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PHYSICS OF NUCLEAR REACTORS
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THIS LESSON …

• Energy distribution of neutrons in a thermal reactor

• Study of an elastic collision

• Slowing down equations

• Fermi age theory



NEUTRON SLOWING DOWN

Till now, we have discussed the spatial behaviour of monoenergetic neutrons with

appropriately averaged cross-sections…

Fission neutrons have E~2 MeV. Successive collisions with nuclei result in neutron energy

losses and reduction of the neutron energy by several orders of magnitude

Thermal neutron spectrum

(Maxwellian) – slow

Fission neutron

spectrum – fast 

0.0253 eV
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Moderating region
~2MeV
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Φ?



ELASTIC COLLISION

Most important slowing-down mechanism: elastic

scattering by moderator nuclei

Inelastic scattering also plays a role, but only for fast

neutrons (E ≥ 1 MeV)

Laboratory system: nucleus A is at rest. 2 angles needed

to describe the collision

Center of mass system: center of mass is at rest. 1 angle

only.

Laboratory system Center-of-mass system

φ

5
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ELASTIC COLLISION

CONSERVATION OF MOMENTUM

For neutron:

For nucleus:

CoM is at rest:

Laboratory system Center-of-mass system
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ELASTIC COLLISION

CONSERVATION OF ENERGY

In CoM:

From conservation of momentum:

Finally

The velocities remain the same in the CoM (only the direction changes)

Laboratory system Center-of-mass system

Conservation of energy
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FRACTIONAL ENERGY LOSS IN AN ELASTIC

COLLISION

Laboratory system

Law of cosines:

Center-of-mass system

Fractional energy loss in a single elastic collision in laboratory:

𝐸𝑖 − 𝐸𝑜
𝐸𝑖

= 1 −
𝑣𝑜

2

𝑣𝑖
2 = 1 −

𝐴2 + 2𝐴 cos 𝜃∗ + 1

𝐴 + 1 2 = 1 − cos 𝜃∗
1 − 𝛼

2

where α =
𝐴 − 1

𝐴 + 1

2

𝑣𝑜
2 = 𝑣𝑖

∗2 + 𝑈2 + 2𝑣𝑖
∗𝑈𝑐𝑜𝑠 𝜃∗
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FRACTIONAL ENERGY LOSS IN AN ELASTIC

COLLISION

Be

1H

2D

C

Na
O

Fe
U

Law of cosines:

Fractional energy loss in a single elastic collision in laboratory:

𝛥𝐸

𝐸𝑖
=

𝐸𝑖 − 𝐸𝑜
𝐸𝑖

= 1 −
𝑣𝑜

2

𝑣𝑖
2 = 1 −

𝐴2 + 2𝐴 cos 𝜃∗ + 1

𝐴 + 1 2 = 1 − cos 𝜃∗
1 − 𝛼

2

where α =
𝐴 − 1

𝐴 + 1

2

𝑣𝑜
2 = 𝑣𝑖

∗2 + 𝑈2 + 2𝑣𝑖
∗𝑈𝑐𝑜𝑠 𝜃∗

𝐸𝑜
𝐸𝑖

=
𝑣𝑜

2

𝑣𝑖
2 =

𝐴2 + 2𝐴 cos 𝜃∗ + 1

𝐴 + 1 2

Or (useful later) :

𝜃∗



FRACTIONAL ENERGY LOSS IN AN ELASTIC

COLLISION

28.6%

1.68%

100%

Fractional energy loss:

Energy loss in a single elastic collision is proportional to scattering angle

When θ* = 0 energy loss is minimum:

When θ* = π energy loss is maximum:

Maximum fractional energy loss in a single elastic collision is

Be

1H

2D

C

Na
O

Fe
U

𝛥𝐸

𝐸𝑖
= 1 − cos 𝜃∗

1 − 𝛼

2
where α =

𝐴 − 1

𝐴 + 1

2

𝜃∗



FRACTIONAL ENERGY LOSS IN AN ELASTIC

COLLISION

Probability distribution function                       :

– probability that a neutron with the laboratory energy E will have after 

collision an energy between E’ and E’+ dE'.

‘light’ notation:

In the majority of cases, scattering is isotropic in CoM system

then the max. width: Δμ = 2 ⇒ fraction betn.                    is

Using as variable , no. of n’s scattered 

between                     is 

Differentiating

Thus, probability for a neutron to have 

an energy in [E’, E’+dE’]:

11

μ = 𝑐𝑜𝑠 θ∗

θ∗ ∈ 0, π ⇒ μ ∈ −1,1

0
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FRACTIONAL ENERGY LOSS IN AN ELASTIC

COLLISION

Probability distribution function                       :

– probability that a neutron with the laboratory energy E will have after 

collision, an energy below E'.

Thus, probability for a neutron to have 

an energy in [E’, E’+dE’] :

0

That  E’  lies between  E and αE  is certain,

P2 decreases linearly
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SLOWING DOWN EQUATIONS

For the energy band                      ,  the steady state neutron balance equation is:

is the total sources between 

➙ “True” (fission, isotopic sources,… ), as well as those resulting from slowing down

(neutrons of energy  > E are scattered into the band                      )

Considering the n’s in                         ,  scattering rate is

No. scattered with an energy below E  is:

P_

Total no. scattered below  E  at   :

➙ Slowing-down source [cm3s-1]
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SLOWING DOWN EQUATIONS

𝛻 ⋅ Ԧ𝐽 Ԧ𝑟, 𝐸 + Σ𝑎 𝐸 ϕ Ԧ𝑟, 𝐸 =
𝜕

𝜕𝐸
𝑞 Ԧ𝑟, 𝐸 + 𝑄𝑓 Ԧ𝑟, 𝐸

With

Difference                                            gives slowing-down source in band

Thus, neutron balance equation:

Fundamental Slowing-down Equations

(1)

(2)

𝛻 ⋅ Ԧ𝐽 Ԧ𝑟, 𝐸 𝑑𝐸 + Σ𝑎 𝐸 ϕ Ԧ𝑟, 𝐸 𝑑𝐸 = 𝑞 Ԧ𝑟, 𝐸 + 𝑑𝐸 − 𝑞 Ԧ𝑟, 𝐸 + 𝑄𝑓 Ԧ𝑟, 𝐸 𝑑𝐸

Assuming a single scattering nucleus
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SLOWING DOWN EQUATIONS

Considering Eq. (1)

Math break
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SLOWING DOWN EQUATIONS

Considering Eq. (2)

… Diffusion Equation for the band                        ➙ yields the energy dependent scalar 

flux

𝛻 ⋅ Ԧ𝐽 Ԧ𝑟, 𝐸 + Σ𝑎 𝐸 ϕ Ԧ𝑟, 𝐸 = න
𝐸

ൗ𝐸 𝛼 Σ𝑠 𝐸
′ ϕ Ԧ𝑟, 𝐸′

1 − α 𝐸′
𝑑𝐸′ − Σ𝑠 𝐸 ϕ Ԧ𝑟, 𝐸 + 𝑄𝑓 Ԧ𝑟, 𝐸

And introducing the Fick’s law

𝛻 ⋅ 𝐷 𝐸 𝛻ϕ Ԧ𝑟, 𝐸 − Σ𝑎 𝐸 + Σ𝑠 𝐸 ϕ Ԧ𝑟, 𝐸 + න
𝐸

ൗ𝐸 𝛼 Σ𝑠 𝐸
′ ϕ Ԧ𝑟, 𝐸′

1 − α 𝐸′
𝑑𝐸′ + 𝑄𝑓 Ԧ𝑟, 𝐸 = 0



• And finally for the balance equation:

• NB: Σ𝑡 𝐸 = 𝑁𝑘σ𝑡 𝐸′
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GENERAL FORM WITH MULTIPLE SCATTERING

NUCLEI

• In the more general case of a mixture of k nuclei, each with a nuclide concentration Nk

𝛻 ⋅ Ԧ𝐽 Ԧ𝑟, 𝐸 + Σ𝑡 𝐸 ϕ Ԧ𝑟, 𝐸 =෍

𝑘

න
𝐸

ൗ𝐸 𝛼𝑘𝑁𝑘σ𝑠 𝐸′ 𝜙 𝐸′

1 − 𝛼𝑘 𝐸′
𝑑𝐸′ + 𝑄𝑓 Ԧ𝑟, 𝐸

q 𝐸 =෍

𝑘

න
𝐸

ൗ𝐸 𝛼𝑘 𝐸 − 𝛼𝑘𝐸′

1 − 𝛼𝑘 𝐸′
𝑁𝑘σ𝑠 𝐸′ 𝜙 𝐸′ 𝑑𝐸′ (1)

(2)

scattering source Fission sourcetotal collision term

leakage term

• The slowing down source is the combination of the slowing down source for each separate nucleus
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SLOWING DOWN EQUATIONS SIMPLIFICATIONS

In developing the slowing-down theory, it is interesting to consider an academic case:

infinite homogeneous hydrogenous medium (no dependence on position)

no absorption

steady state problem
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SLOWING DOWN EQUATIONS

NON-ABSORBING MEDIUM

Very simple neutron balance equation:

In general, Q is the fission-source density  (fission spectrum)

Integrating

➙

➙ total fission source

In  absence of absorption (Σa = 0) and of leakage (    = 0), the number of n’s crossing each 

energy is Qf

➙ No accumulation of n’s at energy E

constant slowing down source
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SLOWING DOWN EQUATIONS

Taking the derivative with respect to E of the second fundamental slowing down equation (see 

slide 16): 

Thus, 𝜙 𝐸 =
𝐶

𝐸
with C = ൗ

𝑄𝑓
𝛴𝑠

NEUTRON FLUX IN HYDROGEN

What about in Graphite, e.g. for A> 1?

𝜕𝑞

𝜕𝐸
= 𝐸׬

∞ 𝛴𝑠 𝐸′ 𝜙 𝐸′

𝐸′
𝑑𝐸′ − 𝛴𝑠 𝐸 𝜙 𝐸 = 0

What we really want is solve for 𝜙 𝐸 : q 𝐸 = න
𝐸

ൗ𝐸 α 𝐸 − 𝛼𝐸′

1 − 𝛼 𝐸′
𝛴𝑠 𝐸′ 𝜙 𝐸′ 𝑑𝐸′

𝜙 𝐸 = න
𝐸

∞𝜙 𝐸′

𝐸′
𝑑𝐸′

Assuming that 𝛴𝑠 𝐸 is constant (good approximation < 10keV) : 

Differentiating both sides with respect to E:
𝑑𝜙 𝐸

𝑑𝐸
= −

𝜙 𝐸

𝐸

First in hydrogen while neglecting absorption

➙ the slowing-down spectrum in hydrogen neglecting absorption is ~ 1/ E

න
ൗ
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SLOWING DOWN EQUATIONS

The solution 𝜙 𝐸 =
𝐶

𝐸 𝛴𝑠 𝐸
(C constant) satisfies the constraint q(E) = cst, for  E<Emin

➙ Since Σs ~ constant in practice,  the slowing-down spectrum is  also ~ 1/ E

NEUTRON FLUX IN NON-ABSORBING MEDIUM, A > 1 

This is one possible solution of the problem. Obtaining the general form is much more involved 

(solution of Placzek transient)

What we really want is determining 𝜙 𝐸 e.g. solve: q 𝐸 = 𝐸׬
Τ𝐸 α 𝐸−α𝐸′

1−α 𝐸′
𝛴𝑠 𝐸′ 𝜙 𝐸′ 𝑑𝐸′

The 1/E solution represents the asymptotic flux, e.g. the flux after a large number of 

collisions. In practice it is a good estimator of the flux in non-absorbing media

Thus,
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LETHARGY

The number of scattering events with H increases with 

decreasing energy:

E.g. # of collisions per unit E at 1eV is 106 times higher than at 1MeV

➙ We introduce instead of E a new unit in which the collision density (𝛴𝑠𝜙) changes much 

less

Neutron lethargy:

E0 is an arbitrary energy usually the energy of the fastest neutrons

Neutrons are born with u = 0. When they slow down, their lethargy increases.
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LETHARGY

FLUX PER UNIT LETHARGY

and               are different functions, but collisions occurring in du are the same 

collisions that occur in dE

For hydrogen: 

Assuming Σs=cst, energy-dependent flux per unit lethargy is constant for H.
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LETHARGY

AVERAGE INCREASE OF LETHARGY PER COLLISION

With every collision the energy of a neutron decreases and the lethargy increases by

Average increase of lethargy per collision can be calculated from the integral

Making the substitution:

Using

1H - 1.0

9Be - 0.207
12C - 0.158

16O - 0.120
23Na - 0.084

56Fe - 0.035

238U - 0.008
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LETHARGY

SLOWING DOWN IN MIXTURES OF NUCLIDES

In case of mixture of the scattering nuclei (e.g. H2O), flux

where average increase of lethargy per collision for a mixture of nuclides

➙ is called slowing-down power

➙ is called moderating ratio

Material ζ
Number of collisions to 

thermalize

Slowing Down Power

[cm-1]

Moderating 

Ratio

H2O 0.927 19 1.425 62

D2O 0.51 35 0.177 4830

Helium 0.427 42 9 10-5 51

Berylium 0.207 86 0.154 126

Boron 0.171 105 0.092 0.00086

Carbon 0.158 114 0.083 216



FERMI AGE THEORY

NEUTRON MIGRATION DURING SLOWING DOWN

Till now: infinite, homogeneous media →  Φ  uniform  (same for all positions) 

In practice, one has a reactor of finite dimensions, non-homogeneous

➙ There is a relationship between  Φ(E)  and the distance from the source

➙ Numerical approach (multigroup theory) allows accurate treatment of neutron 

behavior (see Lecture #10)

A simplified treatment allows one to obtain analytical solutions (Fermi’s theory)

Corresponding hypotheses:

➙ λt does not vary strongly with energy

➙ ξ  is small  (slowing down almost continuous)

➙ Σa ~ 0

➙ Neutron spectrum not affected by differential leakage (greater leakage for fast n’s)

➙ Diffusion theory is valid

26



FERMI AGE THEORY

One considers the neutron balance in a bare homogeneous reactor, in the volume

In absence of absorptions, one can show that

The change is due to leakage…

Defining “Fermi Age” corresponding to energy  E  by

➙ (Age equation)

Thus,

Looks like the heat conduction equation, except that τ has the dimensions of area, not of time
27
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ONE AND A HALF GROUP THEORY

‘FAST ➙ THERMAL’ SOURCE

Serpent code calculation - 20°C

Thermal and fast fluxes are just integrals of energy-dependent flux over thermal and 

above-thermal regions (resonance+fast):

Slowing-down density q(tT) is a source of thermal neutrons

q(tT)

Neutron spectrum in homogeneous (235U / 238U / 1H / 16O) - (0.05 / 0.95 / 100 / 50) mixture
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ONE AND A HALF GROUP THEORY

Steady-state diffusion equation for thermal neutrons:

For one-zone homogeneous reactor the thermal slowing-down density (a source of 

thermal n's) can be found using Fermi age equation:
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ONE AND A HALF GROUP THEORY

SLAB REACTOR - MAIN EQUATIONS

Considering a one-zone homogeneous infinite (in z and y directions) slab reactor of 

extrapolated thickness a, solving for the thermal flux:

Diffusion equation:

Age equation:

Source condition (for simplicity we assume fission neutrons as monoenergetic):

Boundary and symmetry conditions:
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ONE AND A HALF GROUP THEORY

SLAB REACTOR - MAIN EQUATIONS

Recall the slab eigenvalues and eigenfunctions (lecture 7):

Eigenvalues

Eigenfunctions

Then thermal flux can be decomposed as:

𝑞 𝑥, 𝜏 =
Σ𝑇𝑘∞
𝑝

෍
𝑛 𝑜𝑑𝑑

𝐴𝑛 exp −𝐵𝑛
2𝜏 cos 𝐵𝑛𝑥

Using the Age equation and the q(x,0) boundary condition, the slowing down source 

can be expressed as:
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ONE AND A HALF GROUP THEORY

SLAB REACTOR – FUNDAMENTAL SOLUTIONS

It can be shown (see e.g. Section 9.2 of Lamarsh) that, when considering solutions of the time-

dependent diffusion equation with both external and fission sources, all higher harmonics quickly 

die out after switching the external source off.

We will consider further only the fundamental solution:
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ONE AND A HALF GROUP THEORY

CRITICALITY CONDITION & REACTOR EQUATION

Inserting these solutions into the original diffusion equation:

Therefore:

This is the criticality 

condition

This is the reactor 

equation
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ONE AND A HALF GROUP THEORY

MIGRATION AREA

A reactor is considered large when the reactor size r is much bigger than a slowing down 

length

Since B2 ~ 1/r2,  B2τT << 1 and  exp(B2tT) ≈ 1 + B2tT

The critical equation:

The thermal migration area:

This is a critical equation of one-group modified theory
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FERMI AGE THEORY

SPACE-DEPENDENT SLOWING DOWN

fast n. born 
(E=2MeV)

r

dr

A

B

C

neutron becomes thermal 
(E = 0.0253eV)

thermal neutron 
absorbed

Age to thermal :

Migration area :

Diffusion area :
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SUMMARY

A thermal reactor has n’s between ~ 2 MeV (fission n’s) and ~ 0.01 eV (thermal n’s). Moderator 

is material which is used to slow down (moderate) n’s

Most important slowing-down mechanism: elastic scattering by moderator nuclei

Energy loss in a single elastic collision is proportional to scattering angle

The maximum fractional energy loss in a single elastic collision (1 – α) decreases with increasing 

mass of the struck nucleus

Lethargy is another energy unit which shows the change of neutron’s energy in logarithmic scale. 

A change of lethargy per collision ξ ~ 2/(A+3)

Slowing down in hydrogen (neglecting absorption) results in a “one-over-E” spectrum
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SUMMARY

• Fermi proposed a simple differential equation to describe slowing down density as a function of 

space and a Fermi age similar to heat conduction equation. Allows to obtain analytical solutions 

for bare homogeneous reactors.

• Fermi age (τT — age to thermal) is a parameter [cm2] describing how far neutrons can travel from 

an emission point while slowing down to thermal energy. 


