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» Energy distribution of neutrons in a thermal reactor
» Study of an elastic collision

« Slowing down equations

» Fermi age theory



NEUTRON SLOWING DOWN P
||
. i

o Till now, we have discussed the spatial behaviour of monoenergetic neutrons with
appropriately averaged cross-sections. ..

'

» Fission neutrons have E~2 MeV. Successive collisions with nuclei result in neutron energy
losses and reduction of the neutron energy by several orders of magnitude
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» Most important slowing-down mechanism: elastic in, out
scattering by moderator nuclei o neutron — lab: v;, v,
; * *
» Inelastic scattering also plays a role, but only for fast CoM: v, v,
neutrons (E >1 MeV) . Nucleus — lab: V;, V,
CoM: V*, V*
» Laboratory system: nucleus A is at rest. 2 angles needed _
) . x—lab: U
to describe the collision
CoM: U*
» Center of mass system: center of mass is at rest. 1 angle
only.
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ELASTIC COLLISION |-
CONSERVATION OF MOMENTUM h

- CoMisatrest mv; + MV =0 = v + AV =0
i(’t),;—U)—AUZO

in, out

e neutron — lab: wv;, v,

U;
:>U:A+1 CoM : v}, v}
. oy T — Av; ‘Nucleus — lab: Vi, V,
v; x—lab: U
. Fornucleus: V;* = -U = A1 CoM : T
O .
A=M/p
7 7
Vo 'U;
N6 \
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ELASTIC COLLISION =
, CONSERVATION OF ENERGY I-

Av;
Y=, —U = ke
’U,L v A+1

In CoM:; U;‘z -+ AV,?;"‘2 = U(’;z + AVO*2

*

Finally v =wv, and V"=V

Laboratory system

From conservation of momentum: v; = —

The velocities remain the same in the CoM (only the direction changes)

U.
V¥=_U=-—"
¢ A+1
Conservation of energy
AV and v = —AV)
!
7
v: o

|'L

B Av; : —
A—|— 1 Vo \[ — A_|_ 1

Center-of-mass system



FRACTIONAL ENERGY: LOSSIINFANFEFAS L =
COLLISION .— .—

» Law of cosines: V.2 = v{‘z + U? + 2v;Ucos(67)

» Fractional energy loss in a single elastic collision in laboratory:

Ei—Ey_, v°2—1 A2+2Ac059*+1_(1 9*)1—a
E, O v2 A+nz ™ 2
A-1\°
where — | ———
A+1
7 rU.
Vo 'v;

) - U0V v
v Av; —v;
(o) l'. —_— V* ' — 1
Laboratory system Center-of-mass system



FRACTIONAL ENERGY: LOSSTINFANFEFASTIC = =
.

» Law of cosines: V.2 = vfz + U? + 2v;Ucos(67)

» Fractional energy loss in a single elastic collision in laboratory:

46 _ Ei—E, _ voz_l A2+2Ac059*+1_(1 0*)1—04
E, E, = vZ a+nz - 2
A-1\
where o =|——
A+1
1.0 e
0.8 Or (useful later) :
0.6 Eo=v02=A2+2ACOSH*+1
A E;  v? (4 + 1)




FRACTIONAL ENERGY: LOSSINFANFEFAS I =
COLLISION .— .—

Fractional energy loss:

2E _ 09L=%  where o= A—-1\°
g, )T *Tl\ar1

- Energy loss in a single elastic collision is proportional to scattering angle A
» When 0* = 0 energy loss is minimum:AE = 0

» When 0* = w energy loss is maximum: AE/g, =1 —a = E, = akF;

» Maximum fractional energy loss in a single elastic collisionis 1 —a £
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FRACTIONAL ENERGY: LOSSHNFANIEFAS [t = =
COLLISION - "
‘light’ notation: (Ei, E,) <= (E,E’)

» Probability distribution function P, (F — E'):
P, (E — E")dE — probability that a neutron with the laboratory energy E WI|| have after

collision an energy between E” and E’+ dE'. 10
0.8t
» In the majority of cases, scattering is isotropic in CoM system " 0.6
3=
0.4}
» Using as variable n = cos 0%, no. of n’s scattered 0ok
between [, u + dp] is o< dp 0.0

1.0 —05 00 05 1.0

« 0* € [0, ] = p € [—1,1] then the max. width: Au=2 = fraction betn. [u, 1t ¥ dpulis  du/z

» Differentiating £ :A2+2A,u+1 _ dE’ — 24 du
E (A+1)2 E (A+1)2

d A+1)2dE’ dE’ A—1\"
= u—(_i_) = Wherea:(—)

2  4A E E(l-a)’ A+1
» Thus, probability for a neutron to have Pi(E— E)
an energy in [E’, E’+dE’]:
1
1T e
— E<FE <FE E(1 -
P(E-E)={ Edl-a) ““°%° e
0, 0 <FE <aF

: -y
oF E 11



FRACTIONAL ENERGY: LOSSINFANFEFAS I =
COLLISION I- I-

» Thus, probability for a neutron to have
an energy in [E’, E’+dE’] :
1

. WE<E<E
P(E—E)={ EQl—a) 7% °
0, 0 <FE <aFE

- Probability distribution function P,(E — E’'):
P,(E — E")dE’— probability that a neutron with the laboratory energy E will have after
collision, an energy below E".

o E-al B m<E
PQ(E — E,) = / Pl(E — E”)dE” = E(l — Oé)j “
22 0, otherwise
« Py(E—E)Y=1for E=F P(E = EY), |
That E’ lies between E and oE is certain, Py(E — E)

P2 decreases linearly 1
E(l1—a)

12
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For the energy band [E, EE + dE], the steady state neutron balance equation is:
V- (JdE) + Lo (¢ dE) = QdE

() dF is the total sources between [E, E + dE]

— “True” (fission, isotopic sources,... ), as well as those resulting from slowing down
(neutrons of energy > E are scattered into the band [E, E + dE])

Considering the n’s in[E’, ' + dE’], scattering rate is
AR, = %, (E")[6(7, E') dE']

No. scattered with an energy below E is: P2(E’ — E) [E5(E’) ¢(7, E') dE']

Total no. scattered below E at 7 q(7, E) =/ Py(E' — E)[X4(E") ¢(7, E') dE]
E

— Slowing-down source [cm?3s]

13



SLOWING DOWN EQUATION: I: =
| cPrL

Assuming a single scattering nucleus

E' —aF )
E
. With Py(E — E) E( o o< Bi<
otherwise
E/a /
— okl
(X E’ r B dE’ 1

Difference [¢(7, E + dE) — q(7, E)] gives slowing-down source in band [E, E + d E]

Thus, neutron balance equation:

V- (JG E)E) + 34(E) &, E) dE = [q(F,E + dE) — q(F, E)] + Q;(F, E)dE

d
V- (JG E)) +2a(B) 6@, E) = ==, E) + Q;(F.E) (2

Fundamental Slowing-down Equations

14



SLOWING DOWN EQUATIONS - P F L

- Considering Eq. (1)

o B o
q(F,E)zf E—ol s 5 o(r. B dE

g (1—-a)F
dg [T SJ(ENGFE) ., 1[E—aFE s
> ), (-ap ¥ —|—a_(1_Q)E,ZS(E)gb(r,E)_E,:E/a
[ E — oF' -
-1 Yo (E') ¢(F, E'
_(1 _ Q)E’ ( ) ¢(T, )- .
0q E/a S.(E') ¢(7, E') , )
- OF B (1—a)E d (E) (7, FE)
Math break
d o N b(t) df(z,t) db(t) da(?)
di " f(z,t)dz = /a(t) T da + f(b(t),t) T f(a(t),t) E )




SLOWING DON QUATION: EP::L

» Considering Eq. (2)

Efa ! r E’
76, B) + 2a(B) 4G ) = | EEDOTE) (o 5 () 6G ) + 0, E)

5 (1—a)E’
» And introducing the Fick’s law

*las (BN & E'
7 DETOE D] - (2a(B) + LB o) + [ AP
E

» ... Diffusion Equation for the band [E, E + dE] — yields the energy dependent scalar ¢(7, E)
flux

16



GENERAL FORM WITH MUETIPEEFSCARIERING |: =
NUCLEI | I-

 Inthe more general case of a mixture of k nuclei, each with a nuclide concentration N,

» The slowing down source is the combination of the slowing down source for each separate nucleus

/ak E — ak , , ,
(ORD) [ ok Mo e ()

» And finally for the balance equation:

leakage term

*lax Nyo (ENG(E)
7B+ R @600 =) [T S A QG O
3%
total collision term scattering source Fission source

+ NB: 2,(E)= N,o,(E")

17



SLOWING DOWN EQUATION: SivpLiFicaTions I P ™ L

In developing the slowing-down theory, it is interesting to consider an academic case:
» infinite homogeneous hydrogenous medium (no dependence on position)
» Nno absorption

» Steady state problem

VB + S ETO B) = o (7 E) + QU )

— e E—al' / — 1/ /
q('r,E):/E i DB (7 )

18



NON-ABSORBING MEDIUM |= |-

» Very simple neutron balance equation: % +Q(E) =0

In general, Q is the fission-source density (fission spectrum)

0.9
0.8}
07}

T 0.6] \

; \

» Integrating = 0.5 \

o0 = 0.4f \\
/ / 0.3}

a(oc) ~a(E) + [ QUENAE =0 21 a Qs
E 8§ (// \ E'm,in
. 10719 107 107% 1077 10°° 10 107* 107° 1072 107! 10 10!
- gim a(F) =0 Enerzy [MeV]

o0
— for E < Ein, / Q(E')dE' = Qs total fission source
E

= for £ < Epin, ¢(E) =Qy constant slowing down source

» In absence of absorption (Xa = 0) and of leakage (f = (), the number of n’s crossing each
energy is Qs

— No accumulation of n’s at energy E

19



SLOWING DOWN EQUATIONS = =
4 NEUTRON FLUX IN HYDROGEN |- l-

E/oc — !
- What we really want is solve for ¢(F) : q(E) = f % Y (ENP(ENAE'
. _

» First in hydrogen while neglecting absorption

» Taking the derivative with respect to E of the second fundamental slowing down equation (see

slide 16):
0 o X (Er ¢) Er P
aqE fE ( E)l ( ) dE ZS(E)d)(E) 0

» Assuming that X (E) is constant (good approximation < 10keV) :

[0.0) E’
oe) = [ T2 am

dp(E) _ p(E)

- Differentiating both sides with respect to E: T =

» Thus, ¢(E) = %With C= Qf/zs

— the slowing-down spectrum in hydrogen neglecting absorption is ~ 1/ E

» What about in Graphite, e.g. for A> 1? 20



WN EQUATIONS |-
NEUTRON FLUX IN NON-ABSORBING MEDIUM, A > 1 |

» What we really want is determining ¢ (E) e.g. solve: q(E) = [, e (’i b - 2 (ENP(E' )dE

(C constant) satisfies the constraint q(E) = cst, for E<Emin

» The solution ¢(E) =

EZ( )
— e E— aF' / / /
W B) = [ G S 9
. Thus, ¢(E) = Eggi(E) 4 y I\

— Since Xs ~ constant in practice, the slowing-down spectrumis also ~ 1/ E

» This is one possible solution of the problem. Obtaining the general form is much more involved
(solution of Placzek transient)

» The 1/E solution represents the asymptotic flux, e.g. the flux after a large number of
collisions. In practice it is a good estimator of the flux in non-absorbing media
21
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The number of scattering events with H increases with S S(E) — Q¢
decreasing energy: sO(E) = B

E.g. # of collisions per unit E at 1eV is 10° times higher than at 1MeV

— We introduce instead of E a new unit in which the collision density (2,¢) changes much

less
Eq
Neutron lethargy: « = In z ﬁ

E = Epexp(—u)

Eo is an arbitrary energy usually the energy of the fastest neutrons

Neutrons are born with u = 0. When they slow down, their lethargy increases.

22



LETHARGY. = =
FLUX PER UNIT LETHARGY |- |-

Ys¢(u)and X (F) are different functions, but collisions occurring in du are the same
collisions that occur in dE

Yep(u)du = —X,0(F)dE

L dE
cu=hg S du= -0 = 6 = 9(E)E
- For hydrogen: ¢(F) = EQZf} = ¢(u) = gf

Assuming Xs=cst, energy-dependent flux per unit lethargy is constant for H.

23



LETHARGY

F
AVERAGE INCREASE OF LETHARGY PER COLLISION I I

With every collision the energy of a neutron decreases and the lethargy increases by

Ey Eq E
Au—lnﬁ—lnf lnﬁ
» Average increase of lethargy per collision can be calculated from the integral
1 Au /El EP(E%E,)dE’ ! /El EdE,
= AU = N — e — n —
al E’ ! E(l — Oé) aE E’
Making the substituti Loy oo
® = — —_—
aking the substitution i —
A-1\° (A-1)2, A+1 2
o Using a={ 7= =1- 1 ~ if A> 10
Using « (A+1> , & T yol
1.0 — 100 ,2H- 1.0
" | °Be - 0.207
12C - 0.158
" | o 1071 160-0.120 |
04 | ™ 3Na - 0.084
Fe - 0.035
0.2} |
0.0 L 1072 | \y#8U - 0.008
“50 0 50 100 150 200 250 300 107 10! 107

Mass number A Mass number A 24



LETHARGY. |:
HOWIING DOWN IN MIXTURES OF NUCLIDES h

» In case of mixture of the scattering nuclei (e.g. H20), flux

S
") B Esa®)

- Where average increase of lethargy per collision for a mixture of nuclides

Y &%.i(E)
EE) = -

Xs(E)

— &5 s called slowing-down power

2

— 'y, Is called moderating ratio

. Number of collisions to Slowing Down Power Moderating

Material . )
thermalize [cm?] Ratio
BTG 0.927 19 1.425 62
| D,0 [ 35 0.177 4830
| Helium [ROXPY, 42 910°% 51
0.207 86 0.154 126

0.171 105 0.092 0.00086
0.158 114 0.083 216

25
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NEUTRON MIGRATION DURING SLOWING DOWN |-

Till now: infinite, homogeneous media — ® uniform (same for all positions)

In practice, one has a reactor of finite dimensions, non-homogeneous
— There is a relationship between ®(E) and the distance from the source

— Numerical approach (multigroup theory) allows accurate treatment of neutron
behavior (see Lecture #10)

A simplified treatment allows one to obtain analytical solutions (Fermi’s theory)

Corresponding hypotheses:

— At does not vary strongly with energy

— £ 1s small (slowing down almost continuous)

— 2a~0

— Neutron spectrum not affected by differential leakage (greater leakage for fast n’s)
— Diffusion theory is valid

-L

26
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One considers the neutron balance in a bare homogeneous reactor, in the volume dV (7)

o7, B+ dB) — g7, 5) = PP gp
The change is due to leakage...
ﬁ 9q(7, E)
—_ 2 o ’
D(E)V?$(F, E) =
In absence of absorptions, one can show that
Lo (T E)
Qb(T,E) - SZS(E)E
D(F) o o dq(r, E) 5 4 EX(E)E 0q(T, F)
— — 2\ ) E) = —
Thus, ﬁES(E)Ev q(7, E) Yo = V(7 F) D(E) 5F

Defining “Fermi Age” ding t E b (E)—/EO D(E') dE'
erining ermi Age corresponding to energy YT — . {;'ES(E’) £

or(E)  D(E') dF'
OF —  ¢X.(E') E'

Looks like the heat conduction equation, except that T has the dimensions of area, not of time
27
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S 0
= Vq(7,7) = 8_'?- (Age equation)



GROUPITHEORY = P = L
) [ [

‘FAST — THERMAL SOURCE

- Thermal and fast fluxes are just integrals of energy-dependent flux over thermal and
above-thermal regions (resonance+fast):

~bk T 00
¢ = ¢(E)dE Pp = ¢(E)dE
! N5[T

» Slowing-down density q(t+) is a source of thermal neutrons

Neutron spectrum in homogeneous (235U / 238U /*H/ 16O) (0.05/0.95/ 100/ 50) mixture

: Serpent code calculation - 20°C

10t} :
T :
T < Q(TT)
7 100 L N
- = I
S, .
< -

10! '

107 103 102 10° 100 107 102 107 107 10° 10° 00 108

Energy [eV]
28
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» Steady-state diffusion equation for thermal neutrons:

DrV2¢r(F) = Brér(F) + (7, 7r) = 0

» For one-zone homogeneous reactor the thermal slowing-down density (a source of
thermal n's) can be found using Fermi age equation:

oq(7, )
ot

V3q(7, 1) =

29



SLAB REACTOR - MAIN EQUATIONS

w THEORY : P : L

Considering a one-zone homogeneous infinite (in z and y directions) slab reactor of
extrapolated thickness a, solving for the thermal flux:

d?¢r(z)  ¢r(z) q(x, TT)

Diffusion equation: — - _
q da? L2 D

0%q(z,7) _ 0q(zx,T)
ox2 0T

Age equation:

Source condition (for simplicity we assume fission neutrons as ml?noenergetic):
q(x,0) = X1or(r) fnre= ETéT(m)%

Boundary and symmetry conditions:

q(xa/2,7) =0
q(—z,7) = q(z,7)

¢T(ia/2) 0
¢r(—x) = ¢r(z)

30



SLAB REACTOR - MAIN EQUATIONS

R =PFL

Recall the slab eigenvalues and eigenfunctions (lecture 7):

nmTxr
- Eigenfunctions Pn(x) = COS(T) = cos(Bnx)

- Eigenvalues B, = —, wheren=1,3,5, ...

» Then thermal flux can be decomposed as:

or(z) = Z A, cos(Bpx)

n odd

» Using the Age equation and the g(x,0) boundary condition, the slowing down source
can be expressed as:

Sk

q(x,7) = 2 Ay, exp(—B21) cos(B,x)
nodd

31



ONE AND A HALF GROUPSTHEORY P I- L

SLAB REACTOR — FUNDAMENTAL SOLUTIONS h

» It can be shown (see e.g. Section 9.2 of Lamarsh) that, when considering solutions of the time-
dependent diffusion equation with both external and fission sources, all higher harmonics quickly

die out after switching the external source off.

«  We will consider further only the fundamental solution:

¢r(x) = Acos(Brx)
q(x,7r) = XpAcos(Bx)ke exp(—B2TT)
= Y11 (2)keo exp(—B?77)

m

where B = —
a

32



ONE AND A HALF GROUPSTHEORY |:
- CRITICALITY CONDITION & REACTOR EQUATION i

« Inserting these solutions into the original diffusion equation:

» Therefore:

d*¢r(z)  ¢r(z) gz, 7r)

dz? L? D
koo exp(—B?7m1) — 1
= — B2¢T(ﬂ3) + p( 72 T) qf)T(aj‘) =0
koo exp(—B?7r7) — 1

2 o0
=B* = 7
koo exp(—B?77) d?¢r(x) 5

]_—|—B2L2 =1 and d—332+B ¢T($) =0
This is the criticality This is the reactor

condition .A__ equation_g__

33



ONE AND A HALF GROUPSTHEORY = =
MIGRATION AREA = P "I L

» A reactor is considered large when the reactor size r is much bigger than a slowing down

length /7T

» Since B2~ 1/r?, B?ty << land exp(B?t;) =1+ B?1;

» The critical equation:

{— koo exp(—B?77) N koo N koo
1+ B2L2 T (14 B%rp)(1+ B2L2) ~ 1+ B2(1p + L?)

- The thermal migration area: M?* = 71 + L*
koo
=1

1+ B2M?
A

» This is a critical equation of one-group modified theory

34



FERMI AGE THEOR :
r SPACE-DEPENDENT SLOWING DOWN |

thermal neutron

fast n. bor absorbed

neutrorf becomes thermal
(E = 0.0253eV)

1———2
Age to thermal : 77 = 6|AB|

1 ——2
Diffusion area: L* = s1BC]

Migration area: M? = 7p + L?

35
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» A thermal reactor has n’s between ~ 2 MeV (fission n’s) and ~ 0.01 eV (thermal n’s). Moderator
is material which is used to slow down (moderate) n’s

» Most important slowing-down mechanism: elastic scattering by moderator nuclei
» Energy loss in a single elastic collision is proportional to scattering angle

» The maximum fractional energy loss in a single elastic collision (1 — o) decreases with increasing
mass of the struck nucleus

» Lethargy is another energy unit which shows the change of neutron’s energy in logarithmic scale.
A change of lethargy per collision & ~ 2/(A+3)

» Slowing down in hydrogen (neglecting absorption) results in a “one-over-E” spectrum

36
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» Fermi proposed a simple differential equation to describe slowing down density as a function of
space and a Fermi age similar to heat conduction equation. Allows to obtain analytical solutions
for bare homogeneous reactors.

« Fermi age (t— age to thermal) is a parameter [cm?] describing how far neutrons can travel from
an emission point while slowing down to thermal energy.

37



