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Transverse Dynamics - continued

practical questions to be answered:
 How to ensure bound motion of a particle beam?
 What are conditions for stability?
 Amplitude and frequency of particle oscillations?
 Statistical beam properties like beam width and angular spread?
 How to design magnet lattices (arrangements of dipoles and quads in a line)?
• What is the impact of field errors in bending and focusing magnets?
• What happens when the motion in horizontal and vertical plane is coupled?
• How can we treat non-linear effects and coupling approximately but using a 

systematic approach?
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Recap: Hills Equation of Motion 

DE is valid for 

• drift spaces, 

• quadrupoles (k≠0), 

• combined function magnets (k≠0, 1/ρ≠0), 

• off-momentum particles (∆p≠0, first order)
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Phase Space Ellipse
[observing a particle at one location in a ring]

1

4

2

3

x’

x
x, x’ describe an ellipse in phase space 
when ϕ is varied

J = particle action (oscillation amplitude)
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FODO Cell Parameters

we obtain for β+ in the focusing quad 
and β- in the defocusing:

phase advance per cell:

5see Wiedemann sec. 10.1 



FODO Cell with Dispersion
dispersion function D(s) is a periodic function in FODO 
cells with a maximum D+ in a focusing quad and a 
minimum D- in a defocusing quad

D+

D- D-

6see Wiedemann sec. 10.2.3 



Smooth Approximation – Dispersion, M.Compaction
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simplifying 
assumptions:



Next: Lattice Imperfections

• closed orbit distortion
• gradient errors
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Closed Orbit
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[closed orbit – conceptual sketch]

the oscillating 
trajectory is not closed

Closed Orbit = 
Particle trajectory that closes on 
itself after one complete turn. 

• in practice the closed orbit does not 
exactly follow the design orbit, but 
deviates due to small errors

• the closed orbit represents the 
beam center, particles with nonzero 
actions oscillate around it

• to assess practical implications and 
tolerances the effect of orbit 
distortions must be estimated

see Wiedemann sec. 15.2.3



Closed Orbit Distortion

• the desired bending of the beam by 1/ρ(s) is included in the calculation of the 
design orbit, particle on design orbit: (x,x’) = (0,0)

• here we consider an additional (erroneous) kick angle θ
• this kick θ leads to an oscillation of the closed orbit around the design orbit

calculation by requesting a closed orbit:

→ solve equation for x0, x0’
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Closed Orbit Distortion – Resulting Orbit

distorted orbits for varying Q,
solution explodes for Q → Integer
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(here: α0=0)



Orbit correction by applying additional kicks
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kick θ is caused by an unwanted magnetic field, or an off-set 
quadrupole (errors)
however, kick(s) can be applied also on purpose to correct the orbit

single kick:

with several kicks θj the contributions are added: 

(= matrix multiplication)



Orbit Correction
given is a set of beam positions representing an orbit 𝑥𝑥𝑘𝑘

calculate a set of (wanted) corrector strengths 𝜃𝜃𝑗𝑗 to minimize the orbit amplitude

this can be formulated as a problem of linear algebra (Rkj coefficients last slide):

this is solved exactly for 𝑁𝑁pos = 𝑁𝑁cor, however in practice we need flexible solutions

Singular Value Decomposition (SVD) is one of many approaches:

W = diagonal matrix with singular values, 
inversion simple

solution: • 𝑁𝑁pos = 𝑁𝑁cor: exact solution

• 𝑁𝑁pos < 𝑁𝑁cor: minimizes |𝜃⃗𝜃| (magnet currents)

• 𝑁𝑁pos > 𝑁𝑁cor: minimizes |𝑥⃗𝑥| (rms orbit deviation)

→ in practice this is done using computer codes with many variants of algorithms

see Wiedemann sec. 15.4.2



Gradient Error

sC

K(s)

most simple case: the distortion of the gradient is
short and can be treated as a thin lens

we want to know:
1. the tune shift caused by the error
2. the modification of the beam width (via computing ∆β(s)) 
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Gradient Error – Tune Shift
method: modify 1-turn transport matrix by multiplying thin lens error matrix

add erroneous slice

resulting tune shift for 
distributed gradient errors:
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see Wiedemann 
sec. 15.3.1



Gradient Error - Betafunction

solution explodes for Q → Integer × 0.5

similar derivation without proof:

• this error modulates the beam width around the ring

• the effect is called „Beta-Beat“

• the Beta-Beat propagates at the double frequency of an orbit distortion

note: double frequency

16
see Wiedemann sec. 15.3.4



Gradient Error Example
accelerator lattice with 13 regular FODO cells, one quad in center has an error of +2%
the β function is modulated by ≈10% (beat frequency of 2x is not recognizable in graph) 
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Gradient Error Example continued
accelerator lattice with 13 regular FODO cells, one quad in center has an error of +2%
when ∆β/β is plotted against phase advance we see the “error kick” and the double 
beat frequency
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Next: Coupling of Transverse Planes

• tilted quadrupole, origin of coupling
• stability criterion in presence of coupling
• solution of coupled equations
• Literature: Wiedemann Chap 20, Conte/McKay Chap 10.2
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The tilted quadrupole couples x and y
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a pure tilted quadrupole results from a normal 
quadrupole that is tilted by 45 degrees

the force depends
on the coordinate
in the other plane



Coupling Errors in a Real Accelerator
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α roll angle
a small roll angle α of a normal quadrupole 
produces a tilted quadrupole component

such errors are unavoidable, and their 
consequences must be assessed

thin lens approximation and small roll angle α



Stability Conditions for a Coupled Ring
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4x4 coupled
transport matrix:

„normal“ horizontal block 2x2 
block w. coupling 2x2, often sparse

analysing eigenvectors
and –values:

as it turnes out, the EV‘s
come in reciprocal pairs:

uncoupled: I ≡ x, II ≡ y, 
is a special case

Im

Re

EV`s for stable motion:

see also „symplectic
condition“ in Appendix



transition stable to unstable is possible for Qx ≈ -Qy
(= Sum Resonance)
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Im

Re

EVs for unstable motion:

Im

Re

stable unstable

in presence of coupling sources:
EVs cannot be moved together, instead they move away from unit circle



sketch of EV calculation in coupled condition
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resonance condition: ± for Sum/Diff resonance

from matrix calculation:

→ use 4x4 one-turn transfer matrix with one quad rolled by small angle α , focal length f

β1,β2: optics functions at quad,  f: focal length of rolled quad,  α: small roll angle
→ this is a recipe to calculate all four Eigenvalues in presence of coupling

(without coupling these would degenerate into just two EVs):

note that δS,D can be imaginary or real depending on Sum/Diff resonance



coupled EVs continued …
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EV I,II

EV -I,-II

x

iy

the EVs move apart from the degenerate I,II values (Qx = ±Qy), 
depending on the nature of the resonance

for Sum resonances the EVs move apart radially → unstable
for Difference resonances the EVs separate, but stay on unit circle → stable



discussion: sum and difference resonance
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so far discussed: treatment in matrix formalism and via Eigenvalues, also possible and 
more general is treatment through perturbation theory in Hamilton formalism

conserved for sum resonance: JI-JII = const., each action can grow indefinitely: unstable

conserved for diff. resonance: JI+JII = const. : stable motion but exchange of action

difference resonance

particle oscillation 
started with JI≠0,JII=0

action is exchanged 
as known for coupled 

pendulums



discussion: difference resonance
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for the difference resonance the motion is stable, but tunes cannot be moved together

two oscillation modes I,II are observed instead of the uncoupled x,y modes

κ is a measure of the strength of coupling, i.e. roll angle of quads and other sources 

scan of one planes tune

observed are two modes whose 
frequencies stay separated



Next: Hamiltonian Formalism and 
Perturbation Theory

• Hamiltonian Formalism: What is it and why do we use it?
• Introduction by Pendulum example
• Hamiltonian for Accelerators in (x,x’) and (J,ψ)
• Perturbation treatment for Quad Error, Coupling, Sextupole
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Introductory Remarks

[Poincare section chosen
for textbook cover]

Nonlinear resonances is one of the top subjects 
in accelerator physics. It concerns the long term 
stability of particles in a storage ring.

some aspects for ring design:
• resonant tune values
• nonlinear driving terms in general 
• resonance overlap and chaotic motion
• sextupoles for chromatic correction
• octupoles for detuning of betatron oscillations
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Sextupole & Third Order Resonance

fix point, computed from 
perturbed Hamiltonian
linear motion at small 
amplitudes
particles close to 
separatrix, then unboundQx = 0.3315
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step 1:

step 2:

repeat this many times for different amplitudes, record coordinates for each turn

sextupole “kick”



3rd Order Resonance in a Nutshell

linear motion,
harmonic oscillator

sextupole driving 
term, distributed 

insert undisturbed betatron oscillation

third harmonic appears

if the tune Q is close to a 
third order resonance:

varies slowly; distortion 
adds up coherently
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Hamiltonian Formalism

A dynamical system is described by a Hamiltonian with 
qk = coordinates, pk = canonical momenta, t = independent variable (time).

The equations of motion: Hamilton‘s equations

it holds:

0

H is often the total energy of a system

H = const if not explicitly depending 
on time

instead of k second order equations 
we have 2k first order equations
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Canonical Transformations of H
H can be transformed/adapted to a specific problem by 
canonical transformations, i.e. by introducing new variables 

using a generating function F new 
Hamiltonian Equations are obtained 
that still fulfill Hamiltons principle.

depending on the combination of old q, p and new Q, P four different 
types of F exist (see literature) for example F3 of old impulses p and 
new coordinates Q:
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Hamiltonian – pendulum example

equations of motion :

angle variable

angular momentum

moment of inertia

34

small angles: sinθ ≈ θ → harmonic oscillator

(small angles θ)



Pendulum: Action Angle Variables

Harmonic oscillator: 

Canonical transfomation: 

Use generating function: 

now rearrange equations to 
obtain θ, pθ as a function of J, ψ

35
0



Harmonic Oscillator: Action Angle Variables

Hamiltonian:

Solution of equation of motion in terms of J,ψ:
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Thus:

angle variable

angular momentum

moment of inertia



Canonical Perturbation Theory : Pendulum

moment of inertia:

angular momentum:

Hamiltonian:

undisturbed H
(harm. oscillator)

freq. small amplitude:

perturbation ∆H

action angle variables:
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Canonical Perturbation Theory : Pendulum

action angle variables (Ψ, J):

insert undisturbed solution:

oscillation frequency:

leading order 
correction:

exact solution 
using elliptic 
integral K:
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Hamilton Formalism ::
Application to accelerator problems



Hamiltonian for Hill Equation
without proof (see literature on Hamiltonian treatment): 

applying Hamiltons equations the Hill equations of motion are 
obtained:

Why use Hamiltonians? 
• Hamiltonian equations ensure conservation of phase space
• in curved coordinate systems forces are automatically correct
• equations have same form in every coordinate system
• systematic perturbation treatment of nonlinear forces

40

*see also Wiedemann sec. 5.4.3 



Practical Hamiltonians for Accelerators

transformation to action angle variables J, ψ yields: 
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Note similarity to
pendulum example:

Linearizing in s by: 

→ These two are the main types of transformed Hamiltonians used 
for accelerator problems (we drop ~ for simplicity)



Canonical Perturbation Theory

perturbed 
motion

unperturbed 
motion

Hamiltonian type H, 
linearized motion

unperturbed motion 
“circle”

small perturbation 
“nonlinearity”

betatron phase variable

angle around ring, “time”  variable
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Fourier Expansion of Perturbation

change of angles 
per revolution:

if 𝑄𝑄0 ≈ 𝑛𝑛/𝑚𝑚 this term varies slowly 
and particles are coherently excited
→ “resonance”
other terms can be neglected

perturbation is double Fourier expanded w.r.t. phase angle and 
accelerator azimut:

canonical transformation to focus on one resonance:
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Simplified Hamiltonian for particular term

is small

driving term
detuning

• multipole fields drive certain resonances in leading order, for 
example sextupole: 3rd order resonance, octupole: 4th order

• detuning is a shift of the betatron frequency with oscillation 
amplitude; e.g. octupole α ∝ J2

• note: higher order resonances are also present, besides the leading 
order resonances
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Perturbation Treatment of Sextupole

sextpole magnets cause a term: 

Fourier series of U contains terms for 
m=1, m=3; we focus on the more 
interesting m=3; there is no detuning 
term in lowest order

sextupole strength 
as a function of θ

in a ring there are many contributions to S(θ) which must be summed up 
with their individual phases; in practice this gives room to minimize the 
driving term while still correcting chromaticity
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Sextupole treatment cont.
Hamiltonian for sextupole:

Fix-points are points in phase space that do not move over time (here θ):

normalising the Hamiltonian for studies by introducing variables j,h:
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Phase Space Characteristics

this equation describes 
trajectories in phase space for 
varying amplitude (h): 

separatrix
for h=1

unstable orbit

unstable fixed point

linear motion for 
small amplitudes

47

note relation to px, x coordinates



Comparison with tracking simulation

step 1:

step 2:
sextupole “kick”

Qx = 0.3315  → δ = -0.0018 

fixed point coordinates computed 
with perturbation theory
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application to coupling



Coupling Resonances

skew quadrupole:

normal sextupole:
skew sextupole:

normal octupole:
skew octupole:

coupling of horizontal and vertical betatron motion may be caused by:

50

→ here we focus on skew quad ∝ xy as the simplest and most common effect



Perturbation Treatment of Coupling Resonances

add the skew quad potential in Hamiltonian of type H4:
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unperturbed H0 perturbation Hp

then insert the known solutions:

use the constants of unperturbed solution as new variables
(known as variation of constants):

→ see two slides in appendix with more information on the calculus



Behavior of resonant Hamiltonian
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Equations of motion (see appendix):

For (+) case : subtract both equations: 

In case of the sum resonance (+) both betatron
amplitudes can grow indefinitely and particle is unstable. 



Difference Resonance
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For (-) case : add both equations: 

In case of the difference resonance (-) the sum of the  betatron amplitudes 
is preserved, but action can be exchanged.  → The particle is stable. 

Equations of motions can be solved using the perturbation treatment with the ansatz:

Slide 28, see also Wiedemann, Chapter 20.

This leads finally to the solution obtained previously from matrix arithmetic.



Generalised Resonance Condition with Coupling

increment of phase 
term per turn:

resonance condition:

54

resonances up
to 4th order



What was discussed in Transverse Dynamics III?

• orbit distortions by unwanted dipole errors are corrected using additional 
corrector magnets, after orbit measurement and (e.g.) SVD matrix inversion

• Quadrupole errors result in tune shifts and beta beating at 2ϕ

• Coupling: sum resonance Qx = -Qy unstable; Qx = Qy stable

• Hamilton Formalism allows to treat nonlinear problems in systematic 
approach

• A transformed Hamiltonian has the form H = QJ + ∆ H, where the effect of 
∆H can be treated using perturbation theory

• Fourier expansion of the driving term explains a Zoo of resonance conditions 
m1Qx+m2Qy=n, that is observed in operating rings
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Perturbation Treatment of Coupling II

Perturbation in the new Hamiltonian has the form:

from the trigonometric functions sum and difference terms of phases are 
generated, leading to sum and difference resonances:

using Fourier expansion to collect all coupling contributions around the ring:
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Perturbation Treatment of Coupling III
resulting Hamiltonian using independent (eq. time) variable θ = s/R:

± for sum/diff. resonance resonance condition, term small

note advancement of different phase variables per turn: θ → θ+2π, ϕx,y → ϕx,y+2πQx,y
due to the resonance condition a small distortion will add up over many turns

eliminate explicit dependence on the (time) variable θ with a generating function

results in “resonant Hamiltonian” Hr (ϕx0,y0  → ϕI,II):
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Hamiltonian Systems: 
symplectic conditions valid for the 4x4 matrix M

Symplecticity 2x2:

Symplecticity 4x4:

one consequence, the EV‘s 
come in reciprocal pairs:

In addition since M is real: λi and λi
* are Eigenvalues


	Transverse Dynamics ::�Lattice Imperfections and Hamilton Formalism 
	Transverse Dynamics - continued
	Recap: Hills Equation of Motion 
	Phase Space Ellipse�[observing a particle at one location in a ring]
	FODO Cell Parameters
	FODO Cell with Dispersion
	Smooth Approximation – Dispersion, M.Compaction
	Slide Number 8
	Closed Orbit
	Closed Orbit Distortion
	Closed Orbit Distortion – Resulting Orbit
	Orbit correction by applying additional kicks
	Orbit Correction
	Gradient Error
	Gradient Error – Tune Shift
	Gradient Error - Betafunction
	Gradient Error Example
	Gradient Error Example continued
	Slide Number 19
	The tilted quadrupole couples x and y
	Coupling Errors in a Real Accelerator
	Stability Conditions for a Coupled Ring
	transition stable to unstable is possible for Qx  -Qy�(= Sum Resonance)
	sketch of EV calculation in coupled condition
	coupled EVs continued …
	discussion: sum and difference resonance
	discussion: difference resonance
	Slide Number 28
	Introductory Remarks
	Sextupole & Third Order Resonance
	3rd Order Resonance in a Nutshell
	Hamiltonian Formalism
	Canonical Transformations of H
	Hamiltonian – pendulum example
	Pendulum: Action Angle Variables
	Harmonic Oscillator: Action Angle Variables
	Canonical Perturbation Theory : Pendulum
	Canonical Perturbation Theory : Pendulum
	Slide Number 39
	Hamiltonian for Hill Equation
	Practical Hamiltonians for Accelerators
	Canonical Perturbation Theory
	Fourier Expansion of Perturbation
	Simplified Hamiltonian for particular term
	Perturbation Treatment of Sextupole
	Sextupole treatment cont.
	Phase Space Characteristics
	Comparison with tracking simulation
	Slide Number 49
	Coupling Resonances
	Perturbation Treatment of Coupling Resonances
	Behavior of resonant Hamiltonian
	Difference Resonance
	Generalised Resonance Condition with Coupling
	What was discussed in Transverse Dynamics III?
	Perturbation Treatment of Coupling II
	Perturbation Treatment of Coupling III
	Hamiltonian Systems: �symplectic conditions valid for the 4x4 matrix M

