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Introduction

A significant difference between these systems (non-linear and linear quantum systems) is that
a two-level spin can be prepared in an arbitrary quantum state using classical excitations,
whereas classical excitations applied to an oscillator generate a coherent state, nearly
indistinguishable from a classical state.

— Max Hofheinz et al.(2008)

Having reached the strong-coupling regime, the next...

Preparation of classical & quantum state

Interplay between non-linear & linear quantum system

Many types of Hamiltonian manipulation.
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Jaynes-Cummings model
The engineered Hamiltonian can be extremely complicated, while the simplest model of our
interest is:
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1
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(2)

The detuning ∆ = ωq − ωr is the rate of phase accumulation between dressed state
|n,+⟩ and |n,−⟩.
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Target: N-photon Fock state

resonant-SWAP gate:
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Figure: Pulse sequence for preparing n-Fock state [1]
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Device and control setup

Figure: Device circuit diagram [2]

Te T1,r T1,q T∗
2,q

25mK 3.5us 650ns 150ns

g/2π ωr/2π ∆off /2π

38MHz 6.57GHz -463MHz

Table: Device parameters

Hamiltonian

H/h̄ = ∆(t)σ+σ− +
(

gσ+a + g∗σ−a†
)
+ (Ωq(t)σ+ + Ω∗

q(t)σ−) + (Ωr(t)a† + Ω∗
r (t)a), (4)

where ∆(t) = ωq(t)− ωr, and the rotating transformation and RWA were applied.
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Calibration: Rabi oscillation

2024.11.14 Synthesizing arbitrary quantum states in a superconducting resonator 7 / 17



Target: arbitrary N-photon state

Target state and decomposition (Law and Eberly)

∣∣∣ψtarget

〉
=
∣∣g〉⊗ N

∑
n=0

|cn|eiϕn |n⟩

= SNQNSN−1QN−1...S2Q2S1Q1

= U(T)
∣∣g, 0

〉
, (5)

where the target operation U(T) is complete in total
evolution time T and decomposed into 2N pieces.
Solving the equation of inverse evolution:

U†(T) = Q†
1S†

1Q†
2S†

2...S†
N−1Q†

N−1S†
N (6)

Highest N is limited by the
bandwidth of generator

Analysis starts from the
highest number portion

Additional phase gate Zj
may be inserted where we
need

2024.11.14 Synthesizing arbitrary quantum states in a superconducting resonator 8 / 17



Target: arbitrary N-photon state and decomposition

Interacting Hamiltonian revisited (Ωr = 0):

HI(t) = [Ωq(t) + ga]σ+ + [Ω∗
q(t) + g∗a†]σ− (7)

U Decomposition

S(n)
j =

 cos |g|τj
√

n −ieiϕ sin |g|τj
√

n√
n

−ie−iϕ sin gτj
√

n√
n cos |g|τj

√
n

 , Qj =

(
cos |Ωj|τj −ieiθj sin |Ωj|τj

−ie−iθj sin |Ωj|τj cos |Ωj|τj

)
(8)

where j=1,2,...N, the g = |g|eiϕ, and the Ωj is supposed to be constant over each period

Ωj = |Ωj|eiθj = Ωq(τj).
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Target: |0⟩+ i |3⟩ as an example
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Wigner tomography of |0⟩+ |N⟩

Figure: Fidelity: 0.92, 0.89, 0.88, 0.94, and 0.91.
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Wigner tomography of |0⟩+ eikπ |3⟩+ |6⟩

Figure: Fidelity: 0.89, 0.91, 0.91, 0.91, and 0.91
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Wigner tomography: parity measurement

Def: Wigner function

W(α) =
1

π2

∫
d2βeαβ∗−α∗βχs(β)

=
2
π

Tr(D(−α)ρD(α)︸ ︷︷ ︸
ρ′

Π)

=
2
π ∑

n
(−1)nρ′nn(−α), (9)

where the parity operator Π = eiπa†a has the eigenvalue +1 for even and -1 for odd resonator
Fock state.

The Wigner function of ρ is obtained by preparing the shifted state D(−α)ρD(α) and
performing parity measurement.
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Wigner tomography: Fock state example
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Calibration: resonator state measurement

Pg immediately known

Premeasured g
√

n
Pn to be linear least square fitted

The state evolution over the middle period ’S’
of tomography:

Pe(τ) ≃
1
2

(
1 − Pg

∞

∑
n=0

Pn cos
(

g
√

nτ
))

,

(10)
where Pn = |cn|2 = ρ′nn(−α). [3]
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Main message

Summary

Rich ideas and techniques behind the simple JC model, which can surely be extended

For the first time, the preparation of N-fock state and arbitrary resonator state on
circuit-QED platform (without projective measurement)

Nonlinear elements like auxiliary qubits are powerful to engineer resonator states

The relevant theoretical analysis and experimental techniques are insightful

Some outdated aspects:

Upper limit of highest fock number

Fidelity is relatively low

Devices have been upgraded in recent years

...
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