

Resolving photon number states in a superconducting circuit

Simon Thür

28.11.2024

Resolving Photon Number States in a Superconducting Circuit

What was done:

Demonstrated the ability to resolve individual photon number states using superconducting circuits.

Why it matters:

Photon number resolution is of great importance in quantum computation, QND measurements, and cavity QED experiments.

Parameter space

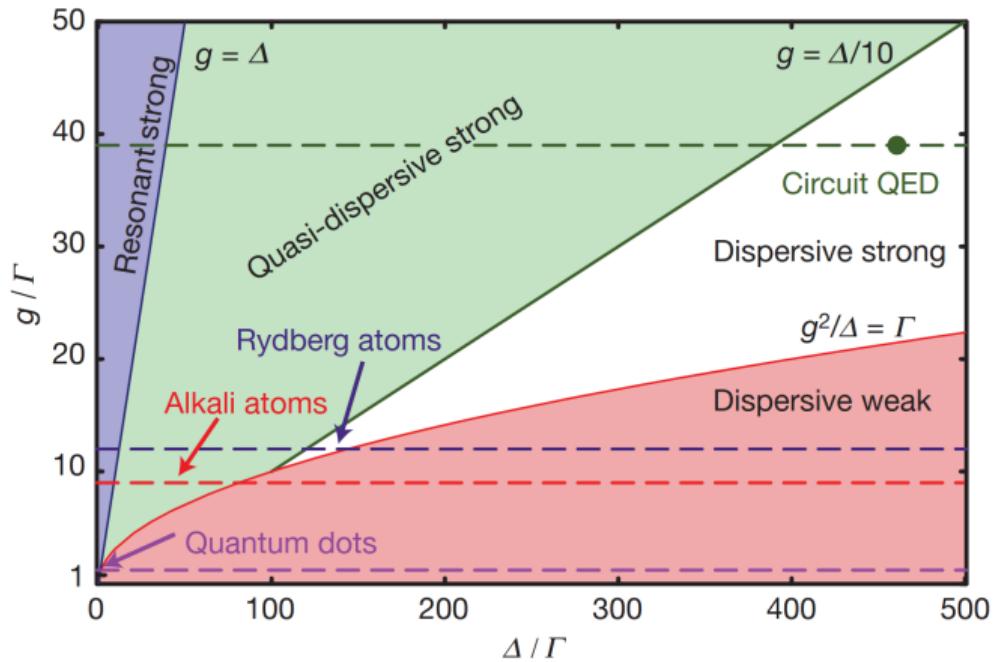


Figure: Parameter space diagram for cavity QED

Jaynes-Cummings Hamiltonian

Let's consider the Jaynes-Cummings Hamiltonian:

$$H_{JC} = \underbrace{\hbar\omega_r a^\dagger a + \frac{\hbar\omega_a}{2} \sigma_z}_{H_0} + \underbrace{\hbar g (a^\dagger \sigma^- + a \sigma^+)}_V + H_\Gamma + H_\kappa \quad (1)$$

Strong coupling $g \gg \Gamma, \kappa$, so we ignore the decay terms. Further we are in the dispersive limit $g \ll \Delta = \omega_a - \omega_r$ so we can use perturbation theory, diagonalizing the Hamiltonian we using the Schrieffer-Wolff transformation

$$S = \frac{g}{\Delta} (a \sigma^+ - a^\dagger \sigma^-) \quad (2)$$

$$H' = e^{-S} H e^S \quad (3)$$

$$= H_0 + \frac{1}{2} [S, V] + \mathcal{O}(V^2) \quad (4)$$

$$= \hbar\omega_r a^\dagger a + \frac{\hbar\omega_a}{2} \sigma_z + \frac{\hbar g^2}{\Delta} \left(a^\dagger a + \frac{1}{2} \right) \sigma_z + \mathcal{O}\left(\frac{g^2}{\Delta^2}\right) \quad (5)$$

Strong dispersive regime

Jaynes-Cummings Hamiltonian

$$H_{JC} = \hbar\omega_r a^\dagger a + \frac{\hbar\omega_a}{2} \sigma_z + \hbar g (a^\dagger \sigma^- + a \sigma^+) + H_\Gamma + H_\kappa \quad (6)$$

Strong coupling: $g \gg \Gamma, \kappa$

Dispersive approximation: $|\Delta| \gg g$

$$\chi = \frac{g}{\Delta}$$

Dispersive Hamiltonian

$$H_{disp} = \hbar\omega_r \left(a^\dagger a + \frac{1}{2} \right) + \frac{\hbar\omega_a}{2} \sigma_z + \hbar\chi \left(a^\dagger a + \frac{1}{2} \right) \sigma_z \quad (7)$$

Dispersive Hamiltonian

$$H_{disp} = \hbar\omega_r \left(a^\dagger a + \frac{1}{2} \right) + \frac{\hbar\omega_a}{2} \sigma_z + \hbar\chi \left(a^\dagger a + \frac{1}{2} \right) \sigma_z \quad (8)$$

Atom effect on resonator

$$\omega'_r = \omega_r + \hbar\chi\sigma_z \quad (9)$$

Resonator effect on atom

$$\omega_n = \omega_a + (2n + 1)\chi \quad (10)$$

The χ -shift commutes with the individual terms!

We can use this to perform QND measurements on either the atom or the cavity

Photon absorption probability $\left(\frac{g}{\Delta}\right)^2$

χ -shift

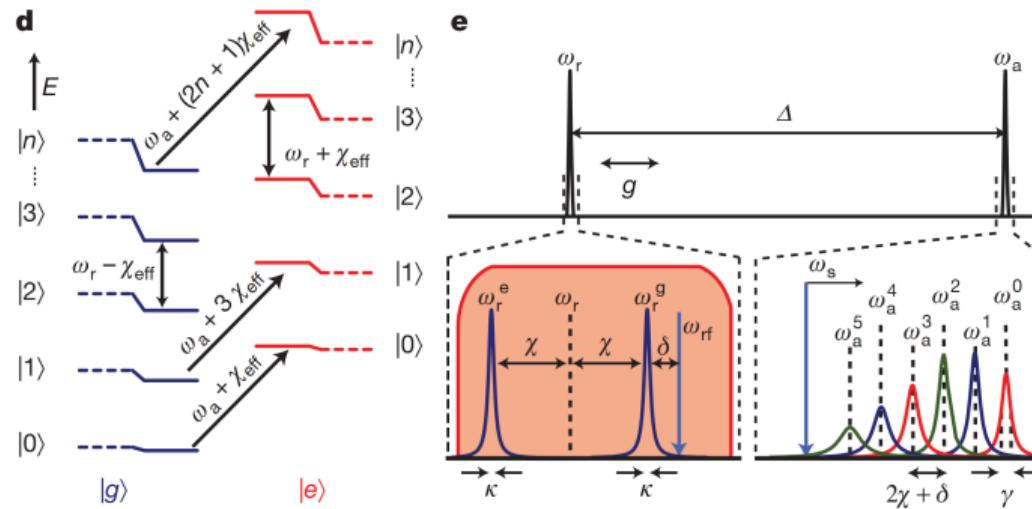
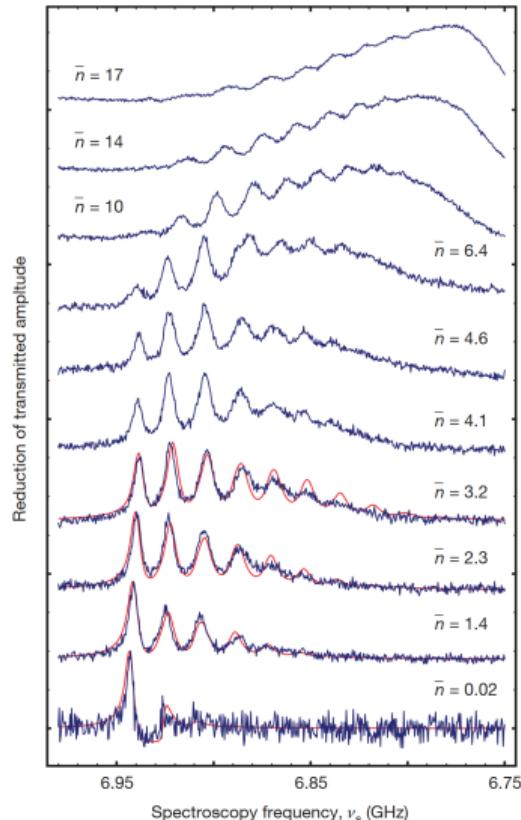


Figure: Effect of χ -shift on CPB and resonator

Spectroscopy



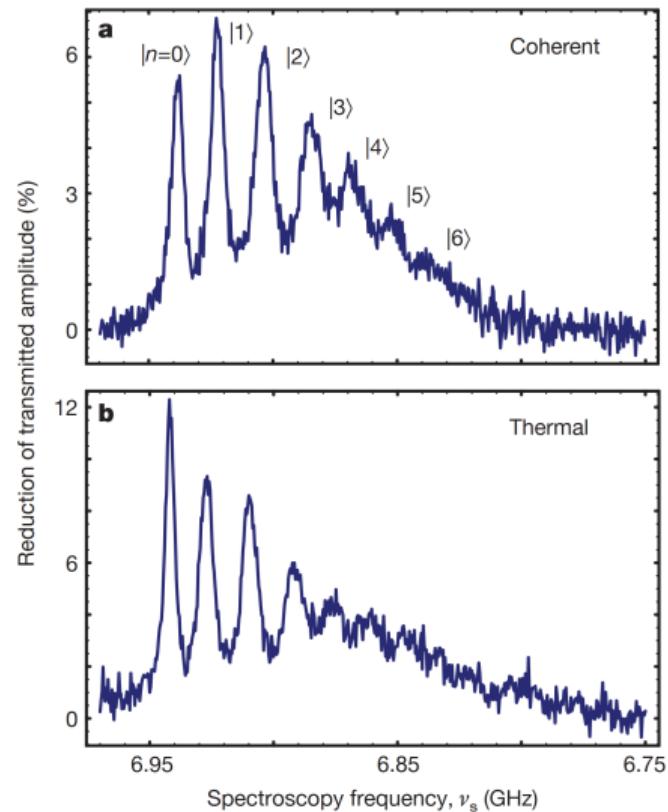
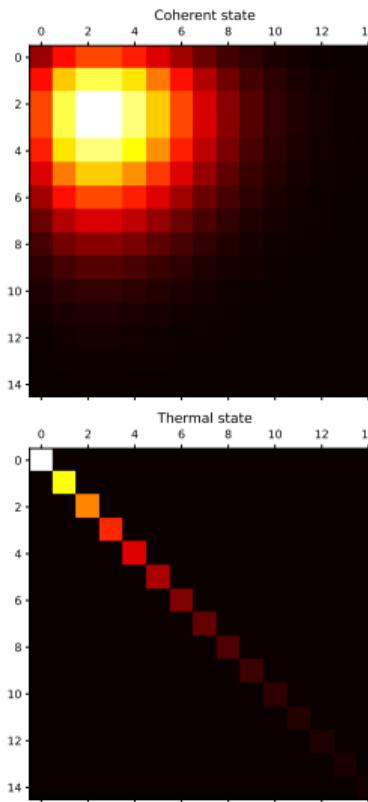
Coherent states with average cavity occupation \bar{n}
And background thermal photon $n_{th} = 0.1$

Linewidth

$$\gamma_n = \frac{\gamma}{2} + \gamma_\phi + \frac{(\bar{n} + n) \kappa}{2} \quad (11)$$

Resolution limit of $\bar{n} = \frac{2\chi}{\kappa}$?

Qubit spectrum distinguishes between coherent and thermal distributions



Photon-qubit conditional logic

“Outlook”

- CNOT gate between qubit and photon, allowing photon to be reused ‘elsewhere’.
- Qubit readout using dispersive measurement

Questions / Discussion

(Alternatively, lunch?)