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3 Renormalization group theory

3.1 Introduction

This section is an elaboration of some ideas raised in §3.4, so a review of
that section would make a good foundation to the reading of this one.
Note, in particular, Table 3.1 and Fig. 3.6. For new results first note that in
fact not only is the nature of period doubling universal but so, in a sense to
be seen soon, is the order of the p-cycles which arise at the bifurcations as
the parameter increases. Thus Fig. 3.6 has the same qualitative appearance
for a wide class of maps of which the logistic map is just one. This follows
from a remarkable theorem.

Sarkovskii’s theorem. If F: R — R is continuous, F has a k-cycle and << k
in the following ordering of all the positive integers, then F also has an
l-cycle:

. l<a2<12?2<12?<2%*<---

123923792359 23%-3
1229122712250 22-3
<129<12-7<12-5<a12-3

=191 T<a5< 3.

This powerful theorem with so few hypotheses is due to Sarkovskii
(1964); a simpler proof related by Devaney (1989) is more accessible. The
theorem is valid only for one-dimensional maps. The converse of the theo-
rem is in fact also true, i.e. if /<0 k then there exists a continuous function
F: R - Rsuch that F has a cycle of period ! but not one of period k.

Note that first the powers of 2 are listed in ascending order, then the
products of the powers of 2 (in descending order) and the odd numbers (in
descending order). The theorem means, for example, that if F has a 10-cycle
then it also has a 176-cycle, because 176 = 2*- 11 <1 2-5 = 10. In particu-
lar, it implies that if F has a k-cycle where k is not a power of 2 then F has
an infinity of cycles, and if F has a finite number of cycles then all their
periods are powers of 2. It also has the following corollary.
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Corollary. If F has a three-cycle then F has an I-cycle for all positive
integers [.

This astonishing corollary has been epitomized as ‘period three implies
chaos’ (Li & Yorke 1975). To understand the background to the epitome,
recall that, although the theorem tells nothing about the stability of the
l-cycles, experience of the logistic map in §3.4 suggests that almost all if
not all the I-cycles will be unstable. So the cycles will play the role of
the repeliers in the metaphor of the pin-ball machine. Also recall that the
logistic map F(a, x) = ax(1 — x) has stable cycles in the ‘windows’ of its
parameter a. For example, it can be seen in Fig. 3.5(b) that F has two stable
six-cycles, first a six-cycle on its own account and secondly a six-cycle from
the period doubling of the three-cycle. The six-cycle is visited by F"(a, x) in
different orders in each of the two cases. Sarkovskii’s theorem does not
cover the multiplicity of a cycle of a given period, so it does not imply a
universal order of the appearance of cycles at the bifurcations of a differ-
ence equation as a parameter increases. The theorem suggests period
doubling of a k-cycle to 2"- k-cycles for k = 3, 5, ... as well as 2; in fact each
of these sequences of period doublings leads to chaos with a Feigenbaum
relation of the form (3.4.9) but with a different universal constant & for each
value of k. Again, it is possible that only a finite sequence of flip bifurca-
tions occurs as a parameter increases, in which case there is no route to
chaos by period doubling.

Now we move on to examine the detailed structure of period doubling.
It is a good example of self-similarity. Period doubling is found to be
characterized by a universal scale « for the state variable x as well as the
scale J for the parameter a. The structure of the period doubling is there-
fore revealed by renormalization, the name being used for 40 years by
theoretical physicists to describe groups of scaling transformations in the
theories of particle physics and of phase transitions. To explain renormal-
ization group theory, we shall first introduce the concept of superstability
and then the scales themselves.

Numerical calculations of the value a, of a at which a 2"-cycle arises
from a flip bifurcation are especially difficuit, because the cycle is very
weakly stable when a is near to a, and so computations over a long time are
needed to calculate the eigenvalue accurately. However, calculations of the
value A, of a at which the 2"-cycle is most stable are much easier. Accord-
ingly we say that a cycle is superstable if it is as linearly stable as it
can be, e.g. if the eigenvalue of F?" is ¢ = 0 at each point of the 2"-cycle
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{X,,X,,..., X, }. For an example of superstability with a cycle of period
one, the Newton—Raphson method to calculate a fixed point is superstable
and so converges very rapidly once a close approximation to a fixed point
has been found.

Example 4.3: the logistic map. It is shown in §3.4 that if F(a, x) = ax(1 — x)
then there is a stable fixed point, i.e. a 2°-cycle, X = (a — 1)/afor 1 <a <
a, = 3 with eigenvalue g = 2 — a. Therefore 4, = 2 because g = 0 when
a=2; then X =3 Also there is a stable 2'-cycle {X,,X,} when
ay<a<a,=1+./6 with g = [6F2(a,x)/6x:|,,(l = F(a,X,)F.(a,X,) =
4 + 2a — a*. Therefore A, is the zero of g such that a, < 4, < a,, ie.
Ay =1+ /5=3236then X, =4 X, =4(1 +./5).0

Recall that, by use of the chain rule, the multiplier g determining the

*stability of the 2-cycle can be shown to have the same value [[7, F,(a, X;)

at each point of the 2"-cycle, so that g = 0 if and only if the derivative of F
vanishes at one point of the cycle. Therefore, if F is a smooth convex
function with a simple maximum at X, then ¢ = 0 if and only if X; = X,
for one value of j¥i.e. if and only if X,, belongs to the 2"-cycle, i.e.

F¥(4,,X,) = X,.
Thus A, is a value such that
FY(4,,X,)=0.

In fact if F is a smooth convex function then A, is the unique value; indeed,
as a increases from a, to 4, to a,,,, F2'(a, X,) decreases monotonically
from1to0to —1. i

We have established that if a = 4, then X,, belongs to the 2"-cycle. So
the other points are F/(A4,, X,,) forj = 1,2, ..., 2" — 1. Of these points the
closest to X,, is F>"'(4,,X,,). To see why this is true, first note that each
member of a 2" !-cycle of F is a fixed point of F2"' and the 2"-cycle of F
contains two 2" !-cycles of F. The 2"-cycle of F bifurcates from the 2"~1-
cycle of F as a increases through a, and the line y = x cuts the curve
y = F¥"'(a,x) at the two-cycle as well as the fixed point of F>" (see, e.g.,
Fig. 3.4). So, as a increases through q,, the two points of the two-cycle of
F? separate from the fixed point and one another. However, this leaves
X, the point that becomes X,, when a = 4,, closest to F?(a, X,) and
these two points of the 2"-cycle stay closest as a increases to A4,. To prepare
to investigate the scaling of the separations of the points {X|, X,,..., X,-}
of a 2"-cycle for large r, define

Ll
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Fig. 4.4 Sketch (not to scale) in the (g, x)-plane of the bifurcation diagram of a
one-dimensional map, showing the flip bifurcations and superstable 2-cycles.

d,=F""(4,X,)— X, forr=12,..., (1)

the distance from X, to the nearest other member of the superstable 2'-
cycle. Then the location of the flip bifurcations and superstable cycles is
summarized in Fig. 4.4.

3.2 Feigenbaum’s theory of scaling

We are now ready to describe Feigenbaum’s theory of period doubling,
although in addition a knowledge of the elements of applied functional
analysis will help. It is interesting that Feigenbaum’s (1978) paper was
rejected by the first journal to which it was submitted (Cvitanovi¢ 1984,
p. 244). Feigenbaum calculated A4, and d, numerically for several values
of r and for a few functions F and concluded that

A, =a,— Bo™" + 0(07"), d, ~ D/(—a)y asr — oo, 2

where B, D are constants which depend upon the map F, but § = 4.6692. ..
and o = 2.5029... are ‘universal’ constants which do not. This shows that «
is the x-scale of the route to chaos by period doubling much as § is the
a-scale. The scaling of d, can be expressed as

im (—af {F* (4,4, X,n) — X} = —D/a. ©)

r—co

This leads to the further hypothesis that the limit
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g1(x — X,,)) = lim {g,,(x — X,,)} 4)

exists, where g,,(x — X,,) = (—oc)’{Fzr(A,J,l,rX,,l + (x = X, )/(—o)) — X,,.},
for we see that (3) implies that g,(0) = —D/a, and calculations of
g.,(x — X,,) for quite low values of r (rather than infinity) seem to confirm
the existence of a limit g, independent of F. Then the scaling of x — X,
shows that only the behaviour of F near to its maximum determines g, and
so it is this behaviour which is responsible for the universality of g,.

To make the notation a little less cumbersome it is convenient to trans-
late the origin of x to the maximum X, of F. So henceforth we shall simply
put X,, = 0 without loss of generality.

Example 4.4: the logistic map. If F(a,x) = ax(1 — x) then we may replace
x — X,, = x — 3 by x to get the new function F(a, x) = a( — x?), ensuring
* that the maximum of F is now at x = 0. Then we find that

gio(x) = F(A;,x) = 4, — x?),
91109 = (=) F*(4,,x/(—))
"= (~Ax (k- A5G~ XYY
— ad, {4647 — 1) — 343X/ + A3x/ot),
We can similarly ﬁnd gq,(x) for r = 2, 3, etc. and plot the curves y = g,,(x)

in the (x, y)-plane to see that a limiting function g, seems to emerge as r
increases. O

The essence of this scaling of x is captured by the operator T defined by

Ty (x) = —op (Y (—x/a)) ) (5)

for all continuous functions . Then
Tg,(x) = —ag,(g:(—x/a)) 1
= —alim (=) F¥ (A, (~ 2 ¥ (A, /(= ).
Now define ¢ by ¢(y) = (=) F¥' (4,41, y(—a)), so ¢*(y) = (4(y)) =
(—a)F¥"(A, 1, y/(—a)). Then taking y = x/(—«), we deduce that
Tg,(x) = lim {(—o)f ™ F¥" (4,41, x/(—af ™)}

r—w

= lim {(—2)/F?*(4,, x/(—2)%)},

94—

= go(x), say.
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Similarly, it can be shown that

Tgi(x) = gy-1(x) fork=2,3,..., (6)
where g, is defined by
g(x) = im {(— o) F*" (4,15, x/(—))}. (7

r—=o0

Taking the limit as k — co in equation (6), we conclude plausibly that there
exists a function
g(x) = ,}‘fﬂ gi(x) ®
such that
Tg =g, )

Le. that there exists a ‘fixed point’ g of the nonlinear functional operator
T. The famous equation (9) was discovered in a discussion between
Cvitanovi¢ and Feigenbaum (1978, p. 46). We shall incidentally show later
that the fixed point g is unstable.

Although we in fact know « from numerical solutions of difference equa-
tions, its proper status at this stage of the theory is a constant to be deter-
mined from equation (9). To find it first note that if g(x) is a solution of
equation (9) then so is ug(x/u) for all u # 0. So we may, by convention,
choose a particular value of u such that

v

g(0) = 1. (10)
Then, on putting x = 0 into equation (9) and using (5), it follows that
= —1/g(1). (11)

Feigenbaum (1979) verified numerically the above scaling structure, and
sought to find g as an even function by expanding g(x) as a series in powers
of x?, truncating the series, and equating coefficients of successive powers
of x? in equation (9). In this way he found that

g(x) =1 — 1.52763x + 0.10482x* — 0.02671x% + ---, (12)

and & = —1/g(1) = 2.5029.... Thus « appears as a sort of nonlinear eigen-
value of the functional equation (9).

Example 4.5: quadratic approximation to g. To solve equation (9) for all
x, where g is an even function and g(0) = 1, and then find & = —1/g(1)
approximately, assume that g(x) = 1 + bx? for some constant b and
neglect all higher powers of x. Then substitution into equation (9) gives
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1+ bx* = —afl + b{1 + b(—x/2)*}?]
= —a(l + b + 2b*x?/a? + b3x*/a*).

Equating coefficients of x° and x?, and neglecting the term in x*, we find
that

1= —a(l +0), b= —2b%/a.

Therefore « = —1/(1 + b) = —1/(1 — 3%). This gives a quadratic equa-
tion for o with solution o = 1 + /3. But we require « > 1. Therefore o =
1+./3=273...,and b= —3a = —1.37.... It is a crude approximation,
but the example shows how to calculate g and « to higher approximations.

o

Next we move on to find the scaling of the parameter a in the route to
" chaos by period doubling, evaluating 8. We shall show that
gi(x) — g(x) ~ constant x & *u, (x) ask — oo, (13)

where 6 is the aigenvalue belonging to the first eigenfunction u, of the
linear operator I , defined as the Fréchet derivative of the nonlinear opera-
tor T evaluated at the ‘point’ g in the space of continuous functions.

Example 4.6: calculation of the Fréchet derivative of T. The Fréchet deriva-
tive J, of the operator T ‘at’ i is defined by linearization of T about i, i.e.
by the equation

TW +ed) = Ty + eIy + ole)  ase—0 (14)
for all (well-behaved) functions ¢. To find J, we expand
TW + ) = —a(y + e)(Y(—x/2) + ed(—x/x)) ’
—ay (Y (—x/a) + ed(—x/x)) — aed((—x/a) + €d(—x/x))
—ap (Y (—x/a)) — o' (Y (—x/0)) - €d(—x/a)) + O(€?)
— aep(Y(—x/a)) + O(e?)  ase—0,

on assuming that i, ¢ are well-behaved and taking a Taylor series,
=Ty + el ¢ + O(€?),
where J , is defined by
Jyp = — ' (Y(—x/a)$(— x/a) — ad((—x/a)). O (15)
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To proceed to find the a-scaling as a — a,, we expand
F(a,x) = F(a,,x) + (a — a,)f(x) + O{(a — a,)*} asa—a,, (16)

where f(x) = F,(a,, x). (Of course, if F(a, x) = af(x) then equation (16) is
exact for all @ on omission of the remainder term O{(a — a,,)?}.) Therefore
the Taylor expansion of the operator T acting on equation (16) gives

TF(a,x) = —aF(a, F(a, —x/a))
= —aF(a,F(a,, —x/0) + (@ — a ) f(—x/a) + )
= —aF(a,,Fla,, —x/a)) —ala —a,)f(F(a,, —x/a)) + -
—ofa — ay)f(—x/a)F(ay,F(ay,, —x/a)) + -
=TF(a,,X) + (@ — axpa, of(x) + 0{(a — a,)*} asa—a,.
On iteration, this process gives
T*F(a,%) = TF(ay, %) + (2 — ) ri5a, 0 /(%) + O{(a — a,,)*}
=g(x) + (@ — a ) Jg f(x) + O{(a — a,)*} + o(1) (17)

asa—a,, k— oo.
To simplify equation (17) consider the eigenvalue problem

Jou=Au

and suppose that it has eigenvalue 4; belonging to the eigenfunction u; for
j=1,2,..., where {u;} is a complete set of continuous functions over the
interval on which f is positive, for example a complete set for C[ —1,17 if
F(a,x) = a( — x?). Then

T =3 gy
for some constants ;. Therefore
HICEWZHC
~&Au(x) ask— oo,

if we assume that ¢, # 0 and we may take [4,] > [4;] forj =2, 3,.... Then
let 6 = 2, and h(x) = &, u,(x). Therefore equation (17) gives

T“F(a,x) = g(x) + (@ — a,)8*h(x) + o(1) + O{(a — a,,)*}

ask — o0,a—a,.
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Therefore
T'F(A4,,0) — g(0) ~ (4, — a,,)0"h(0) asr — oo. (18)
Now
TF(4,,0) = —aF(4,,F(4,,0))

—aF?(4,,0).
On iteration, this gives
T'F(4,,0) = (=% F*(4,,0).

But X, belongs to each superstable cycle, so F*(4,,X,,) = X,,, and,
after translation of the maximum to the origin, this gives F2"(4,,0) = 0.
Therefore

T'F(4,,0)=0. '
Therefore relation (18) gives
:A, —a, ~ —g(0)/07h(0) asr — w
= —67/h(0),

which was anticipated in the first of relations (2).

Feigenbaum (19\80) also examined the Fourier spectrum of {F"(x,)} for
2"-cycles as r — co.

All this, then, is Feigenbaum’s heuristic theory of scaling of x and a in
the route to chaos by period doubling. The astonishing ubiquity of
Feigenbaum’s sequence in period doubling of maps of R™ for m > 1, of
solutions of differential equations, and of phenomena in laboratory experi-
ments, stems from this theory for one-dimensional maps.

4 Liapounov exponents

In studying chaotic solutions (§§3.3, 3.4) we have met sensitive dependence
on initial conditions and met simple examples of neighbouring orbits
which separate exponentially. To be more formal we may define an in-
finite invariant set S of a map F: R — R to have sensitive dependence on
initial conditions if there exists § > 0 such that for all x € S and all neigh-
bourhoods N (however small) of x there exists y € N and n > 0 such that
|F"(x) — F*(y)| > 6. So neighbouring orbits, however close initially, sepa-
rate from one another, although each keeps close to the invariant set.

It is, moreover, a characteristic of neighbouring chaotic orbits that their
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separation is an exponential function on average, though not necessarily an
exact exponential function. It is this rapid separation which makes it im-
possible in practice to predict the behaviour of a chaotic solution far into
the future. This is in contrast to the behaviour of an orbit near an attractor
which is a fixed point or a periodic solution. These ideas can be quantified
by use of what are called Liapounov exponents.

Consider then a continuously differentiable map F: R — R and suppose
that there exists 4 such that

|F'(xq + €) — F"(xo)| ~ €€  ase—0,n— oo
provided that ee"* — 0 also, i.e.

dF"(xq)
el dxo

~ ee"* asn — co,

to express the average exponential separation of the orbit starting at
Xo + € from the orbit starting at x,. Therefore
A= lim

{1 ‘dF“’(xo} }
N-w

—1
g dx,
= lim {N7'In|F'(xy_,)F'(xy_,)... F'(xo)},

N-owo

where x, = F"(x,), on differentiating a function of a function and using
induction (cf. Q3.5),

. 1 N-1
= lim {N,,Zo 1n|F’(x,,)|}. 1)

N-=w

This shows that A is a measure of the exponential separation of the neigh-
bouring orbits averaged over all points of an orbit around an attractor.

We now may formally define the Liapounov exponent 4 of an invariant
set of F by the limit (1), if it exists. Sometimes e* is called a Liapounov
multiplier or Liapounov number. In general 1 depends on the initial point x,
of the orbit, but it is the same for almost all x, in the domain of attraction
of a given attractor. We see that for a stable cycle 4 < 0 and neighbouring
orbits converge (Q3.5), but that for a chaotic attractor 4 > 0. The
Liapounov exponent may be interpreted in terms of information theory as
giving the rate of loss of information about the location of the initial point
Xo (Shannon & Weaver 1949) or in terms of Kolmogorov entropy as
measuring the disorder of the system (Kolmogorov 1959).

In general A can only be found by computation, but it can be evaluated
analytically in some simple cases.



