16.284 13,31 —16.284 13,32
—11.631 18,32 11.631 18,31 —13.958 16,32 13.958 16,31 —16.284 14,32 16.284 14,31
—9.305 15,29 —9.305 15,30 —11.631 13,29 —11.631 13,30 11.631 13,27 —11.631 13,28
-9.305 16,30 9.305 16,29 —11.631 14,30 11.631 14,29 ~11.631 1428 11.631 14,27
—6.979 13,27 —6.979 1328 6.979 13,25 6.979 13,26 9.305 15,25 ~9.305 15,26
—6.979 14,28 6.979 14,27 —6.979 14,26 6.979 14,25 -9.305 16,26 9.305 16,25

2.326 17,27 —2.326 17,28 —2.326 17,25 2.326 17,26 —4.652 19,25 4.652 19,26

2.326 18,28 2.326 18,27 —2.326 18,26 —-2.326 18,25 —4.652 20,26 —4.652 20,25

4.652 19,29 —4.652 19,30 2326 21,29 —2.326 21,30 —2.326 21,27 2.326 21,28

4.652 20,30 4.652 20,29 2.326 22,30 2.326 22,29 -2.326 22,28 —2.326 22,27

6.979 21,31 —6.979 21,32 4.653 23,31 —4.653 23,32 2326 345 2,326 3,46

6.979 22.32 6979 22,31 4.653 24,32 4.653 24,31 2326 446 —2.326 445

9.305 2333 —9.305 23,34 —4.652  TAT —4652 748 4652 143 4652 1,44

9.305 24,34 9.305 24,33 —4.652 848 4652 8,47 4.652 244 —4.652 243

—9.305 9,47 —9.305 948 —2.326 5,45 —2.326 546 —9.305 1,39 —9.305 1,40
—9.305 10,48 9.305 10,47 —2.326 6,46 2326 645 9.305 2,40 —9.305 2,39
—~6.978 7,45 —6.978 7.46 2326 141 2.326 1,42 —11.631 3,37 —11.631 3,38
—6.978 846 6.978 845 2326 2,42 —-2326 24 11631 4,38 —11.631 4,37
—4.652 543 —4.652 544 —6.979 137 —6.979 1,38 16,284 7,37 —16.284 7,38
—4652 644 4652 643 6979 238 —6979 2,37 16284 8.38 16.284 837
—2326 341 —2326 342 11.631 5,37 —11.631 5,38 18.610 9,39 —18610 9,40
—2.326 442 2.326 4,41 11631 6,38 11631 6,37 18.610 10,40 18.610 10,39

6979 337 —6.979 3,38 13.958 7,39 —13958 7,40 20937 11,41 —20.937 1142

6979 4,38 6979 4,37 13.958 8,40 13.958 8,39 20937 12,42 20937 1241

9.305 5,39 —9305 35,40 16.284 9,41 —16.284 9,42 —6.979 1849 6.979 1749

9.305 6,40 9.305 6,39 16.284 10,42 16.284 10,41 13.958 6,50 —13.958 5,50

11.632 7,41 —11.632 7,42 18.610 11,43 —18.610 11,44 20.937 18,51 —20.937 17,51
11.632 8,42 11.632 841 18.610 12,44 18.610 12,43 1460.642 6, —1460.642 5,0
13.958 943 —13958 9,44 —-4.652 16,49 4.652 15,49 —14.805 29,0 —14.805 30,0
13.958 10,44 13.958 10,43 9.305 4,50 —9.305 3,50
16.284¢ 11,45 —16.284 11,46 13.958 16,51 —13958 15,51
16.284 12,46 16.284 1245 973.761 40 —973.761 3,0
—2.326 1449 2326 1349  —12063 27,0 —12.063 28,0
4.652 2,50 —4.652 1,50
6.979 14,51 —6.979 13,51
486.881 2,0 —486.881 10
—10.418 25,0 —10.418 26,0
i= 31 32 33 34 35 36 .

C 7,k C 7.k C 7k C ik C 7,k C 7.k
—23.263 15,35 —23.263 15,36 —25.589 13,35 —25.580 13,36 ~—-25.589 13,33 25.589 13,34
—23.263 16,36 23.263 16,35 —25.580 14,36 25.589 14,35 -25.589 14,34 25.589 14,33
—20936 13,33 —20.936 13,34 20936 13,31 20936 13,32 23.263 15,31 23.263 15,32
—20.936 14,34 29.936 14,33 —20936 14,32 20936 14,31 —23.263 16,32 23.363 16,31

16.284 13,29 16.284 13,30 18.610 15,29 18,610 15,30 20936 17,29 20.936 17,30
—16.284 14,30 16,284 1429 —18.610 16,30 18.610 16,29 —20936 1830 20936 18,29
13.958 15.27 13.958 15,28 16.284 17,27 16.284 17,28 18.610 19,27 18.610 19,28
—13.958 16,28 13,958 16,27 —16.284 18,28 16.284 18,27 —18.610 20,28 18.610 20,27
11.631 1725 11.631 17,26 13.958 19,25 13.058 1926 16284 2125 16.284 21,26
—11.631 18,26 11.631 1825 —13.958 20,26 13958 20,25 —16.284 22,26 16.284 22,25
—6.968 21,25 6,968 21,26 —9.305 23,25 9.305 23,26 —16.284 145 —16.284 146
—6.968 22,26 —6.968 22,25 —9.305 24,26 —9.305 24,25 16284 2,46 —16,284 2,45
—4653 2327 4653 23728 9.305 147 9305 148  —18610 343 —18.610 344
—4.653 24,28 —4.653 24,27 9305 2,48 —9.305 247 18610 444 —18.610 4,43
4652 347 4652 348 —13.058 143 —13058 144 —~20936 5,41 —20936 542
4652 4,48 —4.652 447 13958 2,44 —13.958 243 20936 6,42 —20.936 6,41
6979 145 6979 146 —16.283 3,41 —16.283 3,42 -~23.262 17,39 —23.262 7’40
6979 246 —6.979 245 16.283 4,42 —16.283 441 23262 840 —23.262 8'39
—11.632 141 —11.632 142 —18.610 5,39 —18.610 5,40 —25.589 9,37 —25,589 9.38
11.632 2,42 —11.632 241 18.610 6,40 —18.610 6,39 25.589 10,38 —25.589 10,,37
—13.957 3,39 —13957 3,40 —20936 7,37 —20936 7,38 ~13.958 24,49 13.958 23,49
13.957 4,40 —13.957 4,39 20.936 8,38 —20936 8,37 27917 12,50 -27.917 11,50

-~16.283 5,37 —16.283 5,38 25.589 11,37 —25.589 11,38 41.873 24,51 —41.873 23,51
16.283 6,38 -16.283 6,37 25.589 12,38 25.589 12,37 2921.283 120 —2921.283 11,0
20936 9,37 —20936 9,38 —11.631 22,49 11631 2149 —29.609 35,0 —29.609 36,0
20936 10,38 20.936 10,37 23.263 10,50 —23.263 9,50
23.263 11,39 —23.263 11,49 34.894 22,51 —34.894 21,51
23.263 12,40 23.263 12,39 2434.403 10,0 —2434403 9,0

—9.305 20,49 9.305 19,49 —23.578 33,0 —23,578 33,0

18.610 8,50 —18.610  7.50
27.916 20,51 —27.916 19,51

1947.522 8,0 —1947.522 17,0

~18.643 31,0 —18.643 320
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TABLE 2 (continued).
i= 37 38 39 40 a 2

C ik C ik C .k C 1k C ik C gk
25.589 9,35 25.589 9,36 23262 1,35 23.262 17,36 20936 5,35 20936 5,36
25.589 10,36 —25.589 10,35 23.262 8,36 —23.262 8,35 20936 6,36 —20936 6,35 -
20936 17,33 20936 7,34 18.610 5,33 18.610 5,34 16.283 3,33 16.283 3,34
20936 8,34 —20936 8,33 18.610 6,34 —18.610 6,33 16.283 4,34 —16.283 4,33
16.283 5,31 16.283 5,32 13.957 3,31 13.957 3,32 11.632 131 11.632 1,32
16.283 6 32 —16.283 6,31 13.957 4,32 —13.957 4,31 11.632 2,32 —11.632 2,31
11.631 3 ,29 11.631 3 30 9.305 1,29 9305 1,30 —-2326 127 —2.326 1,28
11.631 4 30 —11.631 4 29 9.305 2,30 —9.305 2,29 2.326 2,28 —2.326 2,27

6.979 1,27 6979 1,28 —9.305 5,25 9.305 5,26 2.326 3,25 2.326 3,26

6979 2,28 —6.979 2 27 —9.305 6,26 —9.305 6,25 —2326 4,26 2326 4,25

—-6.979 3,25 6.979 3 26 —13,958 7 27 13.958 7,28 —11.632 7 25 11.632 7,26

—~6.979 426 —6.979 4 25 —13. 958 8, 28 —13958 8,27 —11.632 8, 26 —11.632 8,25
—11.631 5,27 11.631 5,28 —18.610 9 ,29 18.610 9,30 —16.284 9, 27 16.284 9,28
—11.631 6,28 —11.631 6,27 —18.610 10 30 —18.610 10,29 —16.284 10 28 —16.284 10,27
—16.284 7,29 16.284 7,30 —23.263 11 31 23.263 11, 32 -20937 11 29 20.937 11, 30
—16.284 8,30 —16.284 8,29 —23.263 12,32 —23.263 12 31 -20.937 12,30 —20.937 12 29
—20.936 9,31 20.936 9 32 —4.652 4,49 4.652 3,49 —6.979 6,49 6.979 5,49
—20.936 10,32 —20.936 10 31 13.957 4 51 —-13.957 3,51 20.936 6 51 -20936 5,51
—25.5890 11,32 25.589 11 34 18.610 16 52 —18.610 15 52 27.915 18 52 —27.915 17 52
—25.589 12,34 —25.589 12,33 973.761 16 0 —973.761 15 0 1460.642 18 0 —1460.642 17,0

2326 249 2326 1,49 —41.672 39 0 —41.672 40 0 —44 414 41 0 —44.414 420

6979 2, 51 —6.979 1,51

9.305 14 52 -9.305 13,52

486.881 14 0 —486.881 13 0
—40.028 37 0 —40.028 38 0
P o= 43 44 45 46 47 . 48 .

c Jik C Ik C Ji.k c Jik c gk c gk
18.610 3,35 18.610 3,36 16.284 1,35 16.284 1,36 —9305 1,33 -9305 1,34
18.610 4,36 -18.610 4,35 16.284¢ 2,36 —16.284 2,35 9,305 2,34 —9.305 2,33
13958 1,33 13958 1,34 —6979 1,31 —6.979 1,32 —4.652 3,31 —4.652 3,32
13.958 2 ,34 —-13.958 2,33 6.979 2,32 —6979 231 4.652 4,32 —4.652 4,31

—4.652 1, 29 —4.652 1,30 —2.326 3,29 —2.326 3,30 4652 7,27 4,652 7,28
4.652 2 30 —4.652 2,29 2.326 4,30 —2.326 4,29 —4.652 828 4.652 8,27
4.652 5,25 4.652 526 2.326 5,27 2.326 5 28 9305 9,25 9.305 9,26

—4.652 6,26 4.652 6,25 —-2.326 6,28 2.326 6 ,27 —-9.305 10,26 9.305 10, 25

—13.958 9,25 13.958 9,26 6979 7,25 6.979 7,26 —13.873 1249 13.873 11, 4.-9
—13.958 10,26 —13.958 10 25 —6.979 8 26 6979 825 41.873 12,51 —41.873 11,51
—18.610 11,27 18.610 11 28 —16.284 11 ,25 16.284 11,26 55.831 24,52 —55.831 23,52
—18.610 12,28 —18.610 12,27 —16.284 12,26 —16.284 12,25 2921.283 24,0 —2921.283 23 0
—9.305 8,49 9.305 7,49 —11.631 10,49 11.631 949 —59.218 47,0 —59.218 48 0
27916 8,51 27916 17,51 34.894 10,51 —34.894 9 51
37.221 20,52 —37.221 19 52 46.526 22,52 —46.526 21 52
1947.522 20 0 —1947.522 19,0 2434.403 22, 0 —2434.403 21 0
—48.252 43 0 —48252 440 —53.187 45, ,0 —53.187 46 0
g= 49 50 51 52
C Jk C ik C J.k C .k
—27916 23,36 55.832 11,36 83.746 11,48 111.664 23,48
27916 24,35 —55.832 12,35 —83.746 1247 —111.664 24,47
—~23.262 21,34 46.526 9,34 69.786 9 46 93.052 21,46
23.262 22,33 —46.526 10,33 —69.786 10, 45 —93.052 2245
—-18.610 19,32 37.220 17,32 55.832 7 44 74440 1944
18.610 20,31 —37.220 8,31 —55.832 8,43 ~—74.440 20,43
—13.956 17,30 27916 5,30 41.870 5,42 55.830 17,42

13.956 18,29 —27.916 6,29 —41.870 6,41 —55.830 18,41

~-9.305 15,28 18.610 3,28 27912 3,40 37.220 15,40
9.305 16,27 —18.610 4,27 —27912 4,39 —37.220 16,39

—4.654 13,26 9.305 1,26 13.960 1,38 18.612 13,38
4,654 14,25 —9.305 2,25 —13.960 2,37 —18.612 14,37

—27.916 1148 —39.479 50 0 83.746 23,36 —157.920 52,0
27916 1247 —83.746 24,35
—-23.262 9,46 69.786 21,34
23.262 10,45 —69.786 22 33
—18.610 7,44 55.832 19 32
18.610 843 —55.832 20 31
—13.956 5,42 41.870 17 30
13.956 6,41 —41.870 18 29

—9.305 3,40 27.912 15,28
9.305 4,39 —27.912 16,27

—4.654 1,38 13.960 13,26
4.654 2,37 —13.960 14,25

—9.870 49,0 —88.830 510
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E=16.284CD—16.284AF—18.610BG
—1947.508\B—18.643E

F=16.2844 E+16.284BD—486.877\C— 40.028F
G=27.9164D+37.220BE— 39.479G,

where

R
A=—.
R,

A system of this kind represents the simplest con-
vection model capable of representing non-linear inter-
actions between harmonic components of the stream
field. We note that 4 and D represent the cellular
streamline and thermal fields for the Rayleigh critical
mode, and G represents the departure of the vertical
temperature stratification from the initial linear
variation. The allowance of only this single harmonic
describing the vertical stratification can be expected
to lead to a spurious stable stratification in the center
of the fluid (cf., Kuo, 1961).

By way of physical interpretation, the numerical
integrations for A>1 are imagined to represent an
experimental set-up in which the basic vertical tempera-
ture contrast is maintained until the perturbation is
introduced. In principle, if perturbations are present
at all times, the Rayleigh mode would always manifest
itself at A=1.

Except for very large Rayleigh numbers (e.g., A>20)
the motions which develop approach a steady cellular
form. In the cases of large Rayleigh number, oscillatory,
overstable cellular motions are present and, conse-
quently an alternating value of the heat transport
about a time-mean value is found. The lack of
sufficient degrees of freedom in the vertical undoubtedly
contributes to this effect. We shall now be most con-
cerned with the “lower” Rayleigh-number cases, A< 10,
which undoubtedly are less seriously affected by the
severe truncation embodied by this model.

Fig. 1 is a plot of the steady-state value of —©(0,2)
=—G versus \. The points represent values obtained
from actual integrations. Two regimes are present: for
1<\Z22.125 the Rayleigh mode (3,1) is present, and
for 2.1252A <10 a smaller horizontal scale of cellular
convection represented by the (4,1) mode is present.
It is likely that if the fluid had more degrees of freedom
(i.e., components of horizontal wave number greater
than 4) it would select these, or combinations of these
representing turbulence, rather than continue to select
(4,1). The quasi-linear relation between A and [©(0,2) ],
is in good agreement with observations (Malkus, 1954a)
and also with the theoretical steady-state results of
Malkus and Veronis (1958) and Kuo (1961). As re-
marked above we should expect to obtain more accurate
results if we permit a larger number of degrees of
freedom.
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F16. 2. Q as a function of z*, for A=2 and 5.

In Fig. 2 we present a plot of Q(z*) for A=2 and S.
As we remarked above, the lack of resolution in the
vertical, due to the inclusion only of a single harmonic
to represent the vertical stratification, leads to a
reversal in the mean vertical temperature gradient in
the center of the fluid. As shown by Kuo (1961) the
profile actually takes on an isothermal character there
if the higher modes are included, in agreement with
observations.

In order to illustrate the transient growth of the
perturbations to the steady-states shown in Fig. 1,
we have plotted the evolution of 4, B, C and G for a
value of X representative of each regime, i.e., for A=2
and 5. These are shown in Fig. 3. In both cases we see
that one of the components has a maximum growth
rate and ultimately establishes itself as the only mode
present. We should expect that, if more degrees of
freedom (i.e., components) were permitted, at some
high value of A several modes would come to coexist
in a steady condition at roughly the same amplitudes
and this condition would represent thermal turbulence.
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F1c. 3. Evolution of Fourier components. A=2 (dashed curves), A=5 (solid curves). Initial values in both cases:
¥,(3,1) =01 (4,1)=¥,(1,2)=0.0005, ©2(3,1)= O2(4,1)=0:(1,2)= ©,(0,2)=0.

8. Concluding remarks

As noted in the introduction, we view these cases
merely as examples to illustrate the methodology.
However, in spite of its simplicity the system treated
does, in fact, appear to contain a good deal of the real
physical content of the problem, especially for low A.
In order to study real thermal turbulence, however,
we must proceed to the consideration of systems of
greater complexity. These complexities can be in the
form of (1) increased degrees of freedom through
inclusion of a greater number of Fourier components.
(2) the extension to three dimensions, (3) more realistic
boundary conditions, and (4) an expansion of the
number of physical ingredients included in the internal
dynamics. We hope to make progress in some of these
directions in the near future. '
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