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Existence and
Uniqueness Revisited

In this chapter we return to the material presented in Chapter 7, this time filling
in all of the technical details and proofs that were omitted earlier. As a result,
this chapter is more difficult than the preceding ones; it is, however, central
to the rigorous study of ordinary differential equations. To comprehend thor-
oughly many of the proofs in this section, the reader should be familiar with
such topics from real analysis as uniform continuity, uniform convergence of
functions, and compact sets.

17.1 The Existence and Uniqueness
Theorem

Consider the autonomous system of differential equations
X' = F(X)

where F: R" — R”. In previous chapters, we have usually assumed that F
was C*; here we will relax this condition and assume that F is only C 1 Recall
that this means that F is continuously differentiable. That is, F and its first
partial derivatives exist and are continuous functions on R”. For the first few
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384 Chapter 17 Existence and Uniqueness Revisited

sections of this chapter, we will deal only with autonomous equations; later
we will assume that F depends on ¢ as well as X.

As we know, a solution of this system is a differentiable function X : ] — R”
defined on some interval ] C R such that forall t € J

X'(t) = F(X(1)).

Geometrically, X(t) is a curve in R" whose tangent vector X'(¢) equals
F(X(t)); as in previous chapters, we think of this vector as being based at
X(t), so that the map F: R"” — R" defines a vector field on R”. An initial
condition or initial value for a solution X: ] — R" is a specification of the
form X(#)) = Xy where #p € J and Xy € R". For simplicity, we usually take
o = 0.

A nonlinear differential equation may have several solutions that satisfy
a given initial condition. For example, consider the first-order nonlinear
differential equation

x = 3x"°.

In Chapter 7 we saw that the identically zero function up: R — R given by
up(t) = 0isasolution satisfying the initial condition #(0) = 0. But u;(¢) = t°
is also a solution satisfying this initial condition, and, in addition, forany ¢ > 0,
the function given by

() = 0 ift<rt
=V — 03 ifr>t

is also a solution satisfying the initial condition u;(0) = 0.

Besides uniqueness, there is also the question of existence of solutions. When
we dealt with linear systems, we were able to compute solutions explicitly. For
nonlinear systems, this is often not possible, as we have seen. Moreover, certain
initial conditions may not give rise to any solutions. For example, as we saw
in Chapter 7, the differential equation

Y {1 ifx<0
-1 ifx>0
has no solution that satisfies x(0) = 0.

Thus it is clear that, to ensure existence and uniqueness of solutions, extra
conditions must be imposed on the function F. The assumption that F is
continuously differentiable turns out to be sufficient, as we shall see. In the

first example above, F is not differentiable at the problematic point x = 0,
while in the second example, F is not continuous at x = 0.
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The following is the fundamental local theorem of ordinary differential
equations.

The Existence and Uniqueness Theorem. Consider the initial value
problem

where Xy € R". Suppose that F: R" — R" is C'. Then there exists a unique
solution of this initial value problem. More precisely, there exists a > 0 and a
unique solution

X:(—a,a) — R"
of this differential equation satisfying the initial condition

X(0) = Xo. |

We will prove this theorem in the next section.

17.2 Proof of Existence and Uniqueness

We need to recall some multivariable calculus. Let F: R?” — R". In
coordinates (xj,...,x,) on R", we write

F(X) = (h(x1,. s Xn)s o o5 fu(X15 oo 5 Xn)).

Let DFx be the derivative of F at the point X € R". We may view this derivative
in two slightly different ways. From one point of view, DFx is a linear map
defined for each point X € R"; this linear map assigns to each vector U € R”
the vector

F(X + hU) — F(X)
h b

DFx(U) = lim
h—0

where h € R. Equivalently, from the matrix point of view, DFy is the n x n

Jacobian matrix
a .
DFX — (i)
3Xj

where each derivative is evaluated at (xi, ..., x,). Thus the derivative may be
viewed as a function that associates different linear maps or matrices to each
point in R”. That is, DF: R"” — L(R").
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As earlier, the function F is said to be continuously differentiable, or C 1if
all of the partial derivatives of the f; exist and are continuous. We will assume
for the remainder of this chapter that F is C!. For each X € R", we define the
norm |DFx| of the Jacobian matrix DFx by

|DFx| = sup |DFx(U)]
|UI=1

where U € R". Note that | DFx| is not necessarily the magnitude of the largest
eigenvalue of the Jacobian matrix at X.

2.0
DFX_<0 1).

Then, indeed, | DFx| = 2, and 2 is the largest eigenvalue of DFx. However, if

1 1
DFx = (0 1),
1 1 cos @
0 1 sin &

= sup \/(c059+sin9)2+sin29

0<6<2m

Example. Suppose

then

|DFx| = sup

0<0<2m

= sup V1 +2cos6sind + sin? 0

0<6<2m

>1
whereas 1 is the largest eigenvalue. |
We do, however, have
|DFx (V)| < |DFx||V|
for any vector V € R”. Indeed, if we write V = (V/|V]) | V|, then we have
IDFx (V)| = |[DEx(V/|VI)| V] < |DFx| V|

since V/|V| has magnitude 1. Moreover, the fact that F: R" — R" is C!
implies that the function R" — L(R"), which sends X — DFy, is a
continuous function.
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Let O C R” be an open set. A function F: O — R" is said to be Lipschitz
on O if there exists a constant K such that

|F(Y) — F(X)| = K|Y — X]|

forall X,Y € O. We call K a Lipschitz constant for F. More generally, we say
that F is locally Lipschitz if each point in O has a neighborhood O’ in O such
that the restriction F to O’ is Lipschitz. The Lipschitz constant of F|O" may
vary with the neighborhoods O'.

Another important notion is that of compactness. We say that a set C C R”
is compact if C is closed and bounded. An important fact is that,if f : C — R
is continuous and C is compact, then first of all f is bounded on C and,
secondly, f actually attains its maximum on C. See Exercise 13 at the end of this
chapter.

Lemma. Suppose that the function F: O — R" is C'. Then F is locally
Lipschitz.

Proof: Suppose that F: O — R™is C! and let Xy € O. Let € > 0 be so small
that the closed ball O of radius € about X is contained in O. Let K be an upper
bound for |DFx| on O,; this bound exists because DFy is continuous and O,
is compact. The set O, is convex; that is, if Y, Z € O, then the straight-line
segment connecting Y to Z is contained in Oe. This straight line is given by
Y+sU € O, where U =Z2—Yand0 < s < 1. Let ¥ (s) = F(Y + sU).
Using the chain rule we find

¥'(s) = DFy4su(U).
Therefore

F(Z) - F(Y) = ¢ (1) - ¢(0)

1
_ f W(s) ds
0
1
=/ DFy sy (U) ds.
0

Thus we have
1
[F(Z) — E(Y)] 5/ K|U|ds = K|Z — Y. i
0

The following remark is implicit in the proof of the lemma: If O is convex,
and if |DFx| < K for all X € O, then K is a Lipschitz constant for F | O.
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Suppose that ] is an open interval containing zero and X : ] — O satisfies
X'(t) = F(X(1))

with X(0) = Xp. Integrating, we have

X(t) :Xo+/tF(X(s))ds.
0

This is the integral form of the differential equation X’ = F(X). Conversely,
if X: J — O satisfies this integral equation, then X(0) = X, and X satisfies
X' = F(X), as is seen by differentiation. Thus the integral and differential
forms of this equation are equivalent as equations for X: ] — (. To prove
the existence of solutions, we will use the integral form of the differential
equation.

We now proceed with the proof of existence. Here are our assumptions:

. O, is the closed ball of radius p > 0 centered at X.
. There is a Lipschitz constant K for F on O,,.

. JF(X)| <MonO,.

. Choose a < min{p/M, 1/K} andlet ] = [—a, a].

=W N =

We will first define a sequence of functions Uy, Uy, ... from J to O,. Then we
will prove that these functions converge uniformly to a function satisfying the
differential equation. Later we will show that there are no other such solutions.
The lemma that is used to obtain the convergence of the Uy is the following:

Lemma from Analysis. Suppose Uy: ] — R", k =0,1,2,...1isasequence

of continuous functions defined on a closed interval J that satisfy: Given e > 0,
there is some N > 0 such that for every p,q > N

Uy(t) — Uy(t)] <e.
Igléa]XIp() a(1)] <e

Then there is a continuous function U: | — R” such that

ma]x|Uk(t) —U@)—0 ask— oc.
te

Moreover, for any t with |t| < a,

t

t
lim Uk(s)ds=/ U(s) ds. -
0

k—o0 Jo
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This type of convergence is called uniform convergence of the functions Uy.
This lemma is proved in elementary analysis books and will not be proved
here. See [38].

The sequence of functions Uy is defined recursively using an iteration
scheme known as Picard iteration. We gave several illustrative examples of
this iterative scheme back in Chapter 7. Let

Up(t) = Xop.

For t € J define
t
Un(t) = Xo + f F(Uy(s)) ds = Xo + tF(Xo).
0

Since |t| < aand |F(Xp)| < M, it follows that
|Ui(2) — Xol = [t]|F(Xo)| < aM < p

so that U (t) € O, for all t € J. By induction, assume that Uy (#) has been
defined and that |Ui(t) — Xo| < p forall t € J. Then let

t
Ut () = Xo + /0 F(Uy(s)) ds.

This makes sense since Ui(s) € O, so the integrand is defined. We show that
| Uk+1(t) — Xo| < p so that Ugy,(t) € O, for t € J; this will imply that the
sequence can be continued to Uy, Uk 3, and so on. This is shown as follows:

t
Upar () = Xo < /O F(UR(s))| ds

t
< M ds

Next, we prove that there is a constant L > 0 such that, for all k > 0,
| U1 (1) — Ug(1)] < (aK)*L.

Let L be the maximum of |U;(¢) — Up(t)| over —a < t < a. By the above,
L < aM.We have

t
|U2(t) — Uh(1)] = ‘fo F(Ui(s)) — F(Up(s)) ds
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t
< / KIUL(s) — Up(s)] ds
0
< aKL.
Assuming by induction that, for some k > 2, we have already proved
|Uk() — U1 (1)] < (aK)*'L

for |t| < a, we then have
t
|Uk+1(£) = Uk ()] = / |F(Uk(s)) — F(Uk—1(s))| ds
0

t
< K/O |UL(s) = Up_y(s)] ds

< (aK)(aK)F1L
= (aK)kL.

Let @ = aK, so that @ < 1 by assumption. Given any € > 0, we may choose N
large enough so that, for any r > s > N we have

U (1) = Us()] < Y |Upa (1) — Ui(1)|

k=N
o0
< Z ok
k=N

€

IA

since the tail of the geometric series may be made as small as we please.

By the lemma from analysis, this shows that the sequence of functions
Uy, Uy, . .. converges uniformly to a continuous function X: J — R”. From
the identity

t
Upir (1) = Xo + /0 F(U(s)) ds,

we find by taking limits of both sides that

t

X(t) =Xy + klim F(Ui(s)) ds
—00 Jo
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t
=X0—|—/ ( lim F(Uk(s))) ds
0 k—oo
t
=Xy —|—/ F(X(s)) ds.
0

The second equality also follows from the Lemma from analysis. Therefore
X: ] — O, satisfies the integral form of the differential equation and hence
is a solution of the equation itself. In particular, it follows that X: ] — O,
is C'.

This takes care of the existence part of the theorem. Now we turn to the
uniqueness part.

Suppose that X, Y: ] — O are two solutions of the differential equation
satisfying X(0) = Y (0) = Xo, where, as above, J is the closed interval [—a, a].
We will show that X(t) = Y(¢) forall t € J. Let

Q = max |X(#) — Y(1)|.
te]
This maximum is attained at some point #; € J. Then

Q=1X(t)—-Y()l =

5}
/ (X'(s) — Y'(s)) ds
0
1
< /0 F(X(s)) — F(Y(5))] ds

< [ xkix - v a
< aKQ.
Since aK < 1, this is impossible unless Q = 0. Therefore
X(t) =Y(1).
This completes the proof of the theorem. |

To summarize this result, we have shown: Given any ball O, C O of radius
o about Xy on which

L |F(X)| = M;
2. F has Lipschitz constant K; and
3. 0 <a<min{p/M,1/K};

there is a unique solution X: [—a, a] — O of the differential equation such
that X(0) = Xp. In particular, this result holds if F is C! on O.
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Some remarks are in order. First note that two solution curves of X’ = F(X)
cannot cross if F satisfies the hypotheses of the theorem. This is an imme-
diate consequence of uniqueness but is worth emphasizing geometrically.
Suppose X: J — O and Y: J; — O are two solutions of X' = F(X) for
which X(#) = Y(%). If 4 = t we are done immediately by the theorem.
If t§ # t, then let Y1(¢t) = Y(& — t; + ). Then Y7 is also a solution of
the system. Since Yi(f1) = Y (&) = X(#), it follows that Y; and X agree
near #; by the uniqueness statement of the theorem, and hence so do X(t)
and Y (1).

We emphasize the point that if Y(¢) is a solution, then so too is Y;(t) =
Y(t + 1) for any constant #;. In particular, if a solution curve X: ] — O
of X’ = F(X) satisfies X(#;) = X(f; + w) for some t; and w > 0, then that
solution curve must in fact be a periodic solution in the sense that X (¢ + w) =
X(t) for all t.

17.3 Continuous Dependence on Initial
Conditions

For the existence and uniqueness theorem to be at all interesting in any physical
or even mathematical sense, the result needs to be complemented by the
property that the solution X (#) depends continuously on the initial condition
X(0). The next theorem gives a precise statement of this property.

Theorem. Let O C R" be open and suppose F: O — R" has Lipschitz
constant K. Let Y (t) and Z(t) be solutions of X' = F(X) which remain in O
and are defined on the interval [ty, t1]. Then, for all t € [, 1], we have

[Y(t) = Z(t)] < |Y(ty) — Z(to)| exp(K(t — 1p)). [

Note that this result says that, if the solutions Y(¢) and Z(¢) start out close
together, then they remain close together for t near #. While these solutions
may separate from each other, they do so no faster than exponentially. In
particular, we have this corollary:

Corollary. (Continuous Dependence on Initial Conditions) Let
@ (t, X) be the flow of the system X' = F(X) where F is C'. Then ¢ is a
continuous function of X. |

The proof depends on a famous inequality that we prove first.



