

Lindblad Equation

idea:

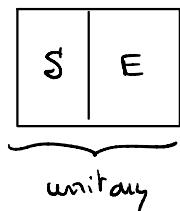
$$\hat{\rho}(0) \rightarrow \hat{\rho}(t) = \mathcal{S}[\hat{\rho}(0)]$$

For unitary evolution we know that $i\dot{\hat{\rho}} = [\hat{H}, \hat{\rho}]$
What about more general evolution?

I. Markov approximation

- there is no 1 \rightarrow 1 correspondence between t and $t' > t$

actually:



there is a 1 \rightarrow 1 correspondence between t and t'
for $S+E$

When measurements are done on $E \rightarrow$ some information is lost

- E can also evolve in time \rightarrow if E is traced out: no history of E !
in particular $\hat{\rho}_S(t)$ may depend on $\hat{\rho}_E(t')$, for all $t' < t$

to progress: hypothesis

- E is very large: \rightarrow reservoir in the thermodynamic sense
coupling S to E does not significantly change E
- Markov approximation: memory time τ for E (properties of E)
after which any perturbation introduced by S relaxes
 $\rightarrow E$ is stationary over time scales $\gg \tau$
"Coarse grained" description over $t \gg \tau \leftrightarrow E$ is stationary

Examples:

- E : vacuum of electro-magnetic field in free space.
- large number of spins

II - Derivation of the Schrödinger equation

1) Notations

$$\hat{\rho}(t+\Delta t) = \mathcal{J}[\hat{\rho}(t)] = \sum_{\mu} \hat{H}_{\mu} \hat{\rho}(t) \hat{\pi}_{\mu}^+ \quad \boxed{\mathcal{J} \text{ match the Kraus}}$$

$$\text{Markov approx: } \hat{\rho}(t+\Delta t) = \hat{\rho}(t) + \hat{O}(\Delta t)$$

Δt small } coarse grained evolution
 $\Delta t \gg \tau$

Start from knows:

$$\hat{\pi}_0 = \hat{\mathbb{I}} - i \hat{K} \Delta t + \hat{O}(\Delta t^2)$$

zeroth order ↑ 1st order

$\mu \gg 1$ $\hat{H}_{\mu} \hat{\rho} \hat{\pi}_{\mu}^+$ has to be order Δt

$$\text{so } \hat{H}_{\mu} = \hat{O}(\sqrt{\Delta t}) = \sqrt{\Delta t} \hat{b}_{\mu}$$

$$\hat{H} = \frac{\hat{K} + \hat{K}^+}{2} \quad \hat{J} = i \frac{\hat{K} - \hat{K}^+}{2} \quad \text{such that } \hat{K} = \hat{H} - i \hat{J}$$

$$\hat{H}^+ = \hat{H} \quad \hat{J}^+ = -\hat{J}$$

2 - Expressions:

$$\begin{aligned} \hat{\pi}_0 \hat{\rho} \hat{\pi}_0^+ &= (\hat{\mathbb{I}} - i \hat{K} \Delta t) \hat{\rho} (\hat{\mathbb{I}} + i \hat{K}^+ \Delta t) + \dots \\ &= \hat{\rho} - i \Delta t (\hat{K} \hat{\rho} - \hat{\rho} \hat{K}^+) + \dots \\ &= \hat{\rho} - i \Delta t [\hat{H}, \hat{\rho}] - \Delta t (\hat{J} \hat{\rho} + \hat{\rho} \hat{J}) + \dots \end{aligned}$$

Remarks: for unitary evolution: only $\hat{\pi}_0$ in the sum, and $\hat{\pi}_0^+ \hat{\pi}_0 = \hat{\mathbb{I}}$

$$\begin{aligned} (\hat{\mathbb{I}} + i \hat{K} \Delta t) (\hat{\mathbb{I}} - i \hat{K} \Delta t) &= \hat{\mathbb{I}} + i \Delta t (\hat{K}^+ - \hat{K}) + \dots \\ &\stackrel{=0}{=} \hat{J} = 0 \end{aligned}$$

$$\hat{\pi}_0 \hat{\rho} \hat{\pi}_0^+ = \hat{\rho} - i [\hat{H}, \hat{\rho}]$$

$$\hat{\rho}(t+\Delta t) = \hat{\rho}(t) - i [\hat{J}, \hat{\rho}] \Rightarrow i \dot{\hat{\rho}} = [\hat{H}, \hat{\rho}]$$

\hat{H} has to be interpreted as the Hamiltonian

But it can be \neq from the Hamiltonian of S alone
 the difference is the Stark-shift

$$\text{For } \mu \geq 1 : \quad \sum_{\mu} \hat{n}_{\mu}^+ \hat{n}_{\mu}^- = \hat{1}$$

$$\hat{n}_0^+ \hat{n}_0^- + \sum_{\mu \geq 1} \hat{n}_{\mu}^+ \hat{n}_{\mu}^- = \hat{1}$$

$$(\hat{n}_0^+ \hat{n}_0^- =) \cancel{\hat{1}} - 2\Delta t \hat{J} + \Delta t \sum_{\mu \geq 1} \hat{l}_{\mu}^+ \hat{l}_{\mu}^- = \cancel{\hat{1}}$$

$$\hat{J} = \frac{1}{2} \sum_{\mu \geq 1} \hat{l}_{\mu}^+ \hat{l}_{\mu}^-$$

$$\frac{\partial \hat{\rho}}{\partial t} = \frac{1}{\Delta t} \cdot (\hat{\rho}^{(+\Delta t)} - \hat{\rho}^{(-\Delta t)})$$

$$= \frac{1}{\Delta t} \left(\sum_{\mu} \hat{n}_{\mu}^+ \hat{\rho}^{(+\Delta t)} \hat{n}_{\mu}^- - \hat{\rho}^{(-\Delta t)} \right)$$

$$\frac{\partial \hat{\rho}}{\partial t} = -i [\hat{H}, \hat{\rho}] + \sum_{\mu \geq 1} \hat{l}_{\mu}^+ \hat{\rho} \hat{l}_{\mu}^- - \frac{1}{2} \hat{l}_{\mu}^+ \hat{l}_{\mu}^+ \hat{\rho} - \frac{1}{2} \hat{\rho} \hat{l}_{\mu}^+ \hat{l}_{\mu}^-$$

unitary part

Knoss operators
(POVM)

induced equation
non unitary part of \hat{E}
normalization of Knoss representation

\hat{l}_{μ} : jump operators, $\propto \sqrt{H_{\mu}}$

III. Interpretation

- As POVM: $\{ \hat{n}_{\mu}^+ \hat{n}_{\mu}^-, \mu \}$

\hat{E}_{μ}

$$\hat{E}_0 = \hat{n}_0^+ \hat{n}_0^- = \hat{1} - 2\Delta t \hat{J}$$

$$\hat{E}_{\mu} = \hat{n}_{\mu}^+ \hat{n}_{\mu}^- = \Delta t \hat{l}_{\mu}^+ \hat{l}_{\mu}^-$$

$$p_0 = \text{probability to obtain } 0 : = \text{Tr}(\hat{\rho} \hat{E}_0) = 1 - 2\Delta t \text{Tr}(\hat{\rho} \hat{J}) \rightarrow \text{no click outcome}$$

$$= 1 - \cancel{\text{Tr}} \Delta t$$

$$\langle \hat{J} \rangle = \text{Tr}(\hat{\rho} \hat{J}) = \frac{1}{2}$$

$$p_{\mu} = \text{pb. to obtain } \mu : = \text{Tr}(\hat{E}_{\mu} \hat{\rho}) = \Delta t \text{Tr}(\hat{\rho} \hat{l}_{\mu}^+ \hat{l}_{\mu}^-) \Big| \text{ click on detector } \mu$$

$$= \Delta t \Gamma_{\mu}$$

Normalization: $\cancel{\hat{J}} = \frac{1}{2} \sum_{\mu \geq 1} \hat{l}_{\mu}^+ \hat{l}_{\mu}^-$

- Unitary evolution over an extended Hilbert space $\mathcal{H} = \mathcal{H}_S \otimes \mathcal{H}_E$

$$|\psi_S\rangle \in \mathcal{H}_S$$

$$\hat{U} (|\psi_S\rangle \otimes |0_E\rangle) = (\hat{U}_S |\psi_S\rangle) \otimes |0_E\rangle + \sum_{\mu \geq 1} \hat{A}_\mu |\psi_S\rangle \otimes |\mu_E\rangle$$

$$= \left[(\hat{S} - i\hat{H} \Delta t - \hat{S} \Delta t) |\psi_S\rangle \right] \otimes |0_E\rangle + \sqrt{\Delta t} \sum_\mu \hat{L}_\mu |\psi_S\rangle \otimes |\mu_E\rangle$$

Projection measurement on the reservoir:

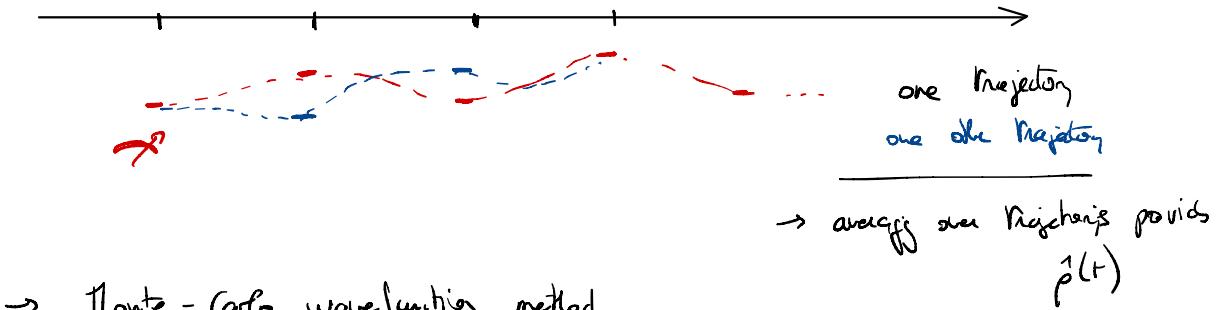
- with probe $|\psi_0\rangle \sim \mathcal{O}(1)$ \rightarrow reservoir stays in state $|0_E\rangle$
- with probe $|\psi_\mu\rangle$

- Quantum trajectories:

- L.E. describes at each point in time the "tracing out" of the Environment.



- One realization followed in time



→ Monte-Carlo wavefunction method

Covered in Statistical Phys IV.