
Nonlinear dynamics, chaos and complex systems – Dr. Olivier Février – SPC

25 February 2025

Problem Set 2 : General Properties of Nonlinear Systems

1 Picard Approach to the Harmonic Oscillator
We solve the harmonic oscillator equation ẍ + ω2x = 0 with initial conditions x(0) = c0 and
x′(0) = ωs0.
(a) Rewrite the harmonic oscillator equation in the ~̇x(t) = ~f(~x(t)) form and analytically compute

the first two Picard iterations ~x1(t) and ~x2(t). Do you see where the iterations are going ?
Otherwise continue with ~x3(t) and so on to guess lim

k→∞
~xk(t).

(b) Prove rigorously that Picard’s iterations converge to the result you guessed in (a).

Reminder : For a system ~̇x(t) = ~f(~x(t)) Picard’s method states that ~x0(t) = ~x(t0) and
~xk+1(t) = ~x(t0) +

∫ t
t0
~f(s, ~xk(s))ds

2 Numerical Implementation of Picard Iteration
It is possible to use Picard iteration method to solve differential equations numerically. Write a
Matlab program that numerically approximates the first N Picard iterations on a set of discrete
times ti = t0 + i∆t, i ∈ N of an interval [t0, tf]. Start only with a first order differential equation
ẋ(t) = f(x(t)) and consider f(x) = cos(x) + 1.1, with t0 = 1, tf = 51 and x0 = 1/2.
(a) Start by computing the first Picard iteration x1(t). Initialise all the necessary parameters, i.e. the

discretised time vector ~t = (t0, t0 + ∆t, . . . , tf), the zeroth Picard interation, which is constant
x0(ti) = x0, ∀i, and so on. The next iteration is x1(t) = x0+

∫ t
t0
f(x0(s))ds, therefore numerical

integration is needed. This integral needs to be computed for all the discrete values of time t = ti.
To limit redundant computations and gain in speed, when evaluating

∫ ti+1

t0
f(xk(s))ds you can

reuse the integral
∫ ti
t0
f(xk(s))ds computed for xk+1(ti) and add the next bit

∫ ti+1

ti
f(xk(s))ds.

We suggest to use the trapezoidal rule. Verify that x1(t) is a straight line.

(b) Now, just repeat the process to get the N th Picard iteration and show visually that the iterations
converge to xsol, the solution of the differential equation computed with ode45.

(c) The norm ||xa − xb||2 =
√∫ tf

t0
[xa(t)− xb(t)]2dt can be used to measure the distance between

two functions. For tf = 11 and ∆t = 10−1 plot the distance with the final solution ||xn −
xsol||2 as a function of n (ranging from n = 0 to 20). Use the default relative error tolerance
rel_tol=1e-3. Identify what causes the error to plateau for high-n Picard iterations.
Tip : Instead of giving ode45 only the initial and final time [t0,tf] and let it choose at
which times it evaluates the solution, you can give ode45 the time vector ~t where the solutions
should be evaluated. Also, to set the relative error tolerance, use ode45(@f,t,x0,options)
with options = odeset(’RelTol’,1e-5).

(d) Plot again ||xn−xsol||2 as a funtion of n to compare on the same plot the time steps ∆t = 0.1,
0.01, 0.001 and 0.0001. Make the plot for xsol evaluated with rel_tol=1e-3, 1e-5 and 1e-7.
Explain the results.

(e)BONUS
If your code is well organized, you can try with only a few changes to compute the Picard
iterations for a system of arbitrary dimension !

1/2

3 Lipschitz Constant
Find a Lipschitz constant, if it exists, for the following functions in the indicated domains.
Reminder : A Lipschitz constant, K, on the domain D is a constant such that ||~f(~x) − ~f(~y)||2 <
K||~x− ~y||2, ∀~x, ~y ∈ D, where || · ||2 is the standard Euclidean norm.
(a) f(x) = cos(ωx), x ∈ [−π, π]

(b) f(x) = 3
√
x, x ∈ [−1, 1]

(c) f(x1, x2) = x1x2

1+x2
1+x2

2
, x21 + x22 ≤ 16

2/2

