

Problem Set 2 : General Properties of Nonlinear Systems

1 Picard Approach to the Harmonic Oscillator

We solve the harmonic oscillator equation $\ddot{x} + \omega^2 x = 0$ with initial conditions $x(0) = c_0$ and $x'(0) = \omega s_0$.

- (a) Rewrite the harmonic oscillator equation in the $\dot{\vec{x}}(t) = \vec{f}(\vec{x}(t))$ form and analytically compute the first two Picard iterations $\vec{x}_1(t)$ and $\vec{x}_2(t)$. Do you see where the iterations are going? Otherwise continue with $\vec{x}_3(t)$ and so on to guess $\lim_{k \rightarrow \infty} \vec{x}_k(t)$.
- (b) Prove rigorously that Picard's iterations converge to the result you guessed in (a).

Reminder : For a system $\dot{\vec{x}}(t) = \vec{f}(\vec{x}(t))$ Picard's method states that $\vec{x}_0(t) = \vec{x}(t_0)$ and $\vec{x}_{k+1}(t) = \vec{x}(t_0) + \int_{t_0}^t \vec{f}(s, \vec{x}_k(s)) ds$

2 Numerical Implementation of Picard Iteration

It is possible to use Picard iteration method to solve differential equations numerically. Write a Matlab program that numerically approximates the first N Picard iterations on a set of discrete times $t_i = t_0 + i\Delta t$, $i \in \mathbb{N}$ of an interval $[t_0, t_f]$. Start only with a first order differential equation $\dot{x}(t) = f(x(t))$ and consider $f(x) = \cos(x) + 1.1$, with $t_0 = 1$, $t_f = 51$ and $x_0 = 1/2$.

- (a) Start by computing the first Picard iteration $x_1(t)$. Initialise all the necessary parameters, i.e. the discretised time vector $\vec{t} = (t_0, t_0 + \Delta t, \dots, t_f)$, the zeroth Picard iteration, which is constant $x_0(t_i) = x_0, \forall i$, and so on. The next iteration is $x_1(t) = x_0 + \int_{t_0}^t f(x_0(s)) ds$, therefore numerical integration is needed. This integral needs to be computed for all the discrete values of time $t = t_i$. To limit redundant computations and gain in speed, when evaluating $\int_{t_0}^{t_{i+1}} f(x_k(s)) ds$ you can reuse the integral $\int_{t_0}^{t_i} f(x_k(s)) ds$ computed for $x_{k+1}(t_i)$ and add the next bit $\int_{t_i}^{t_{i+1}} f(x_k(s)) ds$. We suggest to use the trapezoidal rule. Verify that $x_1(t)$ is a straight line.
- (b) Now, just repeat the process to get the N^{th} Picard iteration and show visually that the iterations converge to x_{sol} , the solution of the differential equation computed with `ode45`.
- (c) The norm $\|x_a - x_b\|_2 = \sqrt{\int_{t_0}^{t_f} [x_a(t) - x_b(t)]^2 dt}$ can be used to measure the distance between two functions. For $t_f = 11$ and $\Delta t = 10^{-1}$ plot the distance with the final solution $\|x_n - x_{\text{sol}}\|_2$ as a function of n (ranging from $n = 0$ to 20). Use the default relative error tolerance `rel_tol=1e-3`. Identify what causes the error to plateau for high- n Picard iterations.
- Tip* : Instead of giving `ode45` only the initial and final time `[t0, tf]` and let it choose at which times it evaluates the solution, you can give `ode45` the time vector \vec{t} where the solutions should be evaluated. Also, to set the relative error tolerance, use `ode45(@f, t, x0, options)` with `options = odeset('RelTol', 1e-5)`.
- (d) Plot again $\|x_n - x_{\text{sol}}\|_2$ as a function of n to compare on the same plot the time steps $\Delta t = 0.1$, 0.01 , 0.001 and 0.0001 . Make the plot for x_{sol} evaluated with `rel_tol=1e-3`, $1e-5$ and $1e-7$. Explain the results.
- BONUS (e) If your code is well organized, you can try with only a few changes to compute the Picard iterations for a system of arbitrary dimension !

3 Lipschitz Constant

Find a Lipschitz constant, if it exists, for the following functions in the indicated domains.

Reminder : A Lipschitz constant, K , on the domain D is a constant such that $\|\vec{f}(\vec{x}) - \vec{f}(\vec{y})\|_2 < K\|\vec{x} - \vec{y}\|_2$, $\forall \vec{x}, \vec{y} \in D$, where $\|\cdot\|_2$ is the standard Euclidean norm.

- (a) $f(x) = \cos(\omega x)$, $x \in [-\pi, \pi]$
- (b) $f(x) = \sqrt[3]{x}$, $x \in [-1, 1]$
- (c) $f(x_1, x_2) = \frac{x_1 x_2}{1+x_1^2+x_2^2}$, $x_1^2 + x_2^2 \leq 16$