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Introduction

A significant difference between these systems (non-linear and linear quantum systems) is that
a two-level spin can be prepared in an arbitrary quantum state using classical excitations,
whereas classical excitations applied to an oscillator generate a coherent state, nearly
indistinguishable from a classical state.

— Max Hofheinz et al.(2008)

Having reached the strong-coupling regime, the next...
Preparation of classical & quantum state

Interplay between non-linear & linear quantum system

Many types of Hamiltonian manipulation.
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Jaynes-Cummings model

The engineered Hamiltonian can be extremely complicated, while the simplest model of our
interest is:
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@ The detuning A = w,; — wy is the rate of phase accumulation between dressed state
|n,+) and |n, —).
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Target: N-photon Fock state
resonant-SWAP gate:
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Figure: Pulse sequence for preparing n-Fock state [1]
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Device and control setup

Qubit © Resonator ) (1 T T T T*
Qublt drive 4"——"-6;)-”'— Resonator drive € Lr 1q 2,9
Flux bms:@p J_ = 25mK 3.5us 650ns 150ns
o X g/2m | w;/2m | Ayg/2m
Measure 3 T
= 38MHz | 6.57GHz | -463MHz
Figure: Device circuit diagram [2] Table: Device parameters
Hamiltonian

H/h = At)opo_ + (g(7+u + g*a_a+) +(Q(Dos + Qi) + (Qu(Dat + Qi (t)a), (4)

where A(t) = wy(t) — wy, and the rotating transformation and RWA were applied.
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Calibration: Rabi oscillation
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Target: arbitrary N-photon state

Target state and decomposition (Law and Eberly)

N .
’¢target> = \8> Y Z |Cn|el¢n ‘Tl>
n=0

= SNONSN-10QN-1.--520251O1

= U(T)|g,0), (5)
where the target operation U(T) is complete in total
evolution time T and decomposed into 2N pieces.
Solving the equation of inverse evolution:

U'(T) = Q1S1Q3S;.-Sh_1QN-1SN (6) |

b Calculation
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@ Highest N is limited by the
bandwidth of generator

@ Analysis starts from the
highest number portion

e Additional phase gate Z;
may be inserted where we
need
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Target: arbitrary N-photon state and decomposition

Interacting Hamiltonian revisited (), = 0):

Hi(t) = [Qq(t) + galoy + [ (1) + g*a']o-

U Decomposition
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j je—i9 sm;g/‘%\/ﬁ

where j=1,2,...N, the g =
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Target: |0) +1|3) as an example

Table 1| Sequence to generate the resonator state |y/) = [1) +i|3)

Sequence of states, Operational System state,
operations parameter parameter value
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Wigner tomography of |0) + |N)
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Figure: Fidelity: 0.92, 0.89, 0.88, 0.94, and 0.91.
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Wigner tomography of |0) + &% |3) + |6)
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Figure: Fidelity: 0.89, 0.91, 0.91, 0.91, and 0.91
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Wigner tomography: parity measurement

Def: Wigner function

W) = = [ P Pr(p)
= 21H(D(~a)pD(a) 1)
N————
p/
= _ Z pnn r (9)

where the parity operator I1 = ¢ has the eigenvalue +1 for even and -1 for odd resonator
Fock state.

The Wigner function of p is obtained by preparing the shifted state D(—a)pD(«) and
performing parity measurement.
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Wigner tomography: Fock state example

10) + 13) 10) +i13)
0225 0225
6
0180 0180
N 0135 0135
2 0090 0030
- -
z 0045 Ic} 0045
£ v £ e
. 0000 0000
-2
-0.045 -0.045
”
0,030 0090
-5 0135 0135
% 4 2 0 2z 4 & % 4+ 2 o0 2z a 13
Rela) Re(a)
1+ 3) 1) +i]3)
1n+13) 028 11 +i13) 028
s 018 018
A [3¢3 o
006 006
2
- 000 000
Gl G
0 -

E . - . 006 E -0.06
-2 -012 -012
" -018 -018

024 -024
"

2024.11.14 Synthesizing arbitrary quantum states in a superconducting resonator



Calibration: resonator state measurement

b Calculation
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@ P, immediately known (10)

— 2 _ o (_
e Premeasured ¢\/n where Py, = [cu|* = p7, (—a). [3]

@ P, to be linear least square fitted
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Main message

Summary
Rich ideas and techniques behind the simple JC model, which can surely be extended

For the first time, the preparation of N-fock state and arbitrary resonator state on
circuit-QED platform (without projective measurement)

Nonlinear elements like auxiliary qubits are powerful to engineer resonator states

The relevant theoretical analysis and experimental techniques are insightful

Some outdated aspects:
@ Upper limit of highest fock number

Fidelity is relatively low

o
@ Devices have been upgraded in recent years
o
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