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Transverse Dynamics - continued

practical questions to be answered:
How to ensure bound motion of a particle beam?
What are conditions for stability?
Amplitude and frequency of particle oscillations?

Statistical beam properties like beam width and angular spread?

DN NN N

How to design magnet lattices (arrangements of dipoles and quads in a line)?

What is the impact of field errors in bending and focusing magnets?

What happens when the motion in horizontal and vertical plane is coupled?

* How can we treat non-linear effects and coupling approximately but using a
systematic approach?



Recap: Hills Equation of Motion

1 1A
.CU”+ (—2+k)$ — _—p
P P Po
y'—ky = 0 DE is valid for
e drift spaces,
e quadrupoles (k#0),
* combined function magnets (k#0, 1/p=0),
» off-momentum particles (Ap=0, first order)
1 1 Ap
'+ K(s)x = ——
p(s) po




Phase Space Ellipse

[observing a particle at one location in a ring]

v

x(s) = +/2J 5 cos(p)
2(s) = —1 | 22 (acos(p) + sin(p))

=®

x, x describe an ellipse in phase space
when @is varied

J = particle action (oscillation amplitude)

area = 21.J = w(yz® 4 2axz’ + B2'?)
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FODO Cell Parameters

we obtain for B* in the focusing quad A W
and (" in the defocusing:

. 1Esin(p/2) /_\

BE=L : . ,
Sin i FODO Period L :
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see Wiedemann sec. 10.1
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FODO Cell with Dispersion

dispersion function D(s) is a periodic function in FODO
cells with a maximum D* in a focusing quad and a
minimum D" in a defocusing quad

25 ‘ ‘ 2

horizontal
vertical
dispersion
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B-function [m]

length [m]

see Wiedemann sec. 10.2.3

dispersion [m]



Smooth Approximation — Dispersion, M.Compaction

D"+ K(s)D =

D | =

Doye =

simplifying D(s) = D,ye = const
assumptions: K(s) = 1/5§Vg
IBavg — R/Q
p=1n
< D> 1
e R -




Next: Lattice Imperfections

e closed orbit distortion

 gradient errors



Closed Orbit

Closed Orbit =
Particle trajectory that closes on
itself after one complete turn.

K design orbit
* in practice the closed orbit does not closed orbit in practice

oscillating particle

exactly follow the design orbit, but
deviates due to small errors

* the closed orbit represents the
beam center, particles with nonzero
actions oscillate around it

e to assess practical implications and
tolerances the effect of orbit
distortions must be estimated

[closed orbit — conceptual sketch]

see Wiedemann sec. 15.2.3



Closed Orbit Distortion

* the desired bending of the beam by 1/p(s) is included in the calculation of the
design orbit, particle on design orbit: (x,x’) = (0,0)

* here we consider an additional (erroneous) kick angle 6

* this kick O leads to an oscillation of the closed orbit around the design orbit

calculation by requesting a closed orbit:

L0 L0
M = i ’
z) + 0 z) — solve equation for x,, X,

( Zo ) _ (M_l _I)_l ( 0 ) A cos 2m(Q) Bo sin 27
o 0 — 8_10 sin27()  cos2mw(Q



Closed Orbit Distortion — Resulting Orbit

B cos 2m() Bo sin 27 ()
(fC?)_(M;e},_I)l(O) Moy =
Lo 0 —Lsin27Q  cos27wQ

Bo
(here: a,,=0)
B cos(mQ)
To = 0f 2 sin(7wQ)
x(s) =10 - 5 81611((2?2(; cos(p(s) — Q)

distorted orbits for varying Q,
solution explodes for Q — Integer




Orbit correction by applying additional kicks

single kick:

_ 0 B(s)Bo
2sin(7Q)

kick O is caused by an unwanted magnetic field, or an off-set

guadrupole (errors)
however, kick(s) can be applied also on purpose to correct the orbit

z(s) cos(p(s) — Q)

with several kicks Gj the contributions are added:

_— VBkBj cos(lpr — ;| — Q)
Tk = Z 2sin(mQ) &

J
— Z Ry 0, (= matrix multiplication)
J
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Orbit Correction

given is a set of beam positions representing an orbit x

calculate a set of (wanted) corrector strengths 6; to minimize the orbit amplitude

this can be formulated as a problem of linear algebra (R,; coefficients last slide):
Tpos + RO =0

this is solved exactly for Njos = Ncor, however in practice we need flexible solutions

Singular Value Decomposition (SVD) is one of many approaches:

T
R=U-W-V W = diagonal matrix with singular values,
R, =V W—l . UT inversion simple

solution: * Npos = Ncor: €xact solution
g’cor — _vw lyuT. oo * Npos < Neor: minimizes |6] (magnet currents)

Npos > Neor: minimizes |X| (rms orbit deviation)

— in practice this is done using computer codes with many variants of algorithms

see Wiedemann sec. 15.4.2



Gradient Error

" + (Ko(s) + AIT((S)):U = 0

most simple case: the distortion of the gradient is
short and can be treated as a thin lens

|
1 ol b oll [T nll
| | |

K(s) 1

H C: S
we want to know:

1. the tune shift caused by the error

2. the modification of the beam width (via computing AB(s))

14



Gradient Error — Tune Shift

method: modify 1-turn transport matrix by multiplying thin lens error matrix

M = me Mo, My = 1Icos(pg) + J sin(ug)

\add erroneous slice ~ e — 1 0
AKIL 1

Mar={ 1 ) costuo) + « o in(110)
er = AkL 1 )T —aAKl—~ —BAKl—a | WO

1 1 :
cos(p) = §TrM = cos(pg) — §BAKZ sin(jg) €OS ft A cos o — Apsin(po)

see Wiedemann

resulting tune shift for AQ = 4i %ﬁ(s)AK(s)ds sec. 15.3.1
T

distributed gradient errors:
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Gradient Error - Betafunction

similar derivation without proof:

AB(s) = gt  dt BIOAK (€)cos (2(p(s) — o) - 7Q))
A A

solution explodes for Q — Integer x 0.5
note: double frequency

e this error modulates the beam width around the ring
* the effect is called , Beta-Beat”

* the Beta-Beat propagates at the double frequency of an orbit distortion

see Wiedemann sec. 15.3.4
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Gradient Error Example

accelerator lattice with 13 regular FODO cells, one quad in center has an error of +2%
the [3 function is modulated by =10% (beat frequency of 2x is not recognizable in graph)

30 |
nominal
with 2% error

|

10 5

U

0 | | | \ | | |
0 20 40 60 80 100 120 140

B-function [m]
0
|
|

length [m]
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Gradient Error Example continued

accelerator lattice with 13 regular FODO cells, one quad in center has an error of +2%
when AB/B is plotted against phase advance we see the “error kick” and the double
beat frequency

I \ I I I
25 L horizontal

20

il
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MWW
MVAV
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————
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B-function [m]

AR [m]

0 0.5 1 1.5 2 2.5 3 3.5

phase advance [2n]
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Next: Coupling of Transverse Planes

* tilted quadrupole, origin of coupling

e stability criterion in presence of coupling

e solution of coupled equations

* Literature: Wiedemann Chap 20, Conte/McKay Chap 10.2

19



The tilted quadrupole couples x and y

a pure tilted quadrupole results from a normal
quadrupole that is tilted by 45 degrees

F, < —y the force depends
on the coordinate

F, < —z in the other plane

20



Coupling Errors in a Real Accelerator

aroll angle
a small roll angle o of a normal quadrupole
i ) y; 7,
produces a tilted quadrupole component §\\\§\§\ \ /4‘\1//{%
X » 7/ P
such errors are unavoidable, and their XP‘){\ g A\ X777
consequences must be assessed AN

Mrolled — R<_04) ) MqR<Oé)

0 0 0 0
N 0 0 —2/f 0
MrolledNMq—'—Oé O O O O
_2/f 0 0 0 cos 0 sin o '0
R(s(i)na COSO‘ coga Sl0 )
0 —sin « 0 COS &

thin lens approximation and small roll angle o



Stability Conditions for a Coupled Ring

,hormal“ horizontal block 2x2
/ block w. coupling 2x2, often sparse

4x4 coupled — T = ( M | n ) again : detT =1

transport matrix: m | N

analysing eigenvectors . o .
and —values: T’Uj = )\j?)j, ] = 1...4 and: )\1)\2>\3)\4 =1
as it turnes out, the EV’s

. o uncoupled: I=x, ll =y,
come in reciprocal pairs: Ar=1/A-1, A= 1/A-n

is a special case

Im A :l:
N . — 1
EV's for stable motion: A1 =e M
AL, 11 = eI
Re see also ,,symplectic

condition” in Appendix

: IA| =1, unit circle



transition stable to unstable is possible for Q, = -Q,
(= Sum Resonance)

stable unstable

Im 4 Im¢

,
,
,
.
.
.
’
,
Ny
N
.
N
N
N
N
N
N

in presence of coupling sources:
EVs cannot be moved together, instead they move away from unit circle

EVs for unstable motion: ~ A; _1 = pELetin

A1 = eI

— A" diverges >



sketch of EV calculation in coupled condition

resonance condition: Q1 EQa~n; p=21Q + for Sum/Diff resonance

— use 4x4 one-turn transfer matrix with one quad rolled by small angle «, focal length f

from matrix calculation: K717 = Ar.11 -+ 1/)\],][ ~ 2cos it £ 205, psin

5 i/ BzByc/ f for Sum resonance
P \/BzBya/ f for Difference resonance

BB, optics functions at quad, f: focal length of rolled quad, «: small roll angle
— this is a recipe to calculate all four Eigenvalues in presence of coupling

(without coupling these would degenerate into just two EVs):

Aro—rar—11 = e £UID 6 b (sin T i cos )

note that d; ;, can be imaginary or real depending on Sum/Diff resonance

24



coupled EVs continued ...

the EVs move apart from the degenerate 1,1l values (Q, = £Q,),
depending on the nature of the resonance

A

ly —sinp +icos )\I — M -+ 5S,D (sin,u — ’I:COS,U/>

cos (4 + 1sin )\
11

EV 1,1l 1 =e"" — 05 p (sinp —icosp)

|A| = 1, unit circle

e " + 6s.p (sin pu + i cos )

|
~
|

A 4

A_p=e W _— ds,p (sin p + i cos p)

iv/B1P2 a/ f for Sum resonance
B V0182 a/ f for Diff. resonance

sin p4 + 7 cos i

>,
0
S

|

CoS 14 — 1 Sin

for Sum resonances the EVs move apart radially = unstable
for Difference resonances the EVs separate, but stay on unit circle — stable

25



discussion: sum and difference resonance

so far discussed: treatment in matrix formalism and via Eigenvalues, also possible and
more general is treatment through perturbation theory in Hamilton formalism

conserved for sum resonance: J-J,, = const., each action can grow indefinitely: unstable

conserved for diff. resonance: J+J,, = const. : stable motion but exchange of action

A 2
difference resonance 4Q2 (A + /ﬁ) COS (QH))
particle oscillation _ A
started with J,¢0,J,,=0 X —_ (K/ Sln (QH))
4022
action is exchanged

as known for coupled J1(0) £ 0; J2(0)=0
pendulums 1
s | A=Q1—Q2—n

9211/52+A2

2
0O 200 400 600 800 1000 Ji + Jo = A = const

turns

X|

26



discussion: difference resonance

for the difference resonance the motion is stable, but tunes cannot be moved together
two oscillation modes I,1l are observed instead of the uncoupled x,y modes

K is @ measure of the strength of coupling, i.e. roll angle of quads and other sources

scan of one planes tune

uncoupled tunes
measured Q) =———
measured Q) =——

0.24

observed are two modes whose
frequencies stay separated

0.23

Q, Q

0.22

1
Qr.rr = 5(@:1: + Qy)
+ %\/ AQ + /62 0.21
A = Qx — Qy 0.2

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

27
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Next: Hamiltonian Formalism and
Perturbation Theory

* Hamiltonian Formalism: What is it and why do we use it?

* Introduction by Pendulum example

* Hamiltonian for Accelerators in (x,x’) and (J,y)

e Perturbation treatment for Quad Error, Coupling, Sextupole

28



Introductory Remarks

Nonlinear resonances is one of the top subjects
in accelerator physics. It concerns the long term
stability of particles in a storage ring.

some aspects for ring design:

* resonant tune values

* nonlinear driving terms in general

* resonance overlap and chaotic motion

» sextupoles for chromatic correction

e octupoles for detuning of betatron oscillations

S. Y. Lee

Accelerator .
Physics g

%
Second Edition -
"

[Poincare section chosen
for textbook cover]

29



Sextupole & Third Order Resonance

i ()= (50 200 ()

T X
tep 2: —
step ( Do ) ( Dy — %k2$2<—)— sextupole “kick”

repeat this many times for different amplitudes, record coordinates for each turn

1

\ fix point, computed from

perturbed Hamiltonian

0.5

Xp
o
[

— |inear motion at small
amplitudes

particles close to
/ separatrix, then unbound

-1 -0.5 0 0.5 1

-0.5

Q, =0.3315

30



3rd Order Resonance in a Nutshell

L,

H——p$+K(s)%az2 + S(s)z’

2

\

Y

linear motion,
harmonic oscillator

if the tune Q is close to a
third order resonance:

sextupole driving
term, distributed

insert undisturbed betatron oscillation

3 1
x° o« CoS QOZZ(COSB§O+3COSQD)

|

third harmonic appears

Prt+1 = Qp +27Q —>

3¢ varies slowly; distortion
adds up coherently

:cpn—b—QWE

31




Hamiltonian Formalism

A dynamical system is described by a Hamiltonian with
q, = coordinates, p, = canonical momenta, ¢ = independent variable (time).

H(qp, pk,t) H is often the total energy of a system

The equations of motion: Hamilton‘s equations

qr = 8—H D = _8_H instead of £ second order equations
Opr.’ 0qu. we have 2k first order equations
it holds:
d_H _ 8_H Z ajq 4 8—Hpk H = const if not explicitly depending
dt ot - Oqp g Ops on time
\ J




Canonical Transformations of H

H can be transformed/adapted to a specific problem by
canonical transformations, i.e. by introducing new variables

that still fulfill Hamiltons principle.

8F
using a generating function F new , OH . OH
Hamiltonian Equati btained b 20,
amiltonian Equations are obtaine Qr = 3Pk k = an

depending on the combination of old g, p and new Q, P four different
types of I exist (see literature) for example F’; of old impulses p and
new coordinates Q:

b= FS(pant)

8F3 (9F3 aFS
_ P 2
1= "5, 90 H= ot

33



Hamiltonian — pendulum example

H = %pg + gl_I(l — cosf) 0=gq angle variable
. F Dy = ]9 angular momentum
g
H~ Epg ™ 592 (small angles 0) I = ml? moment of inertia
equations of motion : Y
. >

OH 0 1 _ . l

OH | | — G+ Zsing=0 Y,

5 = be= mgl sin 0 [ I &

small angles: sin@ ~ 6 — harmonic oscillator

34



Pendulum: Action Angle Variables

Harmonic oscillator: 0+ 79 =0— 0+ w6 = 0, w= 7
Canonical transfomation: (9,2?0) — (\I’, J)
H—H
1
Use generating function: Fi = —§w192 tan W
OF
p= L = _wlftan ¥
ox
J = - ov §w10 cos =W now rearrange equations to
OF obtain 0, py as a function of J, v
H=H+ —

ot
1
0



Harmonic Oscillator: Action Angle Variables

Solution of equation of motion in terms of J,y:

/2
0 = w—{_COS\IJ

pg = —V2JwlsinW

0=gq angle variable

— JO angular momentum
Hamiltonian: H = J - w Po
I = ml? moment of inertia

36



Canonical Perturbation Theory : Pendulum

A
Yy
g
[
0=q m
) . L 2
moment of inertia: I = ml
angular momentum: Dy = [é
freq. small amplitude: (g = g/l

Hamiltonian:

1
H = —p* +mgl(1 — cosb)

21
1 2

W
H=—p*+12
o T

\

J

\

1 1
(92—594+—96—...

360

J

Y

undisturbed H
(harm. oscillator)

action angle variables:

HZWQJ+A7'[

Y

perturbation AH

)



Canonical Perturbation Theory : Pendulum

1
action angle variables (¥,J)): H =wJ + AH, AH = —ﬂwg 6
| | | 1J2
insert undisturbed solution: AH = ——— cos (wot + \IJO)
6 1
: OAH 3
oscillation frequency: AV =Aw=(—), <cos4 \If> = —
0J 8
1.2 7 frequency vs oscillation amplitude
) 1 J 1.1 4
Ieadlng.order W= wy 1— -2 .
correction: K]
3 oo
s
exact solution T § 0.8
using elliptic W = Wo g 07
mtegral . 2K ( J/2Iw0) 06 exact solution
i erturbation calc. lead. order ==
02 ° undisturbed solution W=wyq
0.4

o

0.2 0.4 0.6 0.8 1

action J / 21wy 38
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Hamilton Formalism ::
Application to accelerator problems

39



Hamiltonian for Hill Equation

without proof (see literature on Hamiltonian treatment):

- ~ — /
2 2 /px—p%/pgy,px/ps x
Ap x 1 x Y 1,51, o™
H=-"Z4 (S +k) > -k +=p2+-p
Po p+(02+ ) 2 2 2P ol

applying Hamiltons equations the Hill equations of motion are
obtained:

1 1A
x”—l—(—2—|—k>x:——p, ' —ky=0
P P Po

*see also Wiedemann sec. 5.4.3

Why use Hamiltonians?

* Hamiltonian equations ensure conservation of phase space

* in curved coordinate systems forces are automatically correct
e equations have same form in every coordinate system

* systematic perturbation treatment of nonlinear forces

40



Practical Hamiltonians for Accelerators

2 p?
H(x,pg,8) = K(S)E t

transformation to action angle variables J, y yields: o
Note similarity to

pendulum example:

J
H:/HO—FA/H:%—FAIH H:wJ+A7-[
: N L os ds 2mQy
Linearizing in s by: ¥ = ¥(s) — 5.0 +—Fs

H="Ho+AH=JQ, +AH

— These two are the main types of transformed Hamiltonians used
for accelerator problems (we drop ~ for simplicity)



Canonical Perturbation Theory

7 A
CEn
perturbed
motion
V2J R
Ln
unperturbed
motion
T, = V2JcosV¥

., =V2JsinW¥

Hamiltonian type H,
linearized motion

unperturbed motion

“circle” _
small perturbation

“nonlinearity”

v v l

H(qja Ja 0) — QOJ + U(\Ija Ja 9)

-

betatron phase variable

angle around ring, “time” variable

42



Fourier Expansion of Perturbation

perturbation is double Fourier expanded w.r.t. phase angle and
accelerator azimut:

\If J 9 Z U, n ei(m\ll—n(?)

I

0 — 0+ 27 if Qg = n/m this term varies slowly
change of a.ngles and particles are coherently excited
per revolution: U — U421 Qq _, “resonance”

other terms can be neglected

canonical transformation to focus on one resonance:

Fo(Ty, o, 0) = (\111 _ 39) To
m

Ho(Va, Jo) = 0J2 + Ugo(J2) + 2Up, n(J2) cosmWUs §=0Qp— —



Simplified Hamiltonian for particular term

H(U,J)=0J + a(J) + A(J) cosm¥

driving term

detuning

n
0 =CQp— — issmall
m

* multipole fields drive certain resonances in leading order, for
example sextupole: 3" order resonance, octupole: 4t order

* detuning is a shift of the betatron frequency with oscillation
amplitude; e.g. octupole o oc J?

* note: higher order resonances are also present, besides the leading
order resonances

44



Perturbation Treatment of Sextupole

sextpole magnets cause a term:

[Nl [¥)

U, J,0)=500) 2% =85()-(28J)2 cos® ¥
A 'l‘

1
—(cos 3V + 3cos V)

4
sextupole strength Fourier series of U contains terms for
as a function of 6 m=1, m=3; we focus on the more

interesting m=3; there is no detuning
term in lowest order

in a ring there are many contributions to S(6) which must be summed up
with their individual phases; in practice this gives room to minimize the
driving term while still correcting chromaticity



Sextupole treatment cont.

Hamiltonian for sextupole:

H(W,J) =6J + AJ2 cos3V, § = Q_g

Fix-points are points in phase space that do not move over time (here 0):

0J OH .
ov  OH 3 . 1
%_W_O% 5—|—§AJ C(,fSS\I’—O

cos3V =—-1— U =7/3,7,57/3

normalising the Hamiltonian for studies by introducing variables j, 4:

J 25 \? H 4 83
= — [ == h — _ -7
/ JF.P. ’ JF'P' (314) ’ HF,P_ ’ HF'P' 27 A2

46



Phase Space Characteristics

A
Pz

—

this equation describes
trajectories in phase space for
varying amplitude (h):

2j% cos3¥ +35—h=0

\\

g
N

N

unstable orbit

separatrix
for h=1

note relation to p,, x coordinates
x\/j

A
linear motion for

small amplitudes

=N

unstable fixed point

47



Xp

-0.5 -

Comparison with tracking simulation

) (Cplha) e ) ()

step 1:

step 2:

(
(

x
Pz
x
Pz

)

x
— 1 kigzc sextupole “kick”

05

fixed point coordinates computed
with perturbation theory

STd
= 2
Jr p. ( ™ )

TT
Upp = —

Q, =0.3315 - §=-0.0018

48
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application to coupling

49



Coupling Resonances

coupling of horizontal and vertical betatron motion may be caused by:

skew quadrupole: As(CUa Y, 5) :f(S) " LY

f(s)(z” = 3ay?)

normal sextupole:

skew sextupole: f(s)(3z%y — y?)

4 2 2 4
normal octupole: f(s)(@™ —62y" +y°)
skew octupole: f(s)(4a:3y . 4azy3)

— here we focus on skew quad « xy as the simplest and most common effect

50



Perturbation Treatment of Coupling Resonances

add the skew quad potential in Hamiltonian of type H,:

1 1
H=SK(s)(y* — %) + 5(pz +py) + f(s) - 2y
\ v )
unperturbed H, perturbation H,

then insert the known solutions:
x(s) = /2J6(s) cos (pz(s) + ¢©z0), y(s) =...

use the constants of unperturbed solution as new variables
(known as variation of constants):

Sz (), p20(8), Jy(5), yo(s)

— see two slides in appendix with more information on the calculus



Behavior of resonant Hamiltonian

Equations of motion (see appendix):

0J -
b g/ TeTarsin o1 £ 11

0J .
aél = :|:l<3q7:|:\/ J[J[[ S111 (gﬁj + SOII)

For (+) case : subtract both equations:

0
%<JI—J[[):O, — J; — Jr7 = const

In case of the sum resonance (+) both betatron
amplitudes can grow indefinitely and particle is unstable.



Difference Resonance

For (-) case : add both equations:

0
00

In case of the difference resonance (-) the sum of the betatron amplitudes
is preserved, but action can be exchanged. — The particle is stable.

<J1+J[[) 0, — Jr+ Jrr = const

Equations of motions can be solved using the perturbation treatment with the ansatz:
JIQZSOI’ v = JIIGZSDII

This leads finally to the solution obtained previously from matrix arithmetic.

T1(60) = o5 (A + k2 cos?(06)) D78 50 -0
A
Jrr(0) = 12 (/ﬁ) sin (QH)) 0 — %m

Slide 28, see also Wiedemann, Chapter 20.



Generalised Resonance Condition with Coupling

UV, Y, Js, Jy,0) = Uy g (s Jy) (M1 ¥ +ma ¥y —nb)

mi,Mmoa,mNn

increment of phase
term per turn:

A(phase) = 2m(m1Qy + m2Q,) — nb

1+

resonance condition:

m1Qy +me@Qy —n~0

resonancesup
to 4th order




What was discussed in Transverse Dynamics Il1?

* orbit distortions by unwanted dipole errors are corrected using additional
corrector magnets, after orbit measurement and (e.g.) SVD matrix inversion

* Quadrupole errors result in tune shifts and beta beating at 2¢
* Coupling: sum resonance Q, = -0, unstable; O, = O, stable

* Hamilton Formalism allows to treat nonlinear problems in systematic
approach

* A transformed Hamiltonian has the form H = OJ + A H, where the effect of
AH can be treated using perturbation theory

* Fourier expansion of the driving term explains a Zoo of resonance conditions
m,Q,+m,Q =n, that is observed in operating rings



Perturbation Treatment of Coupling |l

Perturbation in the new Hamiltonian has the form:

AH = g(s)\/Jzdy COS (Yz + @z0) cos (py + SOyo)l

from the trigonometric functions sum and difference terms of phases are
generated, leading to sum and difference resonances:

A?—l X <€i(90:c+90:c0) _I_ 6_7:(9056‘*‘90130)) (ei(@y‘H,Oyo) _|_ e_i(@y‘HPyO))
~ (ei(cpa;-l—goy—i—...) © gilea—py+...) +)

using Fourier expansion to collect all coupling contributions around the ring:

Rq,l = —/ dsg 6376 6 (Som0+l90y0 (Qz+1Qy— qN) 27 3)



Perturbation Treatment of Coupling Il

resulting Hamiltonian using independent (eq. time) variable 8= s/R:

AH = Z K’q,ﬂT:'\/ Sz Jy €08 (90 :IT: pyo + Ag0), \Aq = Qs £ @y — q]\i
q,l Y

+ for sum/diff. resonance resonance condition, term small

note advancement of different phase variables per turn: 6 — 0+2x, ¢, — o, +27Q, ,
due to the resonance condition a small distortion will add up over many turns

eliminate explicit dependence on the (time) variable 6 with a generating function

1 1
F(J[, J[]) = Js (Spch — §Aq9) + Jrr (goyg + §Aq9)

results in “resonant Hamiltonian” H, (¢,0,0 = @, ):

1
He = 5 A (1 £ Jir) + g2\ JrJrr cos (g1 + 1)




Hamiltonian Systems:
symplectic conditions valid for the 4x4 matrix M

0 -1

Symplecticity 2x2: S = ( L 0

T
). atsnr., s

— 1 constraint, det M, =1

0O -1 0 O
o _ 1 1 0 0 O T B
Symplecticity 4x4: S = 0o 0 o0 -1 |’ M"SM =S
0O 0 1 O

— n(2n — 1) = 6 constraints, including det M =1

one consequence, the EV's
nseqt . Al-Ar =1, Air- A =1
come in reciprocal pairs:

In addition since M is real: A, and A.” are Eigenvalues
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