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Determining classically whether a coin is fair (head on one side,
tail on the other) or fake (heads or tails on both sides) requires an
examination of each side. However, the analogous quantum
procedure (the Deutsch—Jozsa algorithm'?) requires just one
examination step. The Deutsch—Jozsa algorithm has been real-
ized experimentally using bulk nuclear magnetic resonance
techniques™, employing nuclear spins as quantum bits (qubits).
In contrast, the ion trap processor utilises’ motional and elec-
tronic quantum states of individual atoms as qubits, and in
principle is easier to scale to many qubits. Experimental advances
in the latter area include the realization of a two-qubit quantum
gate®, the entanglement of four ions’, quantum state engineering®
and entanglement-enhanced phase estimation’. Here we exploit
techniques'®'" developed for nuclear magnetic resonance to
implement the Deutsch—Jozsa algorithm on an ion-trap quantum
processor, using as qubits the electronic and motional states of a
single calcium ion. Our ion-based implementation of a full
quantum algorithm serves to demonstrate experimental pro-
cedures with the quality and precision required for complex
computations, confirming the potential of trapped ions for
quantum computation.

Laser-cooled trapped ions are ideally suited to the investigation
and implementation of quantum information processing'* because
they exhibit these properties: (1) localization of the single particle to
less than a few tens of nanometres'*™'%; (2) control of the motional
state down to the zero point of the trapping potential®'% (3) a high
degree of isolation from the environment and thus a very long time
available for manipulations of their quantum state'’; and (4) the
ability to detect the ion’s quantum state with high precision by the
electron shelving technique'®. The same properties make single
trapped ions well suited for storing quantum information in
long-lived internal states.

In our experiment we implement the Deutsch—Jozsa algorithm
on a quantum processor based on a single trapped *°Ca™ ion which
is driven by laser pulses. A compensation technique for frequency
shifts allows us to achieve the required control over the optical
phases of the pulses®. Following a recent proposal'®, we also
successfully combine ion-trap techniques for quantum state

Table 1 Truth table for the four possible functions

Constant functions Balanced functions

Case 1 Case 2 Case 3 Case 4
f(0) 0 1 0 1
f(1) 0 1 1 0
webf(a) D NOT CNOT Z-CNOT

The third line is the effect of the logic function Uy, on the qubitw: ID denotes the identity, CNOT is a
controlled NOT operation, Z-CNOT is a zero controlled NOT, and the control bit in cases 3 and 4
is the input bita
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manipulation with the method of composite pulses'' adopted
from NMR technology. Thus we achieve complete control over
the ion’s motional and electronic state. The implementation of a
quantum algorithm on an ion-trap processor, which we demon-
strate here, serves as a test of the suitability of these techniques,
particularly in view of their scalability towards a larger number of
qubits.

To illustrate the Deutsch—Jozsa algorithm, we represent the four
possible coins by four functions f that map one input bit (a = 0,1
standing for ‘which side of the coin’) onto one output bit
(f(a) = 0,1 standing for ‘head or tail’). These functions can be
divided into two constant functions f;(a) = 0, f,(a) = 1, represent-
ing the fake coins, and two balanced functions f3(a) = a,f4(a) =
NOT a, which stand for the fair coins (see Table 1). An unknown
function is characterized as constant or balanced by evaluating
f(0)f(1) which yields 0 (or 1) for a constant (or balanced)
function (& denotes addition modulo 2). This evaluation classically
requires two function calls, whereas the Deutsch-Jozsa quantum
algorithm allows us to obtain the desired information with a single
evaluation of the unknown f. The circuit diagram shown in Fig. 1
describes the implementation of the Deutsch—Jozsa algorithm with
basic quantum operations®'. The two qubits required for the
Deutsch—Jozsa algorithm are encoded in the electronic state and
in the phonon (vibrational quantum) number of the axial vibration
mode of the single trapped ion (see Fig. 2). Qubit operations are
realized by applying laser pulses on the ‘carrier’ or the ‘blue side-
band’ of the electronic quadrupole transition as described in the
Methods.

In general, a quantum algorithm is implemented by a sequence of
such pulses on the carrier and sideband, but two major sources of
error have to be overcome. First, as the simplest algorithms already
require several pulses, we need to control precisely the relative
optical phases of these pulses or, at least, to keep track of them such
that the required pulse sequences lead to the desired operations. In
particular, this requires the precise investigation and subsequent
compensation of all phases introduced by the light shifts of the
exciting laser beams. These light shifts arise as we have to drive
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Figure 1 Quantum circuit for implementing the Deutsch—Jozsa algorithm with basic
quantum operations. The upper line shows the input qubit |a) (‘which side of the coin’
information), the lower line an auxiliary working qubit |w) (corresponding to the channel
on which the answer is provided). The rotations R , (see Methods for details) create
superpositions |ay; = (|0) + [1))/~/2 and |w); = (10) — |1))/+/2 from the inputs
|ay, = 10) and |w), = [1). The box U represents a unitary operation specific to each of
the functions f, which applies f, to a and adds the result to w modulo 2. Table 1 lists
the logic operations required for transforming |w) into |wéBf ,(a)). The output of the box
is 2, Wy, = (10, win®7n(0)) 4 |1, win®r1(1)))/+/2. Up to an overall sign |w) is left
unchanged, but the positive superposition (|0) + |1))/+/2 on |a) is transformed into a
negative superposition ), = (10) — [1))/+/2 if £ is balanced; otherwise it is
unchanged. After the final rotations R ;, a measurement on |a) is performed with
result |ay; = either |0) or |1). Because of the sign change in |a), if f is balanced,

11 ] a)s]? = £,(0)BF,(1), that s, |a), yields the desired information whether the
function £, is balanced or constant. The working qubit w resumes its initial value

[W)y = [wyy =11).
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sideband transitions (which couple much more weakly than carrier
transitions) with high laser intensity. We cancel the unwanted light
shifts with an additional off-resonant laser field, inducing a light
shift of equal strength but opposite sign*.

Second, a peculiarity of encoding a qubit within the ion’s
motional state is that we must ensure that the system does not
leave the computational subspace {|S,0,), |D,0,), |S,1,),|D, 1)|}
(for notation, see Methods). The main problem here is that owing to
the degenerate spectrum of a harmonic oscillator, sideband pulses
work simultaneously on all levels. Therefore any population in
[S,1,) prior to a blue sideband pulse will leave the computational
subspace. To avoid this, we use composite pulses, that is, a sequence
of carrier and/or sideband pulses that—up to an overall phase—
constrain the system to the subspace'’. We adopted this method
from NMR technology''. The translation of the Deutsch—Jozsa
algorithm into composite pulses acting on the two qubits is
described in the Methods.

For our experiments we load Ca ions into a linear Paul trap with
axial frequency w, =~ 27 X 1.7MHz. Figure 2 shows the relevant
optical transitions used for laser cooling, state preparation and
detection. Each experimental cycle starts with Doppler cooling for
2ms on the S, — P, transition yielding average vibrational
quantum numbers 77, = 20. Further cooling of the axial motion
to a ground state occupation of more than 99% is achieved by about
12 ms of sideband cooling®. To initalize the quantum processor in
[01) =S,0,), we optically pump the ion to the S/, (m= —1/2)
state. Manipulations of both qubits are achieved by pulses from a
stabilized titanium-sapphire laser (linewidth < 100 Hz, relative
intensity noise < 0.02,,,) emitting at the Sy, <> D5, transition
wavelength near 729 nm. In order to switch between R and R™"
rotations we shift the laser frequency with an acousto-optical
modulator. The phase of the light field is switched via the phase
of the radio frequency driving the acousto-optical modulator with
an inaccuracy of less than 0.06 rad. Using the electron shelving
technique® we detect the ion’s electronic state (S,/, or Ds;,) with a
fidelity of 99.9% within a detection time of 3 ms.

We measure the fidelity of the implemented algorithm by
repeating several thousand times the experimental sequence of
cooling, initialization of both qubits, laser pulses for the algorithm
and final measurement. Table 2 displays the achieved results. For
cases 1, 3 and 4, the fidelity of identifying the function’s class with a
single measurement exceeds 97%; for case 2, it is above 90%. Note

a Py, b c
P 1/2 854 nm
866 nm
393 nm
397 nm 709 nm
A

Figure 2 Quantum mechanical energy levels relevant for the ion-trap quantum computer.
a, Ca™ level scheme. The upper and lower electronic states S, (m = —1/2) and Ds/»
(m= —1/2) of the narrow quadrupole transition (rp = 1s) at 729 nm serve to
implement one of the qubits, |a). Coherent radiation of a titanium—sapphire laser at
729 nm drives the qubit transition. Lasers at 397 nm, 866 nm and 854 nm are used for
the excitation of resonance fluorescence, for Doppler cooling, and optical pumping. The
laser system is described in detail elsewhere™. b, The lowest two number states,

n,= 0,,1,, of the axial vibrational motion in the trap form the other qubit, |w). ¢, The
combination of electronic states and energy eigenstates of the harmonic oscillator
potential span the computational subspace. Numbers in ket notation denote the quantum
logical values assigned to the respective states. Solid lines show carrier transitions;
dashed lines show blue sideband transitions.

NATURE | VOL 421 | 2 JANUARY 2003 | www.nature.com/nature

letters to nature

Table 2 Expected and measured results of the complete Deutsch-Jozsa algorithm

Constant Balanced
Case 1 Case 2 Case 3 Case 4
Expected |(1]a)l? 0 0 1 1
Measured (1| a)|° 0.019(6) 0.087(6) 0.975(4) 0.975(2)
Expected [(1 | w)|? 1 1 1 1
Measured [(1 |W>|2 - 0.90(1) 0.931(9) 0.986(4)

The numbers in brackets are statistical 10 uncertainties

that to decide whether the function is constant or balanced, only
(1 | a);|* at the end of the algorithm needs to be measured. We also
verified that the working qubit |w) is reset to its initial value by
reading out the phonon number through a measurement of the
Rabi frequency of the blue sideband transition®'®.

The measured output of the algorithm shown in Table 2 slightly
deviates from the ideal result. We identified the major sources for
this infidelity and attribute it mainly to decoherence of the laser-
atom phase, in particular caused by ambient magnetic field fluctu-
ations®. Furthermore, in the implementation of case 2, which
requires the most complex pulse sequence, we used higher laser
power of the sideband transitions in order to speed up the algorithm
and thus reduce the sensitivity to phase decoherence. This in turn
caused off-resonant carrier excitation which limited the obtainable
fidelity.

A major advantage of our state detection technique is the ability
to follow the evolution of [(1 | a)|* during the quantum algorithm.
For this, we truncate the pulse sequence at a certain time f and reveal
{1 | a(t))|* by measuring the probability of finding the ion in the
D5, state. In Fig. 3 we display this probability as a function of time
for all four cases. The data agree very well with the calculated ideal
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Figure 3 Time evolution of |(1 | a)|2. Points are the probabilities, each inferred from
100 measurements, the line shows the ideal evolution. No parameters were adjusted
to fit the data. The implementation of the functions Ry, Uy, Ry, takes place between
the dashed lines. An initial R, and a final A, rotation on |a), implemented by carrier
pulses, complete the algorithm. Taking case 3 as an the example, R, lasts from
12pus to 22ps. Then Ry, Ur, Ry, on |aw) is implemented from 54 pus to 212 ps
with the laser tuned to the blue sideband. The laser phase is switched at 87, 133
and 166 ps according to Table 3. The final Ry, pulse is applied from 240 to
250 ps.
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Table 3 Implementations of Ry, Ur, Ry,

Logic Laser pulses

fq Ry, Ry,
f> Ry, SWAP™'NOT, SWAP R,

No pulses
7 (07 (e (39
,O)R 1,12‘)/? ’2—‘1\')

A (%,W)R %,Tr+§0SWAP)R+ (%’“)
"

fa Ry CNOTR,, R (5:0)R" m 3R (5.0)R" ©.3)
f4 Ry, Z-CNOTR,, R, 0R* (%,0)R* =, 5)R* (5.0)R" =3)Rw,0

The rotation angle for R*(6,¢) is given for the [10)— |01) transition. 6 and ¢ denote the pulse
duration and phase, respectively. gswap = arccos(cotz(-rr/\/?)). where the SWAP operation is
explained in the Methods.

evolution (solid lines in Fig. 3, no fit parameters), demonstrating
the high precision of the applied pulse sequence, especially the
control over the optical phases.

The results demonstrate a high degree of control of all relevant
experimental parameters, that is, laser frequency and intensity,
optical phases, and trap frequency w,, over long pulse sequences.
Therefore, the procedures presented here pave the way for imple-
menting more complex algorithms and for scaling the system to
multi-qubit operation. In particular, the light shift compensation
technique demonstrated in this experiment can be directly trans-
ferred and advantageously applied to a several-qubit quantum
processor. This technique will become increasingly important for
scaling such a system because as the ion crystal becomes heavier,
the higher laser intensities required to drive sideband transitions
result in increased light shifts. Furthermore, by merging the
composite pulse technique with our trapped-ion quantum com-
puter we gain full access to all gate operations on the motional
qubit. The employed composite-pulse phase gate also simplifies
the Cirac—Zoller scheme’ for a universal set of quantum gates, by
dispensing with the auxiliary level transition. Thus our procedures
become applicable to a wider choice of ion species including
“3Ca™, which offers a potentially much longer coherence time
than *°Ca™. O

Methods

Encoding of qubits and single-qubit rotations
The two qubits required for the Deutsch—Jozsa algorithm are encoded in the electronic
quantum state (S, (m= —1/2)=0) = |S) and D5, (m= —1/2) =[1) = |D)) and in
the phonon number of the axial vibration mode of the single trapped ion (1, =0, = |1)
and n, = 1, = |0). Note the counterintuitive encoding of the vibrational mode, which
simplifies the desired initial state preparation in [01) = [S,0,). The operations which
modify the electronic qubit (‘single-qubit rotations’) are performed with laser pulses on
the carrier (|S,n,) <> |D,n.)) transition, that is, no change of vibrational quantum
number, laser on resonance. To connect the two qubits (‘two-qubit rotations’) the laser is
detuned by +w,, from the |S) < |D) resonance to the ‘blue sideband’ (IS, n,) < |D, n, + 1))
as indicated in Fig. 2. Qubit rotations can be written as unitary operations in the following
way'?:

Carrier rotations are given by

0 . )
R(0,¢) = exp [ii(e""a+ + e*‘%*)]
whereas transitions on the blue sideband are denoted as
R (0,¢) = exp [ig(e"%W +e g b)]

Here o™ are the atomic raising and lowering operators which act on the electronic
quantum state of the ion, that is, the first qubit, by inducing transitions from the |S) to | D)
state and vice versa (notation: o = [D)(S). The operators b and b stand for the
annihilation and creation of a phonon at the trap frequency, that is, they work on the
motional quantum state, the second qubit. The parameter § depends on the strength and
the duration of the applied pulse and ¢ is its phase, that is, the relative phase between the
optical field and the atomic polarization. We use the definitions R, = R(w/2,0) and Ry =
R(r/2,™).

Translation of the Deutsch—Jozsa algorithm into composite pulses
The quantum circuit shown in Fig. 1 shows the quantum logic operations used for the
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implementation and Table 1 lists the logic functions corresponding to the unitary
operations Uy . The R, rotations on the electronic qubit |a) are carrier pulses. For efficient
computation we combine the rotations Ry, R, on |w) and the manipulations for
implementing Uy, into an optimized pulse sequence, R;, Uy, R,,, (dashed box in Fig. 1). As
these operations act also on the motional state, we implement them with pulses on the
carrier and the blue axial sideband. However, sideband pulses operate on both qubits
simultaneously. Thus, for operations on [w) alone, we first swap the information from |w)
into |a) with a sequence of three blue sideband pulses, then we rotate |a) as desired and
swap back.

For a swap operation one might be tempted to use a single w-pulse on the blue
sideband. However, applying this to the state [00) =[S, 1,) leads to a population of states
with two phonons outside the computational subspace. Therefore we use a composite
pulse sequence consisting of three pulses, whose lengths are chosen such that starting from
|S,1,) the ion is rotated by w2 and =, respectively. As a result the ion is rotated by 4w
back to [S,1,) independently of the pulses’ relative phases. In addition, using the blue
sideband ensures that [11) = |D,0,) also stays unchanged as required for the swap
operation.

The desired swap operation |[S,0,) < |D,1,) is possible because compared to the
|S,1,) < |D,2,) transition, the Rabi frequency for the [S,0,) < |D, 1,) transition is smaller
by 1/+/2 (refs 8, 16). So in this manifold the three pulses’ lengths correspond to rotation
angles of 7 /~/2, 27 /+/2,m /+/2. Tt can be shown that choosing the laser-atom phase of the
second pulse to be arcos(cot? (w/\/f)) =70.3033... relative to the first and the third
pulses, the populations of [10) = |D, 1,) and [01) = [S, 0,) are exchanged. This realises the
desired swap. Table 3 (case 2) lists the complete pulse sequence for the implementation of
R;, Uy, R,, . Similar procedures are applied to realise the pulse sequences for cases 3 and 4.
In these cases the rotations Ry, ,R,, and the operations required for Ug, Ugy can be
combined in such a way that swap operations become unnecessary.
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