Nonlinear dynamics, chaos and complex systems — Dr. Olivier Février — SPC

15 April 2025

Problem Set 8 : Chaos

1 The Rossler System
A set of differential equations close to the Lorenz system was studied by the German biochemist Otto
Rossler in 1976 to model the dynamics of chemical reactions
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(a) In Matlab, adapt the code used in the previous weeks for the Lorenz system to integrate and plot
the trajectories in the Rossler system using again the forward Euler and Runge-Kutta 4** order
schemes, as well as Matlab's ode45. Run a simulation with a = 1/4, b =1 and ¢ = 3/2 and
to verify that the system starting at Zp = (1,0,0) converges to a fixed point (using dt=0.01
should be sufficient).

BONUS : adapt the file compare_dt .m to verify that the orders of convergence are the expected
ones.

(b) Identify the nullclines and the fixed points, carefully treating all cases of possible values of the
parameters a, b and c. For the rest of the exercise, consider only the a # 0 case.

(c) For given parameters a and b, what are the fixed points in the limit of ¢ — 00 ?

(d) Identify the Jacobian matrix associated with the linearised system and its characteristic polyno-
mial.

(e) At the smallest positive value ¢ = ¢y, at which fixed points exist, what is the characteristic
polynomial ? Evaluate the eigenvalues and eigenvectors in the case of a = 1/4 and b = 1 (feel
free to use Mathematica's Eigenvalue and Eigenvector). You should find a real eigenvalue
and two complex conjugate eigenvalues.

(f) Still with @ = 1/4, b = 1 and ¢ = ¢}, compare the numerical solutions to the predictions
that linearisation makes in the neighborhood of the fixed point. For the real eigenvalue, the
associated eigenspace is a line, passing through the fixed point. Run numerical simulations
with initial conditions in the eigenspace, on both sides of the fixed point. Plot and discuss the
trajectories. What could be the bifurcation at ¢ = ¢y ?

Help : Use initial conditions located at a distance of approximately 0.1 from the fixed point.
Run the simulation for a time of approximately 100.

(g) Again with a =1/4, b =1 and ¢ = ¢}y, verify that the trajectories in the manifold identified by
the two complex conjugated eigenvectors are stable spirals, checking that linearisation correctly
predicts the behaviour of the trajectories. To do so, look for the eigenvector generating the
plane in the following way. Considering the two complex conjugated eigenvectors, v and v, take
the plane generators via u; = Relv] and uy = Iml]v]. The orthogonal direction is given by
u; X ug. Orthonormalising u; and us provides a real basis spanning the spiral plane. Then,
project the trajectory on this new basis, and plot separately the spiral plane projected and the
normal projection. Help : Start the trajectory at a distance of approximately 0.1 from the fixed
point. You can use the Matlab function orth to get an orthonormal basis of the plane, and
cross to get the normal direction of the plane.

(h) Still using a = 1/4 and b = 1, we are interested in the eigenvalues of the linearised system
about the fixed points as c is varied. On Matlab, start from ¢ = ¢j;,. Then, increase c. At each
value of ¢ compute the coordinates of the fixed points and find the eigenvalues of the Jacobian
matrix at the fixed point. Plot the eigenvalues as c is varied.
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Help : At each iteration of ¢, the roots command may not give the eigenvalues in the same
order, meaning you may need to sort them (possibly by comparing their imaginary parts).

Observe the dependence on ¢ of the real eigenvalues of the Jacobian matrix at the fixed points,
near ¢ = Cjipy,. Does this confirm the bifurcation you had predicted in (f) ?

Observe the complex conjugate eigenvalues of one of the fixed points, what type of bifurcation
can we expect at ¢ = 27

Discuss stability properties of the fixed points as ¢ — oo.

Again with a = 1/4 and b = 1, using ¢ € {3,4,4.83,4.9} consider a few trajectories, and
determine the long-term behaviour of the system (convergence to a stable fixed point, limit
cycle, strange attractor, etc...). Then, plot the Poincaré map of the system in its final state.
The Poincaré map is a 2D plot of the intersection between the trajectory and a given plane. We
suggest to choose the 21 = 0 plane.
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