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PHYSICS OF NUCLEAR REACTORS
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THIS LESSON …

• Interaction of neutrons with matter

• Cross sections

• Mechanisms of neutron interactions

• Illustrations of cross sections

• The Doppler effect

• Anisotropic scattering

• On cross section libraries
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INTERACTION OF NEUTRONS WITH MATTER

• The operation of a nuclear reactor depends fundamentally on the way in which neutrons 

interact with atomic nuclei.

Reaction
Is isotopic composition 

of nucleus changed ?

Is internal energy 

of nucleus 

changed ?

Neutron after Particles after

(n,n) No No 1 -

(n,n’) No Yes 1 -

(n,γ) Yes Yes 0 γ

(n,p) Yes Yes 0 p

(n,α) Yes Yes 0 α

(n,2n) Yes Yes 2 -

(n,3n) Yes Yes 3 -

(n,np) Yes Yes 1 p

(n,fiss) Yes Yes 2-3 γ, …
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CROSS SECTIONS

Neutron interactions in matter

Interactions of neutrons with matter are described in terms of 

cross sections (XS). 

Considering monodirectional beam of neutrons of intensity I:

• I = number of neutrons which strike the target per cm2 per s

I = n × v = neutron density × neutron velocity

• In this case the beam intensity is equal to the neutron 

(scalar) flux Φ [n/cm2s] – number of neutrons crossing a 

unit area per s

Incident neutrons

Area

Thickness

Atoms per 

unit volume

Neutrons incident on a target
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CROSS SECTIONS

Reaction rate

• Intuitive concept: Number of interactions per unit time per unit volume 

(Interaction rate) [1/cm3s] = 

σ
[cm2]

Φ
[n/cm2s]

N 
[cm-3]

Neutrons incident on a target

➙ Interaction (or reaction) rate: F = σ ☓ N ☓Φ

• σ is the microscopic cross section [barn]

➙ 1 barn (1b) is equal to 10-24 cm2

➙ Interaction (or reaction) rate: F = Σ ☓Φ

Nucleus cross section [cm2] ☓

Number of nuclei per unit volume [1/cm3] ☓

Beam intensity (neutron flux) [n/cm2s] 

• Σ = σ ☓ N  is the macroscopic cross section [1/cm] 
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CROSS SECTIONS

Type of interactions

Neutrons interact with nuclei in a number of ways and each type of interaction is

described by a characteristic cross section:

• Elastic scattering cross section σe

• Inelastic scattering cross section σi

• Radiative capture (n,γ) cross section σγ

• Fission cross section σf

• Cross section for (n,p) reaction σp

• Cross section for (n,α) reaction σα

• …

Scattering

cross section σs

Absorption

cross section σa

Total

cross section σt
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NEUTRON INTERACTIONS AND MACROSCOPIC

CROSS SECTIONS

• Consider a target in monodirectional beam of intensity I0.

• I(x) is the intensity of non-interacted neutrons.

• Decrease of I while traversing dx of the target:

x

•
𝑑𝐼 𝑥

𝐼 𝑥
is the fraction of neutrons which penetrated x without interaction and which

interacted in dx

• Σt dx = Probability that a neutron interacts in dx

• Σt is the probability per unit path length that a neutron will undergo some sort of

interaction

−𝑑𝐼 𝑥 = 𝑁𝜎𝑡𝐼 𝑥 𝑑𝑥

−𝑑𝐼 𝑥

𝐼 𝑥
= 𝑁𝜎𝑡𝑑𝑥

Σ𝑡 = 𝑁𝜎𝑡



• Probability that a neutron has its first interaction in dx around x

=

Probability that neutron survives up to x without interaction:

x

Probability that neutron does interact in the next dx :
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NEUTRON INTERACTIONS AND MACROSCOPIC

CROSS SECTIONS

• p(x) is a first interaction (or first collision) probability distribution function

• It represents the distribution of distances which neutron moves between

interactions – free path.

• The average distance between two interactions – mean free path



• Homogeneous mixture of two nuclear species X and Y (NX and NY atoms per 

cm3)

- - Probability per unit path that neutron interacts with a nucleus X

- - Probability per unit path that neutron interacts with a nucleus Y

- Probability per unit path that neutron interacts with either X or Y :

- For the molecule XmYn

• These equations are based on the assumption that the nuclei X and Y act 

independently when they interact with neutrons.

- for low-energy neutrons undergoing elastic scatterings on molecules, this 

assumption is not valid.

9

CROSS SECTIONS OF MIXTURES AND MOLECULES



• Neutron-electron interactions are negligible (infinitesimal cross sections)

• Neutron-neutron interactions are negligible (probability to meet a nucleus is ~1014

times higher than to meet another neutron)

• Two fundamentally different mechanisms of neutron interaction with nucleus:

- compound nucleus formation: 

neutron is absorbed, exciting nucleus which then relaxes by emission of:

- potential or shape scattering:

neutron is not absorbed, but interacts with a nucleus as billiard balls do.

. one neutron: elastic scattering

. one neutron and γ-ray: inelastic scattering

. γ-ray: (n,γ) reaction

. proton: (n,p) reaction

. α-particle: (n,α)

. in special case, fission (Chapter 3)
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MECHANISMS OF NEUTRON INTERACTION



In
elastic γ-ray

etc.
etc.Compound 

inelastic scattering

Binding energy B

(mass defect difference)

ZA

ZA+1
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tu
re γ-ray

s

n

ZA

ZA+1

n

ZA

n

ZA

ZA+1

Compound 

nucleus

Elastic 

scattering

Inelastic 

scattering

Radiative 

capture

Diagram showing role of 

compound nucleus in 

neutron interaction
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MECHANISMS OF NEUTRON INTERACTION

Compound nucleus formation

Kinetic energy Ec



• Probability of formation of the compound

nucleus is high if there is an excited state in

the nucleus ZA+1 near Ec+B.

• The cross sections for neutron interactions

(e.g. elastic scattering) through a compound

nucleus formation can be written as:

• The energy dependence near an isolated

resonance E1 can be approximated by

EcE1

- “width”

Total cross section for the 

formation of a compound 

nucleus

Probability that the 

compound nucleus decays by 

elastic neutron emission

×

0

X
S

Eneutron

Resonances
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MECHANISMS OF NEUTRON INTERACTION
Resonances



Resonances
Potential scattering

O16

• The cross section for compound elastic scattering is significant only when neutron energy

is close to the nucleus resonance.

• Potential elastic scattering on a nucleus takes place at any energy of incident neutrons.
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MECHANISMS OF NEUTRON INTERACTION
Potential scattering



n

ZA

Light

Intermediate

Heavy

(N or Z = 2, 6, 8, 14, 

20, 28, 50, 82, 126)

Magic

Let us consider now (in a limited way) actual

experimental cross-section data. These data depend on:

• the energy of the incident neutron

• the nature of the target nucleus.

15

THE TOTAL CROSS SECTION

Data



Measured in transmission experiments

or

• C1 is determined by the elastic scattering cross sections

• C2 depends on (n,γ) or any other exothermic reaction

No resonances

C1 = 20.1

C2 = 0.8

C1 >> C2

C1 = 9.4

C2 = 3.4

C1 > C2

H2O

[wikipedia]

1H

[ENDF/B-VII.1]
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THE TOTAL CROSS SECTION
Light nuclides



Measured in transmission experiments

or

• C1 is determined by the elastic scattering cross sections

• C2 depends on (n,γ) or any other exothermic reaction

H2O

[wikipedia]
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THE TOTAL CROSS SECTION
Light nuclides



THE TOTAL CROSS SECTION

C1 = 4.7

C2 = 0.1

C1 = 4.2

C2 = 0.1

12C

E = 2 MeV

Γ = 7 keV

Graphite

[wikipedia -

Nuclear reactor core]

σtotal

[ENDF/B-VII.1]

12C

1H
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Light nuclides



THE TOTAL CROSS SECTION

Graphite

[wikipedia -

Nuclear reactor core]

σtotal

12C

1H
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Light nuclides
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THE TOTAL CROSS SECTION

Light nuclides

C1 = 3.9

C2 = 0.1

C1 = 3.5

C2 = 0.1

16O

E = 443 keV

Γ = 41 keV

H2O

[wikipedia]

σtotal

[ENDF/B-VII.1]

12C

1H

16O
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THE TOTAL CROSS SECTION

Light nuclides

H2O

[wikipedia]

σtotal

12C

1H

16O
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THE TOTAL CROSS SECTION

Light and magic nuclides

23Na

[http://www.metauxspeciaux.fr/]

Liquid sodium
σtotal

[ENDF/B-VII.1]

σtotal

23Na

12C

1H

16O
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THE TOTAL CROSS SECTION

Light and magic nuclides

209Bi

[http://en.wikipedia.org/wiki/Bismuth]

Bismuth
σtotal

[ENDF/B-VII.1]

209Bi
23Na

12C

1H

16O

Magic! 126 + 83 = 209
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THE TOTAL CROSS SECTION

Heavy nuclides

233U
Resonance region

Sharp resonances 

Γ << 1 eV
1/v Unresolved 

resonances

σtotal

[ENDF/B-VII.1]

233U

209Bi
23Na

12C

1H

16O
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THE TOTAL CROSS SECTION

Heavy nuclides

235U

UO2 fuel pellet
σtotal

[ENDF/B-VII.1]

235U
233U

209Bi
23Na

12C

1H

16O
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THE TOTAL CROSS SECTION

Heavy nuclides

239Pu

σtotal

[ENDF/B-VII.1]

239Pu

235U
233U

209Bi
23Na

12C

1H

16O
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THE TOTAL CROSS SECTION

Heavy nuclides

238U

Fission at 

high energy 

only

σtotal

[ENDF/B-VII.1]

238U

239Pu

235U
233U

209Bi
23Na

12C

1H

16O
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THE TOTAL CROSS SECTION

Heavy nuclides

232Th

232Th
238U

239Pu

235U
233U

209Bi
23Na

12C

1H

16O

σtotal

[ENDF/B-VII.1]
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THE TOTAL CROSS SECTION

Intermediate nuclides

90Zr

56Fe

Iron

[wikipedia]

[http://nsspi.tamu.edu/nsep/reference-modules/technical-safeguards-

terminology/nuclear-and-non-nuclear-material-basic-terms/zircaloy]

Zircaloy

[ENDF/B-VII.1]

Magic! 40 + 50 = 90
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ELASTIC SCATTERING

Data

• Difficult to measure and analyze theoretically

• Low energy to ~ keV region: almost constant

4.0 b

30.1 b

12.2 b

4.9 b

0.0253 eV

• High energy: reduction + resonances

• The bigger A the sharper and higher

resonances are and at lower energy

they start



• Possible at all energies, but most probable at low energies

• For high A isotopes, capture and scattering resonances don’t have the same shapes

• Possible for all nuclei, but becomes increasingly important with increase of atomic

number:
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ABSORPTION REACTIONS

Radiative capture

• After a neutron absorption the excitation energy is above the virtual state

(either nucleon or γ-ray can be emitted)

• The excitation energy is divided between nucleons

• The more nucleons the lower probability that one nucleon receives

enough energy to leave the nucleus

U238O16 σscattering

σcapture

σtotal

[ENDF/B-VII.1]
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ABSORPTION REACTIONS

Radiative capture

1H

2H

natC

16O

σscat

σabs

0.0005 b

0.3 b

0.004 b

0.0002 b



σscatteringCd113

σcapture

σtotal

[ENDF/B-VII.1] Th232 U238

Pu239

U235U233

Bi209

Na23

C12

H1

O16

σtotalCd113

• (Very) high capture cross section

at low energy

• Energy cut below 0.5 eV
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Radiative capture - Cadmium 
ABSORPTION REACTIONS



Cd113

B10

O16

σtotal

[ENDF/B-VII.1]

• Examples: (n,p), (n,α). Usually endothermic and 

threshold reactions with few exceptions.

• The most important exothermic charged particle 

reaction in nuclear reactor is:

B10(n,α)Li7

B10 enriched B4C is widely used as an absorber

material in control and shutdown systems

• Another important reaction is:

N14(n,p)C14

C14 ➙ long-lived potentially dangerous β- emitter.

Nuclear explosion: nitrogen in atmosphere.

• A source of water radioactivity :

O16(n,p)N16

N16 ➙ β- decay with emission of 6-7 MeV γ-rays.
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ABSORPTION REACTIONS

Charged particle reactions

\

\

σscattering

σcapture

σn,α

σtotal

B10
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NEUTRON-PRODUCING REACTIONS

(n,2n) and (n,3n) reactions

• In an inelastic scattering most of the initial

kinetic energy of an incident neutron

remains in the residual nucleus (after

emission of an inelastic neutron) and is

released as γ-rays.

• When the initial energy becomes high

enough, the emission of the inelastic

neutron can be followed by the emission

of another neutron (instead of a γ-ray).

• Most nuclei have an (n,2n) threshold in the

range of 7-10 MeV. An important

exception is 9Be: 1.8 MeV.

[ENDF/B-VII.1]

U238
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NEUTRON-PRODUCING REACTIONS

(γ,n) reaction

• Energetic γ-rays are produced in a nuclear reactor as a result of:
- fission;
- neutron-nucleus interactions (radiative capture, inelastic scattering, etc.);
- radioactive decay of fission products.

• An absorption of the most energetic γ-rays can result in the excited states of a 
nucleus which can decay with emission of a neutron: (γ,n) reaction

• The thresholds of (n,2n) and  (γ,n) reactions are identical

• Unlike the (n,2n) reaction,  (γ,n) reaction continues after the reactor shutdown. 



Christian Doppler (1803 – 1853)
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THE DOPPLER EFFECT.

• Up to now : before a neutron-nucleus interaction nucleus was

supposed at rest in the laboratory (L) system.

• However, atoms are in continual motion due to their thermal

energy.

• The monoenergetic (in L-system) beam of neutrons appears to

have a smear of energies in center-of-mass (C) system, because

of the thermal motion of the target nuclei.

• By analogy to similar phenomena in acoustics and optics this

effect is known as nuclear Doppler effect.



Breit-Wigner formula
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THE DOPPLER EFFECT.

• Increase of the temperature results in widening of resonances (radiative capture, 

scattering, fission, …)

➙ The neutron behaviour depends on the material temperature!

σ𝒄 𝑬𝒄 = σ𝟏
𝑬𝟏
𝑬𝒄

ൗ𝟏 𝟐 Γ𝒏Γγ

𝑬𝒄 − 𝑬𝟏
𝟐 + ൗΓ𝟐

𝟒

𝒙 =
𝟐

Γ
𝑬𝒄 − 𝑬𝟏

K
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TRANSPORT CROSS SECTION.

Elastic scattering of neutron by nucleus, as observed in laboratory 

and center-of-mass coordinates.
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TRANSPORT CROSS SECTION.

To take into account the effect of scattering angular distribution on the neutron motion, a 
concept of the transport cross section is used. Consider scattering but non-absorbing medium.

• Before the first collision:                  

• After the first collision:
projection to the axis of the original motion

• After the second collision:
projection to the axis of the original motion

• After the nth collision:

When λtr > λs - forward

When λtr < λs - backward

average value of 

the cosine of the 

scattering angle

One can define the Transport mean free path:

Transport cross section:

\

\

\

\



• In the case of isotropic scattering in the center-of-mass system:

• If absorption is present:
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TRANSPORT CROSS SECTION.

Elastic scattering of neutron by nucleus, as observed in laboratory 

and center-of-mass coordinates.
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CROSS SECTIONS AND UNCERTAINTIES

Exemple of the 56Fe (n,γ)

• The different libraries do not provide the same cross sections “values”…
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CROSS SECTIONS AND UNCERTAINTIES

Exemple of the 56Fe (n,γ)

same 

“information”

Uncertainty + correlation matrixCross section dispersion



SUMMARY

• Reaction rate = Flux x Cross-section (microscopic, macroscopic)

• Different types of reactions: absorption (fission, capture,…), scattering (elastic, 
inel.),…

• Energy dependence of cross-sections


