

Problem Set 3 : Bifurcations and Reminder of Linear Algebra

1 Laser Threshold

We model the laser dynamics with the equation $\dot{n} = GnN - kn$, where $n(t) > 0$ is the number of photons in the laser field. In the laser medium the photons decay exponentially due to mirror transmission, scattering, and so on, which explains the $-kn$ term. The photons are created by stimulated emission, when a photon interacts with an excited atom, which de-excites and emits a photon with the same phase, explaining the term $+GnN$. ($N(t) > 0$ is the number of excited atoms, which depends on time, and $G > 0$ is the gain coefficient.) We initially assume that $N = N_0 - \alpha n$, where $N_0 > 0$ is the number of atoms that the pump keeps excited in the absence of photons. The parameter $\alpha > 0$ is a proportionality constant that indicates the decrease of the number of excited atoms because of the presence of photons.

- (a) Find the differential equation for n and rescale n so that the laser dynamics depend only on one parameter.
- (b) Find the equilibrium points of n . What are their stability properties ? Identity the bifurcation type as you vary the identified parameter and draw the bifurcation diagram. When are the stationary points physically acceptable ?
- (c) What is the threshold condition to emit laser light ?

To improve the model, the number of excited atoms is assumed to follow $\dot{N} = -GnN - fN + p$. The $-GnN$ is the counterpart to the stimulated emission. $f > 0$ is the decay rate for spontaneous emission. p , positive or negative, is the pump strength. We use the quasi-static approximation $\dot{N} \approx 0$, assuming that N relaxes much faster than n .

- (d) Derive the new differential equation for n and renormalise the time and the density so that the model depends only on one parameter.
- (e) Find the equilibrium points as well as their stability properties. What is the critical pump strength threshold ?

2 Laser threshold with an advanced model

For a laser model considerably improved with respect to the one considered in the first exercise, we introduce the electric field E , the mean polarisation P and the population inversion D . They follow the Maxwell-Bolch equations :

$$\begin{cases} \dot{E} = \kappa(P - E) \\ \dot{P} = \gamma_1(ED - P) \\ \dot{D} = \gamma_2(\lambda + 1 - D - \lambda EP) \end{cases}$$

The constant $\kappa > 0$ is the decay rate in the laser cavity due to beam transmission. $\gamma_1, \gamma_2 > 0$ are the decay rates of the atomic polarization and population inversion. λ , positive or negative, is the pumping strength. If $\gamma_1, \gamma_2 \gg \kappa$ then the adiabatic elimination can be used, where $\dot{P} = 0$ and $\dot{D} = 0$. Using the adiabatic approximation, simplify the evolution equation of E . Then, plot the bifurcation diagram of E with respect to the parameter λ .

3 Exponential of a Matrix and Systems of Linear Differential Equations

As a warm up for the analysis of multi-dimensional non-linear systems, we recall how multi-dimensional linear systems can be solved and how the exponential of a matrix can be evaluated.

(a) A square matrix N is nilpotent if there exists $m_* \in \mathbb{N}$ such that $N^m = 0$, $\forall m > m_*$. Compute the powers of the upper shift matrix of size 4, i.e.

$$N = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Use a computer if necessary. Notice the pattern? Is this a nilpotent matrix?

(b) Find the exponential of the upper shift matrix N .

Reminder : For matrices, $\exp(M) = \sum_{n=0}^{\infty} \frac{M^n}{n!} = I + M + \frac{1}{2}M^2 + \dots$

(c) What is the exponential of a diagonal matrix?

(d) Compute the exponential of a Jordan block J_λ , that is

$$\exp(J_\lambda) = \exp\left(\begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}\right)$$

Hint : If two matrices, A and B , commute (i.e. $[A, B] = AB - BA = 0$), then $\exp(A + B) = \exp(A) \exp(B)$.

(e) Show that the matrix

$$M = \begin{bmatrix} 3 & 2 & -1 \\ 0 & 3 & 0 \\ 0 & -1 & 3 \end{bmatrix}$$

can be written as a Jordan block under a basis transformation and evaluate the proper transition matrix.

Reminder : Suppose a 3 by 3 matrix M can be written as J_λ by changing basis, i.e. there exists a transition matrix P such that $M = P J_\lambda P^{-1}$. P is the 3×3 matrix whose columns are the three new basis vectors side by side. To find the basis vectors notice that if M , represented in the $\{v_1, v_2, v_3\}$ basis, is written

$$\begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}$$

then, by definition,

$$\begin{cases} Mv_1 = \lambda v_1 \\ Mv_2 = \lambda v_2 + v_1 \\ Mv_3 = \lambda v_3 + v_2 \end{cases}$$

Indeed, the basis vectors can be found by solving

$$\begin{cases} (M - \lambda I)v_1 = 0 \\ (M - \lambda I)v_2 = v_1 \\ (M - \lambda I)v_3 = v_2 \end{cases}$$

(f) Using the properties of the matrix exponential, explicitly compute the solution of the system $\dot{\vec{x}} = M\vec{x}$, with $\vec{x}(t_0) = \vec{x}_0 = [x_{01}, x_{02}, x_{03}]^T$.

Reminder : $\exp(A B A^{-1}) = A \exp(B) A^{-1}$