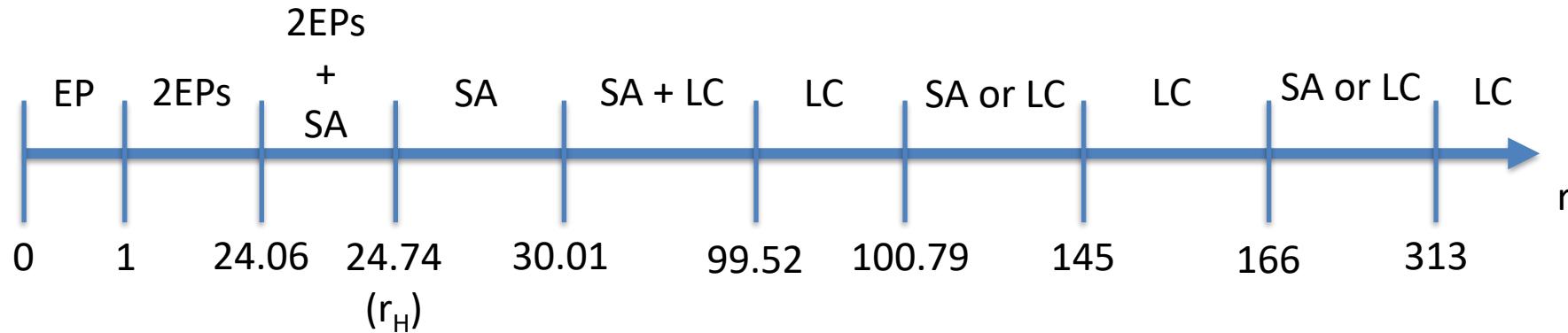


3.1.4 Exploring the parameter space

- The behavior of the Lorenz system as the parameter(s) vary is the subject of much contemporary research
- Lorenz look at the parameters $\sigma=10$, $b=8/3$, $r=28$, and we mostly explored the dynamics around these values. What happens when they are varied ?
- The dynamics has been fully characterized for $\sigma=10$, $b=8/3$, as r varies, and shows an interesting behavior :



EP: stable equilibrium point

SA: strange attractor

LC: stable limit cycle

3.1.4 Exploring the parameter space

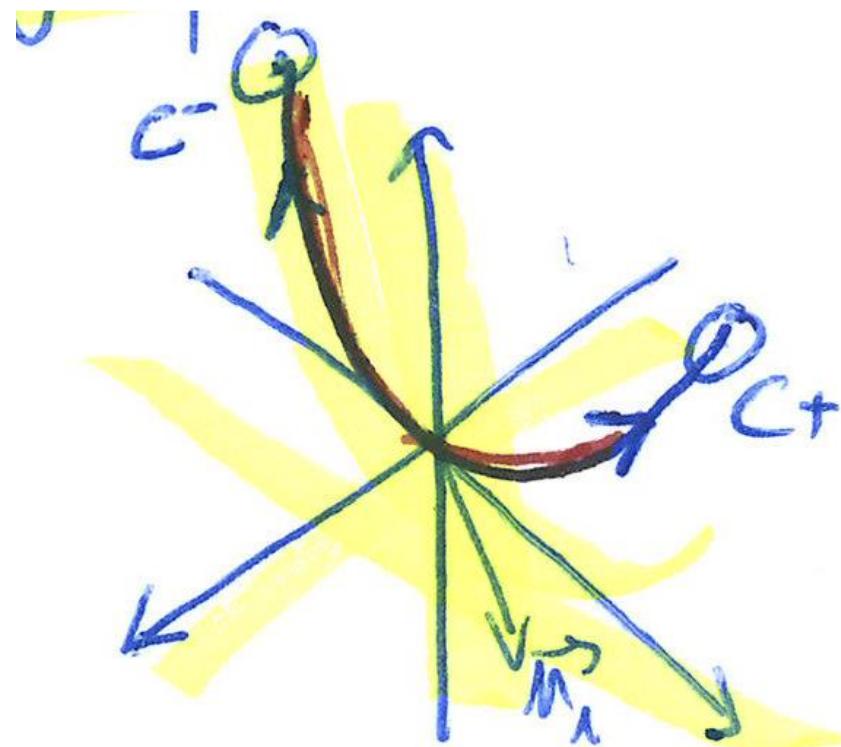
$1 < r < r_H$:

- When $r > 1$, the origin becomes unstable. One can identify the stable and unstable manifolds. The 1D unstable manifold is a curve tangent to the first eigenvector (\mathbf{u}_1), the 2D stable manifold is a surface tangent to the two eigenvectors (\mathbf{u}_2 and \mathbf{u}_3)
The stable and unstable manifolds cannot be crossed by an orbit, so the 2D stable manifolds divide the orbits in two sets

3.1.4 Exploring the parameter space

$1 < r < r_H$:

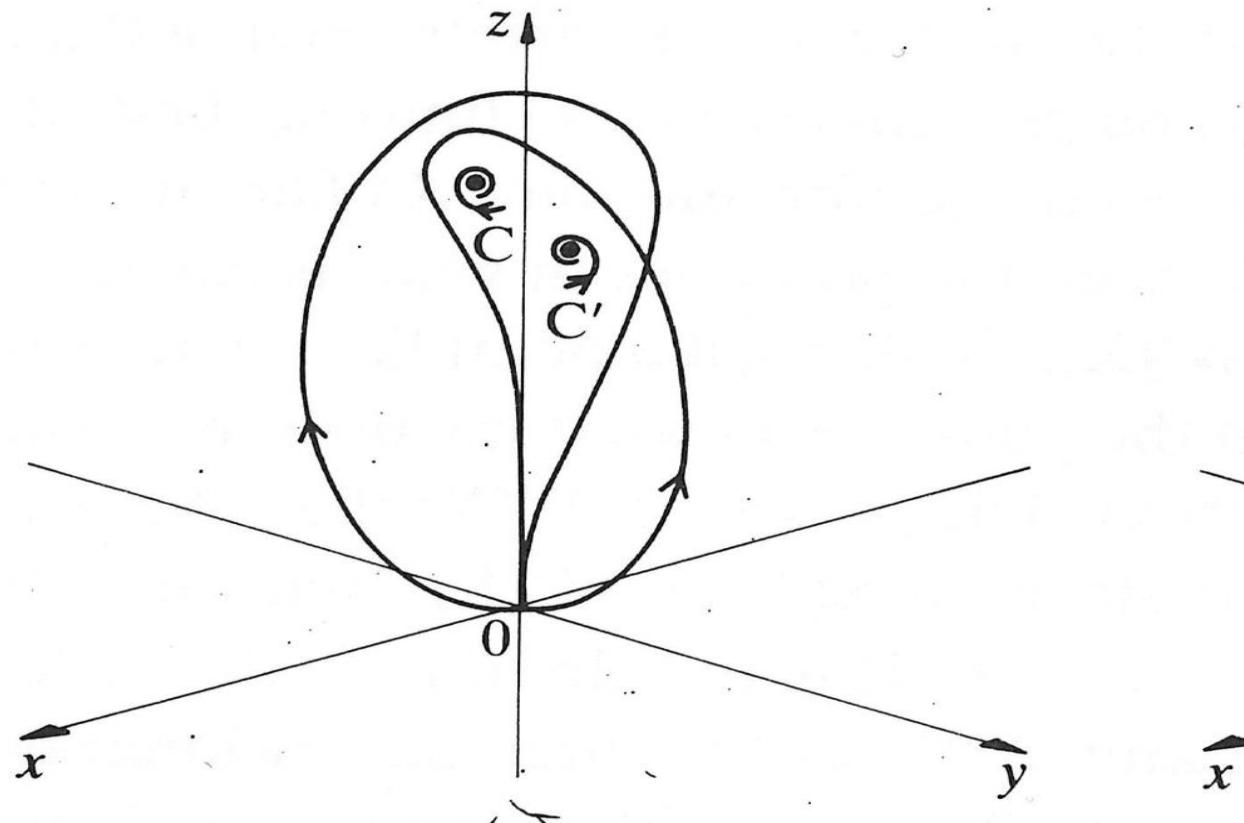
- For $1 < r < r_0 \approx 13,93$ (numerical)
 - The unstable manifold of 0 leaves the origin and ends of $C^{+/-}$ depending if we consider the unstable manifold parallel or anti-parallel to \mathbf{u}_1



3.1.4 Exploring the parameter space

$1 < r < r_H$:

- For $r = r_0 \approx 13.93$ (numerical)
 - Two homoclinic orbits appear, between 0 and itself. These orbits leave 0 for the unstable manifold and come back along the plan of the stable manifold.



3.1.4 Exploring the parameter space

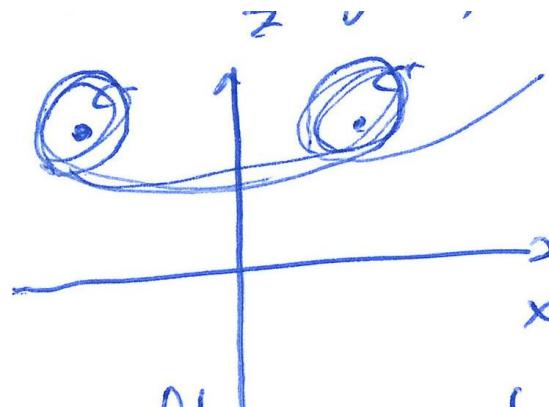
$1 < r < r_H$:

- For $r_0 \approx 13.93 < r < r_1 \approx 24.06$

Two unstable limit cycles (of finite period) arise from the homoclinic orbits (homoclinic bifurcation). The limit cycles are the ones that we find at the Hopf bifurcation that occurs at $r=r_1$

As r increases, the orbits cross-over from $C+$ to $C-$ and back, an increasing number of times, before spiraling into either $C+$ or $C-$. This is sometimes called **pre-chaos** or **transient chaos**. The orbits that tend to $C+$ or $C-$ are very close to each others, the basins of attraction of the two stable equilibrium points extend very complex, complementary, interwoven domains.

This is a bit like rolling a dice : the system ends-up in one of the 6 possible equilibrium positions, but after a phase of crazy motion that makes it impossible to predict the final position.



3.1.4 Exploring the parameter space

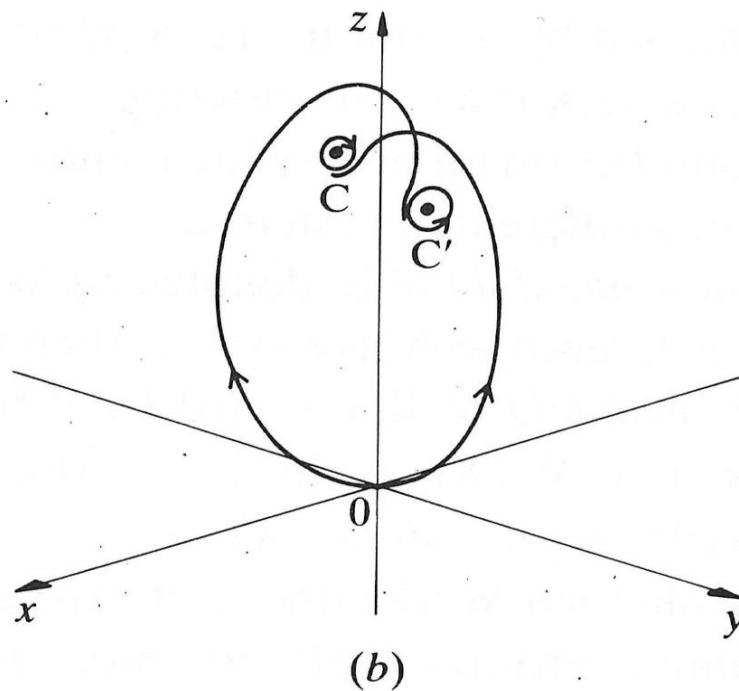
$1 < r < r_H$:

- $r = r_1 \approx 24.06$

The unstable manifold of O leaves O and enters the saddle limit cycles around $C^{+/-}$.

The two orbits that are created are called heteroclinic between O and the limit cycle (heteroclinic: an orbit that joints two different invariant sets)

The creation of the heteroclinic orbits is what defines the r_1 point and marks the onset of chaos.



3.1.4 Exploring the parameter space

$1 < r < r_H$:

- $r_1 < r \leq r_H$

The meandering time around $C^{+/-}$ becomes infinite, indeed from the heteroclinic orbits the strange attractor is born. This coexists with the attractors $C^{+/-}$,