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Transverse Dynamics ::
Beam Properties and Lattice Design

Laboratory for Particle Accelerator Physics, EPFL



Transverse Dynamics - continued

practical questions to be answered:

v" How to ensure bound motion of a particle beam?

v" What are conditions for stability?

v" Amplitude and frequency of particle oscillations?

 Statistical beam properties like beam width and angular spread?

 How to design magnet lattices (arrangements of dipoles and quads in a line)?

 What is the impact of field errors in bending and focusing magnets?



Recap: Stability Criterion — Eigenvalues of M

X
stable forn > o ? Mn( o )
in

- €T = -
fjec?mposmon of M M” , _ A)\T’m T B)\ng?
in eigenvectors: x ™

complex eigenvalues:  A\; = e ", Ay = e — A\ + Ao = 2cos(p) = Tr M

M_(a b),TrM—aer
c d

motion is stable if | Tr M| <2, which also means that p is real




Recap: Hills Equation of Motion

1 1A
.CU”+ (—2+k)$ — _—p
P P Po
y'—ky = 0 DE is valid for
e drift spaces,
e quadrupoles (k#0),
* combined function magnets (k#0, 1/p=0),
» off-momentum particles (Ap=0, first order)
y 1 Ap
'+ K(s)r = ———
p(s) po




Hill: Solution for periodic K K(s+C) = K(s)

e(s) = AVB(E) cos(io(s) — o), wl(s) = [ o

= )i, B
3 2

- q
— the beta function is a scaling factor for the amplitude of orbit
oscillations and their local wavelength

A, @, are constants of motion

mplitude [mm]
o -
mplitude [mm]
o -
§
v
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weak quads strong quads



Recap: The Betatron Frequency Q (tune of accelerator)

Tune = Number of Betatron Oscillations per Turn
1 ds (remember Q=1 for purely weak focusing)
Qo = o | . .
T ) Bu(s) the choice of tune is important to avoid
resonances

integer tune: resonant growth odd tune: kick averages out



Phase Space Ellipse

[observing a particle at one location in a ring]

v

x(s) = +/2J 5 cos(p)
2(s) = —1 | 22 (acos(p) + sin(p))

=®

x, x describe an ellipse in phase space
when @is varied

J = particle action (oscillation amplitude)

area = 21.J = w(yz® 4 2axz’ + B2'?)
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Next: Statistical Beam Properties

Liouville theorem
e emittance and distribution function

e consequences of conservation of emittance

=PrL



Liouvilles Theorem

the phase space density is conserved % =0

continuity equation of 6-dim phase space density - % + 66;‘ =
d 0 0
re-formulated: —w + —Ggr+ =—pr =0

dt — Oqy Ipi

dy 9 oM 0 OH

_|_ — p—
A dt — Oqi Opr,  Opr Oqu

p N a's 7

0

= 0 for Hamiltonian Systems

- \ j‘: The phase space density behaves

like an incompressible liquid.

q see also Wiedemann sec. 8.1.1 9



Beam Emittance

30 20 O© 0 0 20 30

see Wiedemann sec. 8.1.3

x

beam emittance as statistical property:

£p =\ <22 >< 22> — < g >2

two-dimensional Gaussian distribution:

1 2 2 / ’2
f(,2) = 5hexp (- 2r2geeoet )

2TE 1

projected Gaussian distribution:

@) = o= oxp (_269;%)
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Conservation of Emittance

Dx Py

~ ~
7 7

X X

with a given emittance a beam can be made small with large angular spread,
or can have small angular spread with a large size



Beam Walist (e.g. interaction point collider)

B*=1m, €=5nm

B*=4m, €=5nm
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Phase Space Ellipse after focusing

!/
xy =x5— xo/f x(s) = xys + xo
|
|
|
|
| I | |
| I | | | -
| S, X
|
|
|
|
diverging focusing conver, ging beam diverging
beam quadrupole beam waist beam
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Emittance and Twiss Matrix

beam moments are computed in a compact way
using the Twiss matrix:

. Bre —ap \ [ <x2*> <z’ >
S N <z’ > <2?>

)

if X _is known / has been measured, the emittance
is related as follows:

e, = \/det X,

see Wiedemann sec. 8.1.3
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Phase Space Ellipse - Parameters

reminder:
1+ a?
Y —
B
1 /

for upright ellipse:

area = mMe,

<zx' >=0, a, =0
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Action — Angle Variables

X

)

Jzs Pa

forward
transformation:

backward
transformation:

v
(A

A action J_ is
conserved
‘]x
P
ZUI
2J, = B’ + 20xx’ + vya®, tang, = —a — f—
x

2J,
B

r=+/2J,Bcos(p,), z’

(acos(pe) + sin(ge))
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Distribution in Action-Angle Variables

switch to action angle variables:

(5{:, xl) — (Jma ‘Pw)

from Gaussian distribution:

N 12 2 / 2
p(m,az') dr dy' — : exDp (_,6513 + 204513:13 + v )da:' Az’

to Exponential distribution:

N Iz
2TE L, o

the emittance is the average value of the action J,:

< J,>= /pr(Jw,gpm) dJ,.dp,

< Jp>=¢g,

see Wiedemann sec. 5.4.5 17




n(J} [normalized]

Collimated Proton Beam in x and J,

circulating beam is collimated, particles beyond J. removed, others not affected

0.8

0.6

0.4

0.2

N

same distribution projected on x (e.g. measurement with
wire scanner): particles beyond x. removed, but density

also lower in center

action/angle variables x/x‘ variables
collimated ——— [ collimated
not collimated 0.4 not collimated H
n £}
(]
N
= 03| .
* £
collimator o
at XC= 2.2 ers ] : 0.2 B n
X
C
| 0.1+~ —
| | I | 0 |
1 2 3 4 0 1 2 3 4

action J = 0.5 (x/Xrms)?
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Fractions of Beam in rms widths

From practical measurements (wire scan, beam screen) the projected rms
width of the beam is determined.
What fraction of beam is contained in n X oyys?

compute the beam fraction inside an ellipse
corresponding to nxo.:
n2

J(r =no,) = 5 €a

1 Brea 2w J note: This applies for a
2 / / exp | —— | dJ d¢ | two dimensional
Tex Jo 0 S

T Gaussian distribution.

T =

rms width n | beam fraction r_
1

39%
2 86%
3 99%

r=1—exp(—n?/2)




Remarks on Beam Distributions

Electrons

in a ring electrons radiate photons which continuously mixes particles
in phase space and generates an equilibrium Gaussian distribution

i.e. a large injected beam will shrink to equilibrium while a small beam
will grow

Protons, lons
“protons never forget” G.Voss

can have “strange” distributions since those depend on the history of
beam generation and acceleration; i.e. no damping mechanism

however: in practice often close to Gaussian distribution

20
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Next: FODO Lattices

FODO parameter space
FODO with bending magnets

21



Reminder: Quadrupole Doublet

AR uh

1+ L
M qoublet = ( 7 11)
f* f

ff==—>0 — Mubiet 1S @lways focusing



F O D O C | | F= fOCuSing D= defOCUSing F= focusing
e O = drift O = drift

1/2QF o e

FODO Period L

¢ 5 1—L—22 L1+ L
M( , ) oE(rh) ) L (1-£)
c’ S’ B

to determine 3 we use the equation from last lecture and set B.=f3,, a.,=0,,=0

o % —25C 52 5
0 J=| -¢¢ s +5C -85 0
Y7 e laser s )\ s



FODO Cell Parameters

we obtain for B* in the focusing quad A W
and (" in the defocusing:

1 +sin(w/2 V /_\
5:& — T . (:u/ ) ’
Sin I FODO Period L i
phase advance per cell: 3? - i
s 3 _
. L g 25 1 i
sin(u/2) = 17 i i
1 L _
05 _|
0 \ \ \
0 0.5 1 1.5
length

see Wiedemann sec. 10.1

N

N
~



FODO Cell Il

amplitude

1/2 OF

Qb

1/2QF

FODO Perios

d L

illustration:

particle trajectories of varying
phase and amplitude in a
FODO cell

Gaussian (projected) profile



FODO Cell: choice of phase advance

B* reaches minimum at x,,,=76.3deg
at this point the vacuum chamber
needs a minimal size

2 1

Sin(fiopt) = r\/g = "

Example LEP(CERN)
operating modes:

/1, [degrees]:
60/60, 90/60, 90/90, 102/90

(stronger foc. = smaller emittance)

B*/L, B/L

10

0.1}

Bt e

loptimp

40

60 80 100 120

phase advance [deg]

140
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Unequal F and D quadrupole strength

for uneven strength of the two quads we can compute a region of stability:

convenient variables (dimensionless):

L L
F=—>0 D=—>0
4fF 4fp

from Trace M condition:

cospuy=142D —2F —2DF

sin p/2=DF+F—-D=0...1

it follows this range of focusing strength for stable conditions:

horizontal : 0 < FF— D+ FD <1
vertical : 0 < D —-—F+ FD <1

27



Stable region for quad strength in a FODO cell

horizontal : 0 < FF— D+ FD <1
vertical : 0 < D - F+ FD <1

Hy = 1800\1

stable region
“necktie” diagram

/

0.75 - —

0.5 -

| / /’L.’L' — ].800

0.25 -

0 0.25 0.5 0.75 1
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Next: include bending magnets and
off-momentum particles into FODO



FODO Cell with Bending Magnets

FODO structure with bending magnets to form a ring
- the standard scheme for synchrotrons

’ |
_ example:
1.5 +

* 2 FODO cells
* p=55m
* separated function

E

>

\ \ \
15 20 25

length [m]

30



FODO Cell with Dispersion

dispersion function D(s) is a periodic function in FODO
cells with a maximum D* in a focusing quad and a
minimum D" in a defocusing quad

25 ‘ ‘ 2

horizontal
vertical
dispersion

20

|
=

10 -

B-function [m]

length [m]

see Wiedemann sec. 10.2.3

dispersion [m]



FODO Cell with Dispersion

x cC S D T
33, — Cl Sl Dl CUI
Ap/p ) 0 0 1 Ap/p /|,

using the previously introduced 3x3 matrix for transport through % FODO cell in
thin lens approximation we obtain two equations that are solved for D* and D"

0151 C S D COSO
o s 0 | = ¢ s D a8 T

0 O 1 0 0 1 half cell 0 0 1

0.~ L/p deflection

. 6.L1+ % sin(%) 0L 1- % Sin(%) angle per cell
DT = 1 o D= 1 5 — note the quadratic
sin”(5) sin”(3) (strong) dependence

of D on cell length L

32



Dispersion Functions vs Phase Advance

D- p/L2

B*/L, B/L D*p/L?

0.1 ¢

10

I
B+
B_
Dt m = = = = =
D = = = == o= =
\ -
» ]
W p
\‘\ g
3 / note the vertical
\ . .
SSs. scaling in graph:
Yo Tso . 1
~ SN ] p
. . o TE=ead D_7 B_
= j L2 " L
| | | | | | |
20 40 60 80 100 120 140

phase advance [deg]

— dispersion depends quadratically on the cell length L

— with stronger focusing (stronger quads, larger phase advance)
the dispersion function gets smaller for the same bending radius
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Dispersion Function in a Ring

the dispersion function at position s is calculated by integrating over
contributions from bending magnets (1/p # 0) around the ring:

D(s) - Sif(gjg?) § %)” cos ((t) — p(s) — Q)
F

5(3 sin(7Q) f s)cos(...) +sin(...))

D, D’ are periodic functions:

D(s+C) = D(s), D'(s+C) = D'(s)



Beam size with finite momentum spread

besides emittance also momentum spread may contribute to beam size and
angular spread, via dispersion function; when the beam momentum spread is d:

0<0

0>0

v

quadratic addition of transverse and
longitudinal contributions:

2 2 2 25172
0
1+ o? op?
J£0t2:a;2+032:6 5 +D'2p£2
0

at some locations the momentum contribution should be suppressed by
designing for D=0, D=0

examples:

interaction point in a collider where beams should be as small as possible
undulators/source magnets, where divergence of emitted radiation
should be small

35




Path Length Change with Momentum

for an off-momentum particle the path length changes; consider a particle on a
closed dispersion trajectory, i.e. no betatron oscillation: J=0, but Ap #0

Ap
zp(s) = D(s)—
Po
the change in circumference for this particle is: X
7

rp(s) / XD

AC:% ds ds' =ds |1+ —

p(s) p

we introduce the momentum compaction factor «,:

ég_aﬁia_ifD®$
C “p T CJ p(s)

see Wiedemann sec. 8.4.6 36



Smooth Approximation (reminder last lecture)

simplify:  Bave = (B(s)) = const

x(8) = A/ Bavg COS (58 - c,oo) , 2+ Kegz =0
avg

can be used to estimate important parameters:

1 1 d R
avg 2m 5, avg 5 avg

note: Q oc R, i.e. proportional to size
compare cyclotron: Q o« vy, independent of size!

37



Smooth Approximation — Dispersion, M.Compaction

D"+ K(s)D =

D | =

Doye =

simplifying D(s) = D,ye = const
assumptions: K(s) = 1/5§Vg
IBavg — R/Q
p=1n
< D> 1
e R -

38



Approximate Dispersion Function

" + K(s)x = 1 Ap (the known differential equation)
p(s) p

e expanding right side in Fourier series

e solving DE for each series term

* keeping only first term to approximate x(s)

» deducing D(s) from x(s) = D(s) Ap/p

e see Appendix and Courant, Snyder reference

Du(s) ~ 4| 2 \/Ba(s)

x

— Approximation can be used to estimate emittance in electron rings.

39



Approximate Dispersion Function :: Example

R TN exact (black) and approximate
Dy(s) ~ Q—i VB (s) dispersion function/

I 5

100
80

example Ring:
* protons 500GeV, C=6270m

60

B-function [m]
dispersion [m]

* 60deg / cell lattice, 110 cells 40 -
* p=840m, R=998m
20 11
Bety mm— Bety mmm= Dy exact w=== D, appr
0 I \ I \ \ 0
0 20 40 60 80 100 120

length [m]



Deriving approximate Momentum Compaction

change of path length through dispersion trajectory x(s):

C 27 )
AC:/ Tas=0, [ P Tap
o P 0 P

using series expansion x(8), 32/p, and retaining only n=0 term we obtain:
p

x 2 .2 0
p n=0 Y% n
ith th i I I~ R
with the previous result apg ~ @
€T
AC/C 1
O = ~ —

Ap/p Q2

41
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Next: Chromatic Focusing Error

Focusing Error - What happens?
Chromaticity
Correction using Sextupole Magnets

42



Chromatic Errors

a spread of momentum leads to chromatic aberrations, similarly to
aberrations of optical lenses:

nominal focal length

Ap/p<0 Ap/p=0 Ap/p>0

43



Chromaticity

particles with momentum deviation are focused differently, leading to a
shift of the betatron frequency

K= gx— %99 _ g

p p? p

Chromaticity € = change of tune per relative change of momentum:

AQ =2
Po

integration over gradients around ring, beta-function as “sensitivity factor”:

1
= —— ¢ K(s s)ds
&=~  K(5)5.0)
— “natural chromaticities” are always negative.

see Wiedemann sec. 15.4.1



Sextupol Magnet

Sextupoles are placed in a region of finite dispersion: Ap
xqg = D(s)  —

sort particles according to their energy deviation D

[PSI / SLS Sextupol]

45



Chromaticity — Correction using Sextupoles

| nominal focal length -
Ap/p>0
A
positive
dispersion Ap/p =0 -
D,>0 - — == — -
Ap/p<0
a sextupol acts like a position
dependent quadrupol
guadrupol sextupol P 9 P
|
‘l see Wiedemann
sec. 15.4.2

total chromaticity Eiop = i j{(m(S)D(S) _ K(S))ﬁm(g)ds

in a ring: 4

46



Caution with Sextupoles

* while sextupoles can correct chromatic focusing errors, they are
nonlinear elements

* nonlinear elements drive resonances and reduce the dynamic
aperture of a ring, which must be carefully optimized when
designing a ring

0.5 -

Xp
o

phase space
| portrait with
4 ‘ . sextupole kick

-0.5 -
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Next: Low Beta Insertion

low Beta insertion

* anotherinsertion in Appendix: dispersion suppressor

48



Low Beta Insertion

concept sketch: using a
quadrupole doublet it is
possible to focus particles in
the horizontal and vertical
planes simultaneously through
the interaction point

incoming trajectories, parallel
to reference orbit, in x,y

49



Low Beta Insertion

B. By

the most simple IR configuration

* doublet focusing

* large beta function in doublet
— aperture limitation for ring

05 |

see also Wiedemann
sec. 10.2.4

—
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Low Beta Insertion — Example of LHC

5000 LHC V6.500 LowBeta LHCB1 IR2 Crossing Bumps(IP1=100% IP5=100% IP2=100% IP8=100%) MAD-X 3.03.25 20/10/ 575
—_ . T T T T T T T T T T T T T T T T T T T .
1S
:l:L ﬁx Bl Ql r
~ : ; : - 2.50
£ 4500. - : |
= L 225
4000. I
= 2.00
3500. L 1.75
3000. - 1.50
= 1.25
. . . 2500.
LHC interaction region _ - 1.00
with Low-Beta + D.S. 2000. o5
1500. — 0.50
— 0.25
1000. L
— 0.0
500. I
- -0.25
0~0 Ll Ll Ll T T T L T Ll _0~50
2786. 3004. 3223. 3442, 3660. 3879.

Momentum offset = 0.00 %
s (m)
51
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another insertion: Dispersion Suppressor

B, Nx10 [m]

25

20

15

10 —

5

0

on average D is always positive in a ring, however it can be suppressed

by special insertions

in certain situations dispersion must be suppressed / be small, e.g.
interaction region, undulators in SR light sources

?

[
matching

/VVVVVVVVVK FAVAY

JVVVVVVVVV\

0 20 40 80 w 120 140
length [m]

D=0, D=0

52



Dispersion Suppressor (continued)

one example approach to solve the problem:

in regular arc FODO cells
with periodic dispersion:

D matching section of n
identical FODO cells:

solution without proof:

possible solution:

D, D,
p. | =Mm.| D
1 1
D, 0
p. | =m"| o
1 1

20 sin” (npe/2) = 0 6. and @, are bending
angles in normal arc

sin(npu.) =0
(nc) and matching section
n =2 <— 2 cells needed

e = 90deg <— phase advance 90 degree p. cell

1
O, = —f. <+— deflection angle half of normal

- =3



horizonta

Dispersion

(m]

[m]

B-fi

Q=90deg

works only for " suppressed

e disadvantage:
varying bend angle

Supressor
Example
. J5 U'U' | dispersion

1 FODO cell,

2 FODO cells, half
no bend angle

bending angle

2 normal
FODO cells

see also Wiedemann
sec. 10.2.4 L In
0

54
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Next: Summary Linear Beam
Dynamics



What was discussed in Linear Dynamics II?

* Liouville theorem, phase space, emittance, beam distribution
* FODO cells, stability conditions, FODO with bending
* chromatic correction using sextupoles

» |attice insertions: dispersion suppressor, low beta insertion



Appendix: Approximate Dispersion Function

1 A
z' + K(s)r = — =P (the known differential equation)
p(s) p
constants of motion
1 b A
x(s) = \/2J 3Bz cos(pr — o) + Dy—
\ )\ P,
Y Y
homogeneous and particular solution
1 1 [° ds
use: I(s)=2(0)8z, 0 = —
() () x Q:Jc 0 6:1:(3/)
%
new DE: Z”+Qizz iﬁ_x%
pP D
\ J
Y Y

harmonic oscillator and driving term



Appendix: Solution by Fourier Expansion

3
2 A
7y = Qiﬁ—x—p +—— driving term
P P
expand driving term: 2= Z a,em™.  a, =— 22 e~ 90
P n=0 A 0 p
insertion exp(in@) in DE 1 A a ,
yields trajectory for Ap/p: z(0) = 62 i—p Z QQ—nQeme
p x — N

large terms for

« n=0, as B3?/p always positive, thus a, large
* and Q&n (resonant term)



Fourier Expansion of Dispersion (continued)

use only a, as dominating term:

A 1 Ap
x:D:I:_pNa'OBx_—)D NG/OB;U
p p

an

1 27‘(’ 1 C 1 )
ag = L [TTBE minogy _ B2 —ind g

2m Jo P 21Qz Jo P

1 < 1 R

= — 5§> use : [, ~ — = const
Qx magnets Qm
thus:
R
D, (s) ~ o3 B (s)
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