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Transverse Dynamics - continued

practical questions to be answered:
 How to ensure bound motion of a particle beam?
 What are conditions for stability?
 Amplitude and frequency of particle oscillations?
• Statistical beam properties like beam width and angular spread?
• How to design magnet lattices (arrangements of dipoles and quads in a line)?
• What is the impact of field errors in bending and focusing magnets?
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Recap: Stability Criterion – Eigenvalues of M

motion is stable if |Tr M| ≤ 2, which also means that µ is real
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stable for n → ∞ ?

complex eigenvalues:

decomposition of M 
in eigenvectors:



Recap: Hills Equation of Motion 

DE is valid for 

• drift spaces, 

• quadrupoles (k≠0), 

• combined function magnets (k≠0, 1/ρ≠0), 

• off-momentum particles (∆p≠0, first order)
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Hill: Solution for periodic K

→ the beta function is a scaling factor for the amplitude of orbit 
oscillations and their local wavelength

A, ϕ0 are constants of motion

weak quads strong quads 5



Recap: The Betatron Frequency Q (tune of accelerator)

Tune = Number of Betatron Oscillations per Turn
(remember Q=1 for purely weak focusing)

the choice of tune is important to avoid 
resonances

integer tune: resonant growth odd tune: kick averages out
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Phase Space Ellipse
[observing a particle at one location in a ring]
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x, x’ describe an ellipse in phase space 
when ϕ is varied

J = particle action (oscillation amplitude)
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Next: Statistical Beam Properties

• Liouville theorem
• emittance and distribution function
• consequences of conservation of emittance

8



Liouvilles Theorem

the phase space density is conserved     𝒅𝒅𝝍𝝍
𝒅𝒅𝒅𝒅

= 𝟎𝟎

re-formulated:

The phase space density behaves 
like an incompressible liquid.

q

p
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= 0 for Hamiltonian Systems

continuity equation of 6-dim phase space density ψ:

see also Wiedemann sec. 8.1.1 



Beam Emittance

beam emittance as statistical property:

two-dimensional Gaussian distribution:

projected Gaussian distribution:

10see Wiedemann sec. 8.1.3 



Conservation of Emittance

x

px
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px

with a given emittance a beam can be made small with large angular spread, 
or can have small angular spread with a large size
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Beam Waist (e.g. interaction point collider)
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β* = Beta function at waist



Phase Space Ellipse after focusing
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Emittance and Twiss Matrix

beam moments are computed in a compact way 
using the Twiss matrix:

if Σx is known / has been measured, the emittance 
is related as follows:

14see Wiedemann sec. 8.1.3 



Phase Space Ellipse - Parameters
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for upright ellipse:

reminder:

x’

x



Action – Angle Variables
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x’

x

Jx

ϕx

action Jx is 
conserved

forward 
transformation:

backward 
transformation:



Distribution in Action-Angle Variables
switch to action angle variables:

from Gaussian distribution:

to Exponential distribution:

the emittance is the average value of the action Jx:

17see Wiedemann sec. 5.4.5 



Collimated Proton Beam in x and Jx

circulating beam is collimated, particles beyond Jc removed, others not affected

same distribution projected on x (e.g. measurement with 
wire scanner): particles beyond xc removed, but density 
also lower in center
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action/angle variables x/x‘ variables



Fractions of Beam in rms widths

rms width n beam fraction r
1 39%

2 86%

3 99%

From practical measurements (wire scan, beam screen) the projected rms
width of the beam is determined.
What fraction of beam is contained in 𝑛𝑛 × 𝜎𝜎rms?

compute the beam fraction inside an ellipse 
corresponding to n×σx:

note: This applies for a 
two dimensional 
Gaussian distribution.
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Remarks on Beam Distributions

Protons, Ions
“protons never forget” G.Voss
can have “strange” distributions since those depend on the history of 
beam generation and acceleration; i.e. no damping mechanism
however: in practice often close to Gaussian distribution

Electrons
in a ring electrons radiate photons which continuously mixes particles 
in phase space and generates an equilibrium Gaussian distribution
i.e. a large injected beam will shrink to equilibrium while a small beam 
will grow
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Next: FODO Lattices

• FODO parameter space
• FODO with bending magnets
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Reminder: Quadrupole Doublet

l

→ Mdoublet is always focusing
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FODO Cell

to determine β we use the equation from last lecture and set βs=β0, αs=α0=0
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F = focusing

O = drift O = drift

F = focusingD = defocusing



FODO Cell Parameters

we obtain for β+ in the focusing quad 
and β- in the defocusing:

phase advance per cell:

24see Wiedemann sec. 10.1 



FODO Cell II

illustration:
particle trajectories of varying 
phase and amplitude in a 
FODO cell

Gaussian (projected) profile
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FODO Cell: choice of phase advance

β+ reaches minimum at µopt=76.3deg
at this point the vacuum chamber 
needs a minimal size
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Example LEP(CERN) 
operating modes:
µx/µy [degrees]:
60/60, 90/60, 90/90, 102/90

(stronger foc. = smaller emittance) 



Unequal F and D quadrupole strength

for uneven strength of the two quads we can compute a region of stability:

convenient variables (dimensionless):

from Trace M condition:

it follows this range of focusing strength for stable conditions:
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Stable region for quad strength in a FODO cell

stable region 
“necktie” diagram
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Next: include bending magnets and 
off-momentum particles into FODO
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FODO Cell with Bending Magnets
FODO structure with bending magnets to form a ring
- the standard scheme for synchrotrons

D/2

F
B

B B
B

FD

D/2

example:
• 2 FODO cells
• ρ = 55m
• separated function 
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FODO Cell with Dispersion
dispersion function D(s) is a periodic function in FODO 
cells with a maximum D+ in a focusing quad and a 
minimum D- in a defocusing quad

D+

D- D-

31see Wiedemann sec. 10.2.3 



FODO Cell with Dispersion

using the previously introduced 3x3 matrix for transport through ½ FODO cell in 
thin lens approximation we obtain two equations that are solved for D+ and D-
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θc ≈ L/ρ deflection 
angle per cell
→ note the quadratic 
(strong) dependence 
of D on cell length L



Dispersion Functions vs Phase Advance

note the vertical 
scaling in graph:

→ dispersion depends quadratically on the cell length L
→ with stronger focusing (stronger quads, larger phase advance) 
the dispersion function gets smaller for the same bending radius
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Dispersion Function in a Ring

the dispersion function at position s is calculated by integrating over 
contributions from bending magnets (1/ρ ≠ 0) around the ring:

D, D’ are periodic functions:
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Beam size with finite momentum spread
besides emittance also momentum spread may contribute to beam size and 
angular spread, via dispersion function; when the beam momentum spread is d:

δ > 0δ < 0

x

x’
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quadratic addition of transverse and 
longitudinal contributions:

at some locations the momentum contribution should be suppressed by 
designing for D=0, D‘=0
examples:
• interaction point in a collider where beams should be as small as possible
• undulators/source magnets, where divergence of emitted radiation 

should be small



Path Length Change with Momentum

36

for an off-momentum particle the path length changes; consider a particle on a 
closed dispersion trajectory, i.e. no betatron oscillation: J=0, but ∆p ≠0

the change in circumference for this particle is:

ρ

x

we introduce the momentum compaction factor αc:

see Wiedemann sec. 8.4.6 



Smooth Approximation (reminder last lecture)

simplify:

can be used to estimate important parameters:
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note: Q ∝ R, i.e. proportional to size
compare cyclotron: Q ∝ γ, independent of size!



Smooth Approximation – Dispersion, M.Compaction
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simplifying 
assumptions:



Approximate Dispersion Function
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(the known differential equation)

• expanding right side in Fourier series
• solving DE for each series term
• keeping only first term to approximate x(s)
• deducing D(s) from x(s) = D(s) ∆p/p
• see Appendix and Courant, Snyder reference

→ Approximation can be used to estimate emittance in electron rings.



Approximate Dispersion Function :: Example
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example Ring:
• protons 500GeV, C=6270m
• 60deg / cell lattice, 110 cells
• ρ=840m, R=998m

exact (black) and approximate 
dispersion function



Deriving approximate Momentum Compaction 
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change of path length through dispersion trajectory x(s):

using series expansion x(θ ), β 3/2/ρ, and retaining only n=0 term  we obtain:

with the previous result



Next: Chromatic Focusing Error

• Focusing Error - What happens?
• Chromaticity
• Correction using Sextupole Magnets

42



Chromatic Errors
a spread of momentum leads to chromatic aberrations, similarly to 
aberrations of optical lenses:

nominal focal length

∆p/p > 0∆p/p = 0∆p/p < 0

43



Chromaticity
particles with momentum deviation are focused differently, leading to a 
shift of the betatron frequency

Chromaticity ξ = change of tune per relative change of momentum:

integration over gradients around ring, beta-function as “sensitivity factor”:

44see Wiedemann sec. 15.4.1 

→ “natural chromaticities” are always negative.



Sextupol Magnet

[PSI / SLS Sextupol]

Sextupoles are placed in a region of finite dispersion:
sort particles according to their energy deviation
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Chromaticity – Correction using Sextupoles
nominal focal length

quadrupol sextupol

∆p/p > 0

∆p/p = 0

∆p/p < 0
a sextupol acts like a position 
dependent quadrupol

positive 
dispersion
Dx > 0
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total chromaticity 
in a ring:

see Wiedemann 
sec. 15.4.2 



Caution with Sextupoles

• while sextupoles can correct chromatic focusing errors, they are 
nonlinear elements

• nonlinear elements drive resonances and reduce the dynamic 
aperture of a ring, which must be carefully optimized when 
designing a ring 

phase space 
portrait with 
sextupole kick

47



Next: Low Beta Insertion

• low Beta insertion
• another insertion in Appendix: dispersion suppressor
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Low Beta Insertion

concept sketch: using a 
quadrupole doublet it is 
possible to focus particles in 
the horizontal and vertical 
planes simultaneously through 
the interaction point

incoming trajectories, parallel 
to reference orbit, in x,y
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Low Beta Insertion

the most simple IR configuration
• doublet focusing
• large beta function in doublet 

→ aperture limitation for ring

50

see also Wiedemann 
sec. 10.2.4



Low Beta Insertion – Example of LHC 

LHC interaction region
with Low-Beta + D.S.
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another insertion: Dispersion Suppressor

52

on average D is always positive in a ring, however it can be suppressed 
by special insertions

in certain situations dispersion must be suppressed / be small, e.g. 
interaction region, undulators in SR light sources

?
matching 
section



Dispersion Suppressor (continued)
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one example approach to solve the problem:

D matching section of n
identical FODO cells:

in regular arc FODO cells 
with periodic dispersion:

solution without proof:

possible solution: 2 cells needed

deflection angle half of normal

phase advance 90 degree p. cell

θc and θs are bending 
angles in normal arc 
and matching section



Dispersion 
Supressor
Example
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2 normal 
FODO cells

2 FODO cells, half 
bending angle

1 FODO cell, 
no bend angle

dispersion 
suppressed

• works only for 
ϕcell=90deg

• disadvantage: 
varying bend angle

see also Wiedemann 
sec. 10.2.4



Next: Summary Linear Beam 
Dynamics
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What was discussed in Linear Dynamics II?

• Liouville theorem, phase space, emittance, beam distribution

• FODO cells, stability conditions, FODO with bending

• chromatic correction using sextupoles

• lattice insertions: dispersion suppressor, low beta insertion
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Appendix: Approximate Dispersion Function

constants of motion

homogeneous and particular solution

use:

new DE:

harmonic oscillator and driving term

(the known differential equation)
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Appendix: Solution by Fourier Expansion

expand driving term:

insertion exp(inθ ) in DE 
yields trajectory for ∆p/p:

driving term

large terms for

• n=0, as β3/2/ρ always positive, thus a0 large
• and Qx≈n (resonant term)
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Fourier Expansion of Dispersion (continued)

use only a0 as dominating term:

and:

thus:
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