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=Prl Ohmic heating
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The need for additional plasma heating
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Central lon Temperature (MK)

, Q~10
100
3rd Generation
~1990-2000
L 2nd Generation Q = fusion power /input
~1980
1st Generation power
Tok k ~1970 . .
c%nirgst Q > 5: plasma heating is
e dominated by fusion by-
1 products: burning plasma
107 10 10%° 1020 1021 1022

Fusion Triple Product - density (particles/m3) x confinement time (s) x Temperature (keV)



=Pr-L ITER

Demonstration of the scientific and technological
feasibility of fusion energy for peaceful purposes

CLTR

Burning plasma

T

0 >10
Piision= 900MW
for ~500s :
o 'R ~6m: B~ 5T; lyasma~ 15MA
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NB Injector
NBI 33 MW N/A
ICRH 20 MW 40-55 MHz
LH 20 MW (second stage) 5 GHz
ECRH 67 MW 170 GHz

Lower Hybrid
Launcher




=PrL ITER plasma sequence

Plasma Initiation
Current ‘ ‘
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Heating by neutral beam injection
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=PFL  Basic idea of Neutral Beam Heating

N

Energetic hydrogen

Neutral Beam
Injection
Heating

Energetic 1ons could be injected into plasma, to give energy to
colder plasma particles, but B-field would prevent energetic ions
penetration

Idea: use neutral particles at high energy to get into the plasma,
then let them be 1onized by the plasma itself, so that they become
= suss @ Deam of energetic ions
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Charge Exchange
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EPFL Physical processes occurring during beam
penetration in plasma, leading to ionization

Charge exchange: Hy + H;[ — H‘I: +H,
Ionization by ions: Hy + HE,L HJhr + HE,L + e~
Ionization by electrons: Hy +e~ — H: + 2e~

|

Energy of hydrogen beam atoms

_19 10 keV 100 keV
10 [ T i T T T T T T7TTT] T BB ]
N Charge ]
= Exchange (o.,) -
Cross- N o |
section ~ Ionization
(m®) by ions (o;)
10®
Electron
SRR LI %, |
fonization ~ Fig.5.3.1 Cross-sections for charge
~_ 7 ~ exchange and ionization by plasma ions
NG /7! 7] (protons, deuterons, or tritons) and the
~ i’e 5 effective cross-section (o v, ) /v, for
~ ionization by electrons, as functions of
B Swiss 1o | Lol 1 T B the peutral beam energy. The cross-
Plasma 10 keV 100 keV 1 Mey sections for a hydrogen beam are the

same as those for a deuterium beam

Center Energy of deuterium beam atoms having twice the energy.



cPrFL Evolution of beam intensity

Neutral
beam
2 dl < 0.0, >
[ —:ﬂp(ﬂ'ch—l—ﬂi—F = )I
g e ™ : dz Ub
£ A

Absorption length —>

B Swiss A= penetratlon distance
Plasma

Center



=PFL  Beam penetration in a 1022 m= plasma

1.U
Neutral
0.8 fraction
0.6 —
0.4 —
Fig. 5.5.3 Graphs showing the energy )
dependence of (i) the equilibrium neutral 0.2 b— Penetration e’
fraction in a deuterium beam and (ii) the ; distance (m)
penetration distance of the neutrals in a
plasma of density n=10*m™>. The change
of behaviour of the penetration distance at 0 I | B | l
around 100keV indicates the transition from 10 20 40 60 80 100 200 300
charge exchange dominance to ionization
dominance. Beam energy (keV)

For large plasma (>1m) we need high beam energies (>300keV)
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CPEL Neutral Beam Injector
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cPrL NBI: neutralisation efficiency

Efficiency for positive ions goes down for high energies

Negative ion neutralisation easier due to low affinity
(0.75eV) of additional electron: H -+ H, =H + H, + e

For large, dense plasmas we need negative ion beams
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=PrL NBI In JET

Radial and tangential injection; 2x8 injectors 80keV
(H*), 130keV (D*) — up to 34MW
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=PrL

NBI In JET

Calori t Deflection
alorimerer electromagnet

To JET

Plas7

Neutral Beam

Eight
lon Sources

Beam divergence must be low to avoid damaging
beam duct and outgassing from beam-wall
interactions, which would block beam propagation

Porcelain
insulators and seals
Neutraliser gas '

pipelines
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=PFL  For ITER we need negative ion beams
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Figure 15.5 Neutralization fraction vs. beam energy for positive and negative ion beams. Also plotted
is the penetration depth for nyy = 1.5. (Wesson, J. (2004). Tokamaks, third edition. Oxford: Clarendon
Press).
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=PFL \which species will be heated by the beam?

2Epeam 1
TSD

Where: P=-

Collisional Theory: the energy transfer from fast ions (originating from a beam) to the plasma particles (electrons and ions) results in plasma
* P: Power transferred to the plasma.
I: Current of the ion beam.

heating. This process is governed by collisional interactions.
3/2
+ ( Ecrit ) ‘
Epeam
*  E}eam : Energy of the fast ions in the beam.
*  Tgp : Slowing down time, the time it takes for the fast ions to lose energy through collisions.
* E. : Critical energy at which the heating of electrons and ions is balanced.

Electron &4
heating lon heating
fraction fraction
The critical energy E ;¢ = 15T, [Mbe“m y A ] 15T, is the energy at
which the heating of the electrons is equlvalent to that of the ions.
*  When Epenry » E it - heating mainly of the electrons (often 14 0

encountered in large devices) /
0.5
*  When Epyeq K Epit - heating mainly of the ions (current plasma >
devices) 1
0

M Swiss
Plasma
Center

> Ebeam"‘Te




=PrL ITER neutral beams for H&CD, diagnostic

Heating and current drive: 2 tangential D- (1MeV, 33MW,3600s)
Charge exchange diagnostic: 1 radial H- (100keV, 3MW, 400s)
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=PrL |ITER neutral beams for H&CD, diagnostic
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cPrL ITER neutral beams for H&CD, diagnostic

— Multi-Aperture Multi-Grid Accelerator (200 kV steps) H .
— RF driven negative hydrogen ion source —

calorimeter
Gate valve Residual

lon Dump
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MaMuG accelerator
RF ion source

B Swiss Large current density (~300A/m?), high uniformity (£=10%) over ~2m?
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cPrL ITER neutral beams for H&CD, diagnostic

— Multi-Aperture Multi-Grid Accelerator (200 kV steps) H
— REF driven negative hydrogen ion source

f ( g =
H O OH *
\ bellows S g e
B e calorimete —— o
esidua .
.Y, lon Dump neutralise

MaMuG accelerator
RF ion source

Negative ions are produced on Cs-adsorbed surfaces with low work function
Atoms and ions interact with a surface, capturing electrons to form H-
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cPrL ITER neutral beams for H&CD, diagnostic

The Neutral Beam Test Facility at Padua
SPIDER — full size ITER beam source
MITICA — prototype ITER beamline

73 .
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cPrL ITER neutral beams for H&CD, diagnostic

ITER Neutral Beam
Test Facility - e

a tour of the site -
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cPrL |TER neutral beams for H&CD, dlagnostlc
SPIDER H- beam RF-source
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cPrL ITER neutral beams for H&CD, diagnostic
MITICA
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=Pl Energetic ions from additional heating

Burning plasma regime is reached using external heating and

current drive
Electron cyclotron heating
lon cyclotron heatin

/\’ ~Neutral beam heating

~~

Based on creation of ~MeV
lons, then thermalised by
collisions
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cPrL Energetic ions from Neutral Beam Injection

lons at ~100keV In present devices, ~1MeV In ITER

Injection geometry determines initial orbits
If tangential, mostly passing orbits, collisions scatter into trapped

—_—

Mattia Albergante
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=PrL

Heating by waves
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=Pl Heating by waves

Reminder of waves dispersion relation (T ~ 0)
Perpendicular to B,

Transmission Line

Radio Frequency /
(RF) Heating

Antenna

Electromagnetic

[ .'l"”-

P compressiomal Alfvén waves
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=PrL :
Heating by waves

If T >> 0 (hot plasma - kinetic model needed)

Wave-particle resonances occurat w-k-v=nQ_ (n=0, 1, 2,...)

lons or electrons feel in their reference frame a constant force when the
E-field is in phase with their motion

Cyclotron resonances also for waves that do not propagate along B,

Finite k, and relativistic effects, for electrons, (3. .=eB,/m(v), make
the resonance velocity dependent, i.e. of finite width, effective for the
energy exchange between particles and waves

a5l

wave

M Swiss w—k-’U:TLQC
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Electron Cyclotron Resonance Heating
ECRH
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=PrL ECRH — Ordinary mode (E 1l By)

O-mode heating possible
for n < Ncutof f

"R

fee resonance
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=PFL ECRH - eXtraordinary mode (E LB,)

1%t harmonic

UH
resonance |

\ \\ wR,L cut-off
(depends onB, and n)

fee resonance

can’t reach any resonance before cut-off
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cPrL  ECRH - eXtraordinary mode (EL By)

1%t harmonic 2™ harmonic
| idea: go for higher domain |

UH UH
resonance resonance

/ /
f ~ fce
o i \\\ . . .
Wy cut-off fe resonance ™\ (similar idea
I | cut-off

for 3 fee)
fee resonance I

2 resonance
can’t reach any resonance before cut-off fee
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cPrL  ECRH - eXtraordinary mode (E LB,)

2™ harmonic

1** harmonic idea: go for higher domain

UH

~~ wave U H
resonance

resonance

~

—_— ——
o fee
\ ] (similar idea
Wy, cut-off fe resonance ) for 3 fee)
Jee resonance | cut-off |

can’t reach any resonance before cut-off I 2 feresonance

reduced absorption

Note: Pb with going to higher frequency and higher harmonics < o _
availability of high power sources
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=PFL ECRH — Accessibility

wy %
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Cut-offs:

O—mode: X =1
X—mode: ¥ =(1-X)

Resonances:
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w=I ¥ =-f];[1,|].25,---}
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& E T

el

Figure 8.3: Clemmow-Mullaby-Allis diagram for X and O mode. Wave trajectories are shown for 1% and 2
harmonse mpection and for different core plasma densities. Note that for low field side X1 injechion

o SY;ISSI%E] the wewve frst encounters a cutoff. X2 may encounter a cutolff or resonance, depending on the density.
Center 0 mode has a higher densmity hmit but will eventually be cut off at the plhsma frequency.



=PFL ECRH - Possible microwave sources
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cPrFL ECRH — Accessibility

% 02
X=—B(xn) ¥=—t(x8)

Cut-offs:

O—mode: X =1
X—mode: ¥ =(1-X)

Resonances:

w=ugyg ¥=1-X
w=Il ¥= -&[I,U.ZE,---}I

F 3

TCV (f,=41GHz)

can use n=2 or n=3
X2 (83GHz) or X3 (118GHz)

ITER (f,=170GH?z)

must use n=1
O1 (170 GHz)

Figure 0.3: Clemmow-Mullaby-Allis diagram for X and O mode. Wave trajectories are shown for 1% and 2
harmonse mpection and for different core plasma densities. Note that for low field sude X1 injechon
the weve frst encounters a cutoff. X2 may enconnter a cutoff or resonance, depending on the density.
0 mode has a higher density hmit but wall eventually be cut off at the plhsma frequency.
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=PFL  ECRH - Microwave source: gyrotron

Principle based on Cyclotron Resonance Maser instability
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Three “ingredients”:

Magnetic field
Guides the e-
Determines the frequency
Q, ©
W =—— Q, Cyclotron frequency

Yooy

Oscillation frequency

Relativistic factor

Annular electron beam
Source of free energy

Resonant cavity

Cylinder with a smoothly varying
Cross-section

Resonant interaction between
electrons and cavity mode (TE,, ,)



=PrL The gyrotron

Collector

Electron Beam

Dimple wall
mode converter (+30kV)

Cavity (+30kV)

Beam duct (+30kV) Collector sweeping coils

Output window (CVD diamond)

Superconducting magnet coils Output Beam

Anode (+30kV)

Cathode (-50kV)
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=PFL The gyrotron

Gyrotron W7 - X |

_-collector @ ground pot.

_AC &DC
= mormalconducting colls

3¢ mirrer & ground pot..

/GVD - diamond window
/gaussian AF - beam

= ot B 290 mirror @ +30 kY

_~resonator @ +30 kY

" superconducting colls

- glectron gun @ 50 kV
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=PFL A modern ECRH system: TCV

New X3 Top Launcher
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=Pl ECRH for instability control

M Swiss



=PrL

ECRH for instability control
Proof of principle on TCV




=PrL ECRH system on ITER

Gyrotrons

80 gyrotrons
1MW each
170GHz

HVPS

Oj
IA
P\

Equatorial = //
Launcher » ‘g J, N
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O/ %
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=PFL | TER upper launcher (Swiss contribution)

Front steering launcher of 170 GHz microwaves
Goal: heat locally and stabilize plasma instabilities

T,

=
: N

4.5m, 50 tons
8 x 2MW beams at 170GHz

] el [T T T 11 >
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=PrL e already work on EC systems for DEMO

108 gyrotrons (216MW), 7200s

Break down and plasma ramp-up
Bulk heating and NTM control (core)
Radiative instability control (edge)

Plasma ramp-down

SPC contribution - launcher

Steering mirror for
q = 3/2 surface NTM control

[ o - §l
: %“ g}uft Politecnico ﬁ
= | = gﬁ------ii.‘-' di Torino
= I 0 oo L.._\_':"_:__._d‘ Karlsruhe Instituts of Technology
Eflvid National . N
wet KamoStarsguad and Eapodisteian , wnesit, THALES
Mavsmotipo University of TL SCIA  Building a future we can all trust
Abruin Athens

M Swiss 2 x 3 waveguides for f
2 x 8 beams for f_\\ .
Elgr?g? NTM control plasma heating @ ) EU RO fUS’On

=7



=PrL

lon Cyclotron Resonance Heating
ICRH
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=PrL

ICRH

Perpendicular wave dispersion relation

Resonance
zone

Fast wave

Resonance
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e e e e e
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' bower bybid
i g
e —
+~" compressiceal Alfvén waves
Tk

We rely on the fast wave, i.e. compressional Alfvén (fast

m swss IMAgnetosonic) wave, to bring energy to antenna to plasma
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=PFL  |CcRH - Antenna excitation of fast wave

Fast wave ’, |

Strap
antenna
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=Pk ICRH - Main principles

Tokamak plasmas contain more than one 1on species:

dispersion relation i1s more complicated and allows different
schemes for wave absorption

1%t harmonic of a minority ion (e.g. ® = Q, OFr ® = Qyes)
2"d harmonic of main ion species (e.g. in 50:50 DT plasmas o= 2Q_)

lon-ion hybrid resonance (e.g. in 50:50 DT plasmas Q. < ® < Q)
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=PrL

ICRH —

Antenna with
ceramic support Double vacuum

JET system

feed through Concrete Wall
4x2MW ICRH
il 0O Generators
JET Power supplies
Vacuum Interspace
Vessel pumping system - i
(getter)
JGO4.93-5¢
<+— Test load
transmission lines
B Swiss .
Soema {0 EUROfusion

Center =



=PrL

ICRH - ITER antenna

40 — 55MHz, 20MW, 3600s, 8 coaxial lines, antenna on port-plug

Courtesy of ITER Organisation
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=PrlL |CRH modeling

Fast wave has large vacuum A — cannot be described In
simple Fourier formalism

Ex. of wave field from full wave calculation of 2nd

harmonic TICRH In ITER (53MHz, 20MW)
Courtesy of P.Bonoli, E.F.Jaeger et al., PoP 15, 072513 (2008)
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=Pl Energetic ions from additional heating

Burning plasma regime is reached using external heating and
current drive
_ Electron cyclotron heating
~~  lon cyclotron heating :\

~
-

T T Nedtrat ream heating

Transmission Line

Radio Frequency /
(RF) Heating

Ohmic Heating

Electric Antenna

Current :
Electromagnetic
Waves

'

Based on creation of ~MeV
lons, then thermalised by

collisions
Energetic hydrogen
atoms
Neutral Beam
Injection
Heating
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cPFL ICRH and energetic ions

Wave fields at ®~Q; give enegy to perpendicular motion
of minority ions
Strongly anisotropic distribution function: mostly trapped orbits
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=P~L  The Lower Hybrid wave — current drive

Wave-particle

s

[
-r. 4 compressional Alfvén waves

JET

f , ~2.45GHz

ITER

f ,~ 5GHz

resonance
fLH - k /V/ZTC e N
~ 1/2 Wik ;

1'3Te [keV] /7\‘| | [cm] w,
[GHZz] |
Electrostatic waves .-
(6B~0)

Particle Acceleration

- g}iviss Wave Propagation

Center
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. Number of
Particles
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=PFL The Lower Hybrid system in JET

Concrete Test Loads
Wall
Vacuum Windows \ .y
JET ; ‘ /e
Vacuum
Vessel
LHCD 3
Antenna :
Circulators
Wave Generators
(Klystrons)
TMW

Main Waveguide
Transmission Line

" r=ra  LH waves are electrostatic: need antenna in the plasma

Center



PFL  The Lower Hybrid antenna in JET

\“\\\\N\\\\\\‘ \ AR AR \ A\ <

To launch propagating wave for CD, needs
well defined spectrum - phasing of many
waveguides ( “grill’)

To couple to plasma needs proximity

-ﬁ Interaction between antenna and plasma
Wave must reach core where CD is of interest

\\ \\;\i.:'

=N

: .l\ b . .
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cPrL The LH system for ITER

Frequency 5GHz, 20MW will be installed for
second stage of heating upgrades
Mostly for off-axis current drive
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cPrFL ITER Heating systems
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NB Injector

NBI 33 MW N/A

ICRH 20 MW 40-55 MHz
LH 20 MW (second stage) 5 GHz
ECRH 67 MW 170 GHz

different methods ?

antenna Ryiscussion: pros and cons of

Lower Hybrid
Launcher
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