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8 April 2025

Problem Set 7 : Bifurcations in Two Dimensions

1 Dulac’s Criterion
In biology, a simple competitive version of the logistic model is
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(a) What should be the sign of the variables x1, x2 and parameters 71, 72, N1, No, b1 and bo.
Explain their physical meaning.
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(b) Show that there is no limit cycle for z1, 22 > 0 using the weighting function g =

2 Hopf Bifurcation
Consider the predator-prey model
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with parameters a,b > 0. In the first equation, the prey x1 shows an expected exponential growth
and a negative overpopulation factor —z%. The last term is the loss due to predators, linear in xs.
If 21 is low, z1x9/(1 + x1) = woxy, i.e. the deaths are proportional to the number of encounters
between prey and predator. If the number of prey z; is high, zi29/(1 + 1) ~ x2, the number of
deaths becomes independent of x; (there is a saturation as each predator is at its maximum eating
capacity).

(a) Find the nullclines of the system.

(b) Two fixed points lie on the 1 and x5 axis. Find them and, by linearising the system, determine

their stability properties, if possible.

(c) Prove that, for all values a,b > 0, there exists at least a fixed point with z7}, x5 > 0.

(d) A Hopf bifurcation can only occur when the trace of the linearized system changes sign. Use
this fact to find the critical value a.(b) at which the Hopf bifurcation can occur at the fixed
point (z7,x3). Is there a condition on b for the Hopf bifurcation to exist ?

(e) Check that the determinant of the linearised system is positive at that critical value. Together
with the previous result, this implies that the eigenvalues are complex conjugate with zero real
part supporting the hypothesis that a Hopf bifurcation is present.

(f) Visualise the bifurcation using Matlab. Use a fixed b = 4, then vary the value of a from 0.95a.(b)
to 1.01ac.(b). At each value of a, plot the nullclines, numerically find the fixed point, and plot
two trajectories, one starting close to the fixed point, the other starting close to the origin. Is
this Hopf bifurcation super or sub-critical ?

Help : To find the roots of a polynomial equation in Matlab use the roots command.

3 Van der Pol Oscillators

In the first half of the twentieth century, important research was done of the nonlinear dynamics of
oscillators, motivated by the developpement of the radio and circuits with vacuum tubes. Many of
these circuits have their dynamics governed by the Liénard equation & + f(x)& + g(x) = 0. For this
equation, the Liénard theorem states that if
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x) and g(z) are continuously differentiable Vz
x) is an odd function
)
)

() >0 forxz >0

g
- f(x) is an even function
- F(z) = [ f(u)du is odd and vanishes at z = a > 0
- For0 <z <a,itis F(z) <0 while for x > a, F(z) > 0 and is non decreasing.

lim F(z) =00

T—00

then there is a unique stable limit cycle in the phase plane that surrounds the origin. One can

und

erstand this result qualitatively. In fact —g(z) represents a nonlinear restoring force and — f(x)%

a nonlinear damping force.

()

A famous case of the Liénard equation is the Van der Pol equation. It can be derived from a
circuit with a resistance, an inductance, a capacitor and a triode, which has a variable resistivity
r(U) oc 1/U?, U being the applied voltage. The dynamics of the circuit is determined by the
non-dimensionalised equation &+ u (2% —1)i+2 = 0, with 2 > 0, i.e. the Van der Pol equation.
Show that Liénard’s theorem applies to this equation.

Uoii Lg r(U)/H’ cC—|u

Prove that the differential equation system

—_

T1 = T9 — u(gx:f — 1)
ig = —X

is equivalent to the Van der Pol equation. Qualitatively draw the phase portrait.

Suppose that ¢ < 1. In this case the limit cycle, C, is approximately a circle centered at the
origin. Use the divergence theorem §, -7 dl = [[, V-7 dA to get the radius.
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4 L-H transition in tokamak plasmas

The mechanism underlying the transition from Low (L) to
High (H) confinement mode in a tokamak plasma is still not
yet fully understood. Generally, the improvement in confine-
ment is associated to a locally reduced amplitude of turbulent
fluctuations, which occurs when the power injected into the
plasma exceeds a certain threshold that depends on the cha-
racteristics of the tokamak. The tokamak geometry is shown
in the figure. The results of a numerical simulation of the tur-
bulence in a tokamak is shown and the colors represent the
amplitude of plasma density fluctuations. We call r, 6 and
@ the radial, poloidal and toroidal directions, respectively.
Many different approaches have been attempted to describe

the L-H transition.
The aim of this exercise is to study a model composed of two equations that describe plasma

turbulence and its saturation, as proposed in P. H. Diamond et al., Phys. Rev. Lett. 1994. The first
equation of the model can be written in the form :
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This equation represents the evolution of the energy associated with the turbulent fluctuations. Here
_ _ 2
E = |k, where i stands for the amplitude (standard deviation) of plasma density fluctuations,

and ng the background density value. The terms 7o E and —a; E? represent the linear growth of the
instability driving the turbulence fluctuations and the turbulence saturation due to nonlinear stabilizing
terms, respectively. The last term, —as EU, describes the turbulence saturation due to the shearing

_ 2
of the turbulent eddies caused by the poloidal flow, being U = ’ag@

the energy associated with

poloidal flows, Vj the poloidal velocity, and (-) operator representing the average over 6.
(a) We now derive the second equation of the model to state the evolution of U :
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where — U is the viscous damping of the poloidal flow and a3 EU is the drive of the poloidal flow
due to turbulence (by means of the Reynold stress mechanism). Derive this equation starting

from the conservation of poloidal momentum :
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where the pressure gradient and the viscous damping of the poloidal flow are taken into account
(u is constant). The quantity pg is the background plasma density.

Average the poloidal momentum conservation over the 6 direction, keeping in mind that the
domain is periodic in . Separate velocities in a part averaged on 6 and in a fluctuating one :

Vo(t,r,0) = (Vo) (t.r) + Va(t,r.0) Vi (t,10) = (Vi) (t,7) + Vp(t.r,0) = Vi (t,7,6)
Furthermore, the first approximation you need to consider is :
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and use the assumption :

&[] = —ast

(Vp)
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The term (V,.Vp) is the "Reynold stress". Due to this term small-scale turbulence fluctuations
can drive large-scale flows in the poloidal direction.

The set of coefficients in the model, (o, a1, az,as, ;) > 0, depends on the type of instability in the
plasma, and on the considered wavelength of the fluctuations.

We perform here an analysis of the system. Despite its simplicity, the model shows stationary solutions
corresponding to the L-mode, where the fluctuation level is high and the poloidal flow is low, and to
the H-mode, where the poloidal flow limits the amplitude of fluctuations.

(b)

Choosing E = a1E /vy, U = asU/v and 7 = t7p, reduce the system to two equations
dependent only on the parameters a = a3/ay and b = p/7o.

Find the equilibrium points of the system. Distinguish the case b > 0 and b = 0. Discuss for
each equilibrium point its physical meaning.

Determine the nature (stability properties) of the equilibrium points. Consider b as a fixed
parameter and vary a. Do you see a bifurcation ? Which bifurcation is it ? Discuss the physical
meaning of this bifurcation and find the a value for which the L-H transition occurs.

Trace a bifurcation diagram of E and U as a function of the control parameter a, considering
b=1.

Integrate numerically the system, for different values of the control parameter a, above and
below the bifurcation found in point (d). Consider b = 1. Verify that in the case of eigenvalues
with an imaginary part, the convergence to the equilibrium point is oscillatory.

Trace the phase space diagram in the particular case @ = 3 and b = 1, and in the domain
0.1 < E<21and0.1 <U < 2.1. Is there a globally stable equilibrium point?

Consider the case @ = 1 and b = 0. In this case, the dynamics of the system includes no
damping of the poloidal flows. Trace the phase space of the dynamical system in the domain
0.1 < F<21and0.1 <U < 2.1. Comment on the behaviour of the system.
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