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Chapter 1

Introduction

Design of experiments is a wonderful theoretical tool that acts as a backbone to
many types of experimental research. Initiated by Sir Ronald Fisher around 1920, it
gives statistical tools for the planning of an experimental campaign. It also provides
a strategic perspective to research by giving handles for modeling phenomena and
then to make specific objectives explicit. For experienced researchers this type of
competence is often unconscious. For young researchers it can represent critical
know-how.

The objective of the Design of Experiments course of the EPFL doctoral school is
to help participants become familiar with the concepts of this theory, learn how to
approach their experimental activities from a statistical point of view, and discover
the properties of optimized designs in terms of efficiency. As a course companion,
this text provides a base to facilitate first-timers in reading the specialized literature
and help them communicate with DOE specialists.

With this document we review the concepts presented in the course and to bring
some additional elements, mainly in the form of tables that will help you make your
first steps in the experimental methodology. This will help you in your long-term
learning. Secondly, this text is intended as a toolbox to which you can return when
your memory and your understanding need refreshing. This text does not however
replace the textbooks available for completing your knowledge.

The benefit an experimenter gets from a series of experiments depends on the
care with which he chooses his experimental strategy. The strategy must take
into account how the results will be analyzed: too often this is not done. The
experimenter focuses his attention exclusively on the technical aspects of the
measurements, without considering how he will be able to interpret the results.
Such a procedure ends most of the time in very poor information. “7To the contrary,
the end of everything must be kept in mind all the time”: this principle from the 7
Habits of Highly Effective People by S. Covey [2] applies perfectly to experimental
activity. The methodology of experimental design aims precisely to solve the

13



14 CHAPTER 1. INTRODUCTION

strategic problem and then gives an important place to the steps of planning and
analysis.

Examples of the computing of the cases with Matlab are also provided. Those
cases can also treated equally with an algorithmic software such as Python.

In completing the theoretical basis of this introductory course, take the time to
consult some of the books and articles listed in the bibliography. The most classical
references are Statistics for Experimenters by Box, Hunter and Hunter [3] and
Design and analysis of experiments by Douglas Montgomery [1]. A recent book
by Th. Ryan, Modern Ezperimental Design, is also of interest [5]. Empirical
model building and response surfaces by Box and Draper [0] is more complex
and is especially recommended for the inference of second-degree models and the
elucidation of ridge systems.

1.1 An elementary example
The following elementary example shows how an optimised design allows one to
get results of better quality than the classical one-factor-at-a-time approach.

Three objects, whose masses are of the same order of magnitude, have to be weighed
using a scale with two plates as shown in figure 1.1.

Wiy,

A O W A

Figure 1.1: Three objects to be weighed using a scale with two plates.

The classical one-factor-at-a-time (OFAT') procedure is the following:
1. One measures the offset of the scale
2. One weighs the first object (meaning: recording the weight on the scale)
3. One proceeds in the same way for the second and the third objects

The weight of each object is computed by subtracting the offset from the second,
third and fourth measurements.
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If R; is the result of the measurement 7, with ¢ = 0, 1, ..., 3, the weight of the object
1, P is:

P, = R; — Ry (1.1)
The accuracy of the results can be estimated by the variance :

var(P;) = var(R; — Ry) = var(R;) + var(Ry) (1.2)

With the hypothesis that the experimental variance is the same in each experiment
and that its value is 02, the equation 1.2 becomes:

var(P;) = 20? (1.3)

i
|

Figure 1.2: Graphical (left) and matriz (right) representation of the classical
method for weighing three objects with a scale with two plates. The graphical
representation shows on which plate the object is placed; the matrix representation
has one column per object and one line per measurement to indicate the value that
each factor takes in each experiment.

Figure 1.2 provides two representations of the experiments that will be useful for
understanding what happens. On the left hand side is the graphical representation
and on the right hand side is the matricial one. The graphical representation
shows two plates for each measurement and allows us to see on which plate an
object is placed for the experiment. The matrix representation has one column per
object and one line per experiment indicating the value that each factor takes for
each experiment. In this case, the value ‘-1’ indicates the left plate, the value ‘1’
indicates the right plate, and the value ‘0’ indicates that the corresponding object
is not on the scale.

Plackett and Burman [3] propose an optimised design for this type of situation.
Their design uses all the objects in each experiment, as well as the two plates.
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The results of the four measurements allow us to develop a linear system of well-
conditioned equations (figure 1.3 ). The weight of each object is computed by
solving a system of four equations. The accuracy of the weight measured this way;,
with the same hypothesis on the measurement accuracy, is 0%/4, which is eight
times better than in the previous case.

O m A
. HA. O, 1 -1 -1
, OA. L H. 1 1 -1
; OB _A. 1 -1 1

L. Cam 111

Figure 1.3: The best design uses the objects a maximum number of times. The
graphical representation shows on which plate the objects are placed and the matrix
representation counts one column per object and one line per experiment.

Here is the proof:
XTR
4
i=1

1

var(P;) = var(4 wa

MoL
I
= s e

1
" 16

M=

(x5)? var(R;)

1

0,2

=y

var(P) = o Y > var() =

Why then does the Plackett-Burman design produce a more accurate result? The
reason is that the new system transfers less experimental error (the variance). This
comes from the fact that each object is measured four times instead of only once.
The matrix of experiments presented in figure 1.3 is balanced and it is possible to
see that each column counts the same number of ‘1’ and ‘—1". Figure 1.4 shows
in graphical terms how the classical design is restricted to a smaller part of the
experimental space than the Plackett-Burman design. The latter takes into account
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Figure 1.4: a) Location of the measurement points in the experimental space when
using a classical one-factor-at-a-time design. The central point corresponds to the
measurement of the offset. The point at the centre of each face corresponds to the
measure of each object. b) Location of the measurement points in a Plackett-Burman

design.

a space that is eight times bigger. The matrix used by Plackett and Burman is a
Hadamard matrix, which has special properties. Hadamard matrices exist not only
for three factors as in the present case, but also for more factors as presented in
section 4.3. The theory of the design of experiments proposes several other types
of optimal designs and a series of tools for the optimisation of experiment matrices

[3, 4].
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Chapter 2

Helicopter View and Mind Maps

2.1 Situation analysis

Even if the design of experiment is presented alongside a lot of mathematical and
statistical concepts, the target is a strategical insight: what must be the positions
of the experimental points in the experimental domain to ensure the best possible
inference with a minimum of experimental effort? A good start is then to analyse
the experimental domain and the model that is of interest. A helpful and efficient
way to do that is through a mind map.

A generic map related to the improvement of a bicycle is presented in figure 2.1.
With keywords and metadata, it aims to provide information on the objective
of the study, the number and a few key information about the factors, the type
of responses that will be analysed, the different models to be targeted and the
different strategies foreseen. The anticipated pros and cons of each strategy can
be also indicated. The map will be kept and adapted throughout the analysis and
will inform the strategic decision taken at the start of the project and during its
execution.

In this map there is no technological information. It focuses exclusively on the
inference point of view. It is possible with one glance to understand the targeted
objective and the different considered strategies.

e The objective is defined as the improvement of the bicycle.

e The factors are classified as design and environmental factors. Design factors
correspond to characteristics of the bicycle that the experimenter wants to
design. Environmental factors are those which can eventually be controlled
in the experiment, but that will not be controlled outside of the laboratory.
Factors can be classified in several ways: discrete vs continuous, easy to
change vs complicated , etc. It is then also practical to indicate the range or
the different values that the factors can take.

19
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:
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Figure 2.1: Mind map of the experimental campaign aiming at the optimisation
of a bicycle.

e The response branch presents a classification of the results of the exper-

iment that could be modeled. Sometimes one is chosen to represent the

phenomenon, sometimes several are necessary to represent several dimensions
of the problem.

The model branch lists the alternative for modeling the phenomenon. It
occurs that the previous experiments or the literature proposes one or more
models. When no model has previously been proposed, or for the sake of
simplicity, it is often interesting to consider an empirical model such as a first
degree model or a first degree model with interactions (see subsection 4.1.1).

The strategy branch lists the different designs that are considered in the initial
analysis. A key piece of information is the number of experiments which are
related to the cost of the campaign. Drawing relations between the designs
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would eventually allow us to indicate a step by step strategy. For example
starting with a small fractional design and completing it if necessary to a full
factorial design if the interactions appear to be more important than initially
expected.

This type of mind map can of course be done by hand in the laboratory notebook.
Several software tools are available for the task such as Freemind, iMindmap,
Mindjet, , etc.

2.2 Mind map of DOE

The conceptual map presented in figure 2.2 gives the organisation of the concepts
for the three mains steps of the methodology: design, execution and analysis. The
map can be used as scaffolding for you to put the concepts in place as you discover
the methodology. This mind map has been done with C'map tool .
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Chapter 3

Qualitative Factors

3.1 Constant coefficient model

A type of model that allows us to synthesise experiments made on qualitative
factors are called constant coefficient models. Those models consider the direct
effect of the factors that are called main effects and eventually interaction effects.
The main effect is the direct influence of a factor on the modeled response. An
interaction effect is the combined influence of two or more factors.

We can illustrate this with a simple example. Imagine that you like chocolate
and strawberry ice-cream more than other flavors. But you dislike the chocolate
ice-cream of the trademark A. For the other flavors of this trademark you do not
have particular preference. Then, modeling your appreciation of several flavors and
ice-cream trademarks, we would have a high main effect on the chocolate and on
strawberry flavors, no effect on the trademark A and a significative interaction
effect (in this case negative) for the chocolate ice-cream of trademark A.

3.1.1 The case of a workshop

We can now work with a more comprehensive case. An analysis is done in a
workshop to determine the factors that influence the quality of the machining. An
investment must be done implying a choice of machines and tools. The objective is
then to determine the influence of the machines, of the tools and of the operators
on the quality of the work and observe if some information can be obtained from
the field. The response that will be analyzed is the surface quality of a given piece.
This quality is defined here as the biggest defect h,,q, on the surface. The study
consists in relating the quality to the factors such as the type of machines, the type
of tools and the different operators.

23
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A constant coefficient model without interactions of A, can be defined as:

hma:c(ma t, O) = W+ + B+ Yo+ €mioi (3'1)
03] Io M

hmax (mu t7 0) = u+ &%) + ﬁQ + Y2 + €mtoi (32)
Qs B3 3

The indices m,t,o0 represent the machines, tools and operators. The index i
represents eventual replicates. The real number p is a constant representing the
averaged surface defect. The real numbers «,,, are a series of constant effects related
to the different machines. The real numbers [3; are a series of constant effects
related to the different tools. The real number 7, are a series of constant effects
related to the different operators. The real numbers €,,, are the residues (the
differences between the model and the measurements). In equation 3.2 the model
has been detailed for a case with three machines, three tools and three operators.

In a first step we applied a factorial strategy. The factorial strategy consists in
performing measurement for each possible triplet (m,t,0). The results are given
in table 3.1. We will see in the next section how to infer the model coefficients
Iy Qs Bty v, and the residues.

Table 3.1: Results of a 27-run factorial experiment with three machines, three
tools and three operators.

Operators  Tool Deckel  Schaublin Maho

Charlie Imm 2220 pm 30.30 pm  26.96 pm
Smm 1573 pm 23.03 pm  23.98 um
20mm 1242 pm 1746 pm  16.24 pym

Peter lmm 21.55 pm 29.05 pm 28.00 pym
Smm 16.83 pm 2525 pm  24.78 pum
20 mm 13.36 pm  19.76 pm  19.42 pym

Louis 1mm 2352 pym 30.46 pm  28.41 pm
Smm 17.57 pm  23.37pum  24.57 um
20 mm 10.55 pm  17.81 pm  17.57 pm
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3.1.2 Sweeping

The determination of the coefficients of the constant coefficient model is called
sweeping in reference to the iterative operation that is performed. The steps are:

1. calculation of the grand average
2. calculation of the main effects
3. calculation of the interaction effects

The order for determining the main effects of the different factors does not matter.
But the main effects must be estimated before the interaction effects.

We can now consider the result vector Emaz whose components are the results
of the experiments. The dimension of this vector is 27 because the experiment
counts 27 data points. The modeling procedure corresponds to the decomposition
of this results vector in several orthogonal vectors. This decomposition is done
by projecting the result vector on a specific base. This procedure is presented
graphically in figure 3.1.

Figure 3.1: Decomposition of the measurement result vector in constant, effect(s)
and residual.

The first element of this base is a vector whose components all have the same value
(1,1,...,1)T. Then the first vector of the model called the constant vector has equal
components and its value is the grand mean, the average of the whole data set.
The results vector fzmm can now be decomposed in a constant vector f and a
residual vector €, such as:

Pz = i+ €, with [iLE, (3.3)
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The next element of the decomposition are the vectors corresponding to the main
effects. There is no importance of the order. Successively for each factor the former
residue vector € is decomposed in two orthogonal vectors, one for the effect and
one for the new residue. The components of the main effect vector of a given factor
are obtained by the averages of the former residue according to the levels of the
analysed factor.
For our example, we start with the factor ‘machine’. Since this factor has three
levels, although the vector corresponding to the main effect of the machines has
27 components, those components have only three distinct values: one value for
the machine ‘Deckel’; one value for the machine ‘Schaublin’ and one value for
the machine ‘Daho’. These values are obtained by averaging the residual in three
different groups, one for each machine. In the vector corresponding to the main
effect of the machines, the suitable average value is placed following the order of
the experiments. A new residue is calculated by subtracting the main effect vector
from the former residue. .
Ripaz = fi + @ + €ua (3.4)

The operation is repeated to treat all the factors. For our workshop example it
gives: . .

himae = i+ A+ B+ 7 + €uapy (3.5)
Notice that equation 3.2 must not be confused with equation 3.5. Both represent
the same model. Nevertheless the former is a concise representation in which only
the different values of the constant effects are represented. The latter is a vectorial
equation. The application of this procedure to the workshop data gives as concise
form:

—4.41 5.23 —0.56
Dmas(myt,0) =215 44 257 v+ 019 p+< 051 p +€uagy  (3.6)
1.84 —5.42 0.05

On a spreadsheet, the procedure can be applied easily. This has the advantage of
showing precisely how the different coefficients are calculated. Figure 3.2 shows the
decomposition of the data vector in several steps. Figure 3.3 shows the application
of this procedure to the workshop example within Excel. The contrasts of colors
show the different groups used to calculate the coefficients for each level of the
factors.

An interesting way to present the results of the sweeping is a dot plot, as in figure
3.4. The base line is reserved for the residuals and the next lines show the values
of the effects. At a glance it is then possible to see which effects are obviously
bigger or not than the noise. In this example, it is evident that the operator effect
is questionable as its span is significantly smaller than the residual span. A more
precise analysis will be proposed with the ANOVA, but this type of graphic is a
straightforward means to illustrate the results of the inference procedure.
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Machine Tool Operator
Data b effects effects effect
Residual 4

Figure 3.2: Decomposition of the data vector in several steps.

3.1.3 Interaction

The sweeping process can be continued to infer interaction coefficients. The targeted
model is now :

hmam(ma t) 0) =M + (6779 + Bt + Yo + a/Bmt + AYmo + B/Yto + €mtoi (37)

Terms like af3,,; have M x T numbers, if M is the number of machines and 7" the
number of tools. There is one number per possible couple (m,t). The sweeping
procedure is the same as previously: the effect is computed by averaging data
that are equivalent between themselves. The main effects have been calculated
by taking the average of all the data corresponding to a given level of a factor.
Now interaction effects are calculated by taking the average of data corresponding
to given levels of two variables. For example, the interaction coefficient a3 is
calculated averaging the adequate residue for the data corresponding to m = 1 and
t = 3. This is possible only if there is more than one such data point. This is the
case in our workshop example in which there are three data points for each couples.

3.2 Latin and Graeco-Latin squares

In the model given at equation 3.6 there are ten coefficients and seven degrees
of freedom. This has been obtained with 27 experiments. The residue has then
20 degrees of freedom. This is good for diminishing the confidence interval. In
practice however, we are interested to find a way to determine the effects with the
least possible effort. This can be obtained by using magic squares. Magic squares
are arrangements of levels that provide all the possible pairings, but not all triplets
or higher order of combination. When the number of levels is the same for each
variable, those squares are called Latin squares and Graeco-Latin squares. Their
names come from their invention by the Swiss mathematician Leonhard Euler who
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Mean Machine Operator Tool

21.49 21.49 21.49 -4.41 2.57 1.84 -0.56 -0.56 -0.56 5.23 5.23 5.23
21.49 21.49 21.49 -4.41 28574 1.84 -0.56 -0.56 -0.56 0.19 0.19 0.19
21.49 21.49 21.49 -4.41 2.57 1.84 -0.56 -0.56 -0.56 -5.42 -5.42 -5.42
21.49 21.49 21.49 -4.41 25574 1.84 0.51 0.51 0.51 5.23 22} 5.23
21.49 21.49 21.49 -4.41 2.57 1.84 0.51 0.51 0.51 0.19 0.19 0.19

-4.41 2.57 1.84 0.51 0.51 0.51 -5.42 -5.42 -5.42

2.57 0.05 =

2:.57
2557,

0.05
0.05

Résidual 2

Residual 3

5.69 6.81
-0.79 -0.47 22 -0.98 -0.66 1.03
-9.07 -4.02 -5.25 -4.66 -6.59 -7.09 -4.10 -6.03 -6.52 132 -0.61 -1.10
0.06 7.56 6.51 447 5.00 4.68 3.96 4.48 4.16 -1.27 -0.75 -1.07
-4.65 3.77 3.29 -0.25 1.20 1.45 -0.76 0.69 0.94 -0.95 0.49 0.75
-8.12 -1.73 -2.07 -3.72 -4.29 -3.91 -4.23 -4.81 -4.42 119 0.61 1.00
2.03 8.97 6.92 6.44 6.40 5.08 6.39 6.35 5.03 116 L2 -0.20
-3.92 1.89 3.08 0.49 -0.68 1.24 0.44 -0.73 g 0.25 -0.92 1.00
-10.94 -3.67 -3.91 -6.53 -6.24 -5.75 -6.58 -6.29 -5.80 -1.16 -0.87 -0.38

Figure 3.3: Application of the sweeping procedure to the workshop example within
Ezxcel with 27 experiments. The contrasts of colors reveal the different groups used
to compute the coefficients for each level of factors.

used Greek and Latin letters to represent them as presented by Mac Neish in a
paper of the Aannals of Mathematics [9]:

Euler Squares were first considered in a paper, ‘Recherches sur une
espéce de carrés magiques’, Commentationes Arithmetica Collectae,
1849, vol. II, pp. 302-361. In this paper Fuler proposed the following
problem now well known as ‘The problem of the 36 officers’ Siz officers
of sixz different ranks are chosen from each of sixz different regiments.
It is required to arrange them in a solid square so that no officer of
the same rank or of the same regiment shall be in the same row or in
the same column. The problem is equivalent to that of arranging 36
pairs of integers, each less than or equal to siz, in a square array so
that the first(or second) numbers of the pairs in any row or column are
all distinct,and no two pairs are identical.

Those magic squares are orthogonal and can be combined. For our example, we take
the 3 x 3 latin square (table 3.2). This would correspond to the nine experiments
given in table 3.3. Each operator tests each machine and each tool. But not all the
triplets are tested. This will allow us to estimate the main effects with only nine
experiments, as shown in figure 3.6.
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-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Déckel ’ Ma‘ho . ISchauI;lin I Machines
20, . ? 5 1 Tool.
ools
mm 5 . mm mm I

Operators
Residuals

Figure 3.4: Dotplot of the model obtained with 27 experiments in the workshop
example.

Table 3.2: 3 x 3 Latin square

a|bjec]
b|lc|a
clal|b

A concise representation of the model is now given in equation 3.8 that must be

compared with equation 3.6. The corresponding dot plots must also be compared
(figures 3.4 and 3.5):

—4.73 5.30 —0.04
Rmaz(m, t,0) = 21.3 + 2.04 3 + 0.14 ; + 0.51 + €108y (3.8)
2.68 —5.44 —0.48
6 5 4 3 2 1 0 1 2 3 4 5 6
~ Deckel ' ' , Schaublin H Maho, ' Mac.hines
Outils

® 20mm 2 S mm Imm ® )
Opérateurs
Résidus

Figure 3.5: Dot plot of the model obtained with nine experiments in the workshop
example.
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Table 3.3: Use of a 3 x 3 Latin square for testing three factors at three levels.

Deckel Schaublin  Maho

1 mm | Charlie Peter Luis
5 mm Peter Luis Charlie
10 mm Luis Charlie Peter

Mean Machine Tool Operator
21.25 21025, 21.25 -4.73 2.04 2.68 5.30 5.30 5.30 -0.04 0.51 -0.48
21.25 21.25 21.25 -4.73 2.04 2.68 0.14 0.14 0.14 0.51 -0.48 -0.04
21.25 2125 21.25 -4.73 2.04 2.68 -5.44 -5.44 -5.44 -0.48 -0.04 0.51
Residual 1 Residual 2 Residual 3 Residual 4
0.95 7.80 715, 5.67 5.75 4.47 0.37 0.45 -0.83 0.41 -0.06 -0.35
-4.42 212 2.73 0.31 0.08 0.05 0.16 -0.07 -0.10 -0.35 0.41 -0.06
-10.71 -3.79 -1.83 -5.98 -5.83 -4.52 -0.54 -0.39 0.93 -0.06 -0.35 0.41

Figure 3.6: Application of the sweeping procedure to the workshop example within
FExcel with nine experiments. The contrast of colors shows the different groups used
to compute the coefficients for each level of factors.

3.3 Results analysis and ANOVA

The question that we want to answer in this section is about the validity of the
models obtained by the sweeping procedure. We have seen that we can obtain a
model of nine coefficients with 27 or nine experiments. How do these models differ
in term of accuracy? More generally what is the risk taken by using one or the
other of these models?

We can begin by making some observations on figures 3.4 and 3.5:

e The residue of the data set of 27 experiments show several distinct values
when the residues of the 9-experiment data show only three different values.
This is due to the fact that the former residues have 20 degrees of freedom
when the latter have only three degrees of freedom (we will return to this
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point).

e The span of the effects of the machines and of the tools are significantly
bigger than the span of the residue. This is not the case for the operator
effects which do not differ significantly from the noise.

e Between the two models, the machines Maho and Schaublin have interchanged
their positions. The difference between these two machines is very probably
not significant, especially in the second model which has been determined
with less data.

To determine the validity of a model in relation to experimental data, Ronald
Fischer invented the ANOVA, the analysis of variance. Consider figure 3.1 where
the vector of results has been decomposed in several vectors for the constant and
the different effects and finally the residual. We are in a process of determining
the possible causal relations between an answer and some factors. This possible
cause-consequence link is determined by the correlations that exist between them
and that are represented by the model. The constant is then related to unidentified
factors that are not changed during the experiment. The coefficients of the model
are related to the factors targeted by the set of experiments and are then varied
during the experiments. The residue is due to unidentified factors that are not
controlled and thus have changed during the experience. So the rationale on which
the validity of the model is based is equivalent to saying: let’s consider as probable
causes of the change of the response the factors whose coefficients are significantly
bigger than the residue. So the first step consists in comparing the size of the
vectors representing the factors to the size of the vector of the residue. The size of
the vectors can be represented by the euclidian norm

17l = || Y2 (3.9)

if x; are the components of a vector Z.

The square root conserving the relation of order between positive numbers, the
equivalent comparison can be made between the sum of squares (SS). Hence, the
sum of squares given in tables 3.4 are computed from the data in figures 3.3 and
3.6. From both cases it can be observed that the effects of the machines and of the
tools are more than 100 times bigger than the residue. This gives consistency to
the hypothesis that the machines and the tools have an effects on the quality of
the pieces. To the contrary, in the 27-experiment case, the sum of squares for the
effect of the operators is 5 times smaller that the residue. It is 1.6 times bigger for
the 9-experiment case.
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Table 3.4: Sum of squares for the 27- and 9-experiment sets.

(a) 27-experiment set (b) 9-experiment set
Source SS Source SS
Constant 12’465.7 Constant 4’064.9
Machine 264.5 Machine 101.1
Tool 511.0 Tool 173.2
Operator 5.2 Operator 1.5
Residue 24.2 Residue 0.9
Total 13’270.6 Total 4’341.6

But the different vectors that are compared do not have the same degree of
freedom. A fair comparison between the vectors must take this into account
and the comparison must be done between mean squares that are the sum of
squares divided by the degree of freedom. As the effects of one factor sum to zero,
constituting one constraint, the degree of freedom (DF) of a given factor is given
by

DF = nbr of levels — 1 (3.10)
The mean square (MS) is
SS
MS = —— 3.11
DF (3.11)

Table 3.5: Sum of squares, degree of freedom and mean squares for the 27- and
9-experiment sets.

(a) 27-experiment set (b) 9-experiment set

Source SS DF MS Source SS DF MS
Constant 12'465.7 1 12°465.70 Constant 4’064.9 1 4°064.91
Machine 264.5 2 132.23 Machine 101.1 2 50.55
Tool 511.0 2 255.50 Tool 173.2 2 86.61
Operator 5.2 2 2.62 Operator 1.5 2 0.74
Residue 24.2 20 1.21 Residue 09 2 0.44
Total 13’270.6 27 Total 43416 9

The effects machines and tools are now clear as their mean squares are significantly
bigger than the mean square of the residue. Comparing the two cases, it is possible
to observe that the 9-experiment set seems to bring us to the same conclusion as
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the 27- one, meaning that operator is not a significative factor. Let’s go one step
further to obtain a definitive confirmation of this hypothesis.

The Fisher ratio (F) is the ratio between the mean square of a given coefficient and
the mean square of the residue. The last step consists in calculating the probability
to get a given Fisher ratio. In the common hypothesis that the data is normally
distributed following the distribution N(g;,0?) (hypothesis of homoscedasticity), a
sum of squares of v terms will follow the distribution x?(v) and the ratio of mean
squares the F-distribution F'(v4,15) where 14 and v, are the degrees of freedom of
the numerator and denominator!. The ANOVA table can now be completed as
shown in table 3.6. The Fisher ratio of the constant is usually not presented; the
whole line for the constant is even sometimes forgotten.

Table 3.6: ANOVA table for the 27- and 9 experiment sets.

(a) 27-experiment set

Source SS DF MS F p
Constant 12'465.7 1  12’465.70

Machine 264.5 2 132.23 109.3 0.000%
Tool 511.0 2 255.50 211.19 0.000%
Operator 52 2 2.62 2.2 14.1%
Residue 24.2 20 1.21 1

Total 13°270.6 27

(b) 9-experiment set

Source SS DF MS F p
Constant 4’064.9 1 4°064.91

Machine 101.1 2 50.55 113.7 0.000%
Tool 173.2 2 86.61 194.7 0.000%
Operator 1.5 2 0.74 1.7  21.5%
Residue 09 2 0.44 1

Total 4’341.6 9

The probability, called p-value, represents the probability of getting the ratio
by chance. Hence the smaller the p-value, the higher is the significance of the
considered effect. The standard criteria for accepting an effect is that p < 5%. In
specific industries such as pharmaceutics or aeronautics, the level of confidence

1On Excel 15 p = loi.F.droite(x, vy, 1)
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can be higher. At the opposite end, in some research situations, especially when
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screening for factors, the criteria for rejecting of factors is sometimes higher.

MATLAB - anovan()

The built-in function [p, tbl, stats| = anovan(y, group) computes the n-way
ANOVA table for testing the effects of multiple factors on the mean of the
vector y. The vector p correspond to the p-values. The table tbl is the
ANOVA table and the computed data is recorded in the structure stats.
Here is a small example of the analysis of a latin square experiment:

The Latin square design 3 x 3:

I II III
a A B C
b B C A
¢c C A B
The data :
I 11 111
a -10.09 714 4.11
b -7.33 275 8&.19
c -2.67 17.01 16.75
The code

Group _ 1 =reshape (repmat (

Group _ 2 =reshape (repmat (

Cat _3={"A",'B’,’C’};

latin3=[1 2 3;2 3 1;3 1 2];

Group _ 3 =reshape (Cat _3(latin3),9,1);

stats =anovan(Y,{Group _ 1,Group _ 2,Group _ 3} ,...
"model" |"linear");

{1’ 0’11’ ,’II1°},3,1),9,1);
{’a’;’b7;7¢’},1,3),9,1);

Analysis of Variance
Source Sum Sq. d.f. Mean Sq. F Prob=F
X1 514.15 2 257.875 149.34  0.0067
x2 184.042 2 92.021 53.46 0.0184
X3 30.419 2 15.209 8.84 @.1017
Error 3.443 2 1.721
Total 732.853 8

Constrained (Type Ill) sums of squares.
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Dotplot

var=[1 1122233 3]; % coefficients vs ...
variables

sz=200; % size of the bullet

scatter (stats.coeffs (2:end) ,var,sz,’red’," filled ")

grid on

axis ([-15,15,0,3.2])

yticks (0:1:3)

yticklabels ({’Residual ’,’X 17,’X 27X 3'})

xlabel (" Coefficients and residual values’)

hold on
scatter (stats.resid ,zeros(1,9) ,sz,’k’," filled ")
hold off
X, e @
% oo &
X, @ ¢
Residual : : 30 ; : y
-15 -10 5 0 5 10 15

Coefficients and residual values

3.4 Some Latin and Graeco-Latin squares

The following is a list of common Latin squares of 3- 4- and 5 levels that can be
combined in Graeco-Latin and hyper-Graeco-Latin squares.
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Table 3.7: Two orthogonal 3 x 3 Latin squares (a and b) that can be combined in
a Graeco-Latin square(c) to test up to four factors of three levels.

(a) (b) (c)
A B C A B C Aa BB Oy
B C A C A B By Ca AB
C A B B C A C8 Ay Ba

Table 3.8: Three orthogonal 4 X 4 Latin squares that can be combined in one
Graeco-Latin square or one hyper-Graeco-Latin square to test respectively up to
four and five factors of four levels.

(a) (b) (c)
A B CD A B CD A B CD
B A D C D C B A C D A B
C D A B B A D C D C B A
D C B A C D A B B A D C

Table 3.9: Three orthogonal 5 X 5 Latin squares that can be combined in one
Graeco-Latin square or one hyper-Graeco-Latin square to test respectively up to
four and five factors of five levels.

(a) (b) (¢)
A B C D E A B C D E A B C D E
C D E A B D E A B C E A B C D
E A B C D B C D E A D E A B C
B C D E A E A B C D C D E A B
D E A B C C D E A B B C D E A



Chapter 4

Quantitative Factors

This chapter introduces the main ideas that allow us to transform data into
information. As the objective of this course is the experimental strategy, only the
main concepts are presented here. If you are not familiar with the multilineal
regression, you are strongly recommended to consult a basic textbook to extend
and develop the points provided here.

When analysing a system by the experimental approach, it is interesting to made it
through successive empirical models. The objective is then to model the behaviour
of the system by fitting of the experimental data obtained through a series of tests
made by varying the inputs of the system, z;, on a series of functions, one per
output of interest, y;:

yj:fj({lfl,...,ib‘i,...,l']v) (41)

Graphically this can be represented by a bloc diagram as represented in Figure 4.1.
This approach is sometimes called the black box approach.

X1
)

X

TN

Figure 4.1: Graphical representation of the bloc diagram of a black box

37
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The most simple model

4.1 Representing experiments with matrices

There are two main methods of data analysis and both will be used in this course:

1. The comparison of the data with a statistical distribution (such as the normal
distribution)

2. The comparison of a subset of the data with another subset of the data (such
as comparing the effects with the residual error)

Now let us introduce a few definitions necessary to develop the theory:

Response: A response is any manifestation or consequence of a phenomenon.
It can be a qualitative or quantitative property. The response is the dependent
variable, the consequence of the phenomenon under study.

Factor: A factor is any variable (or parameter) which has, in reality or all
likelihood, an influence on the studied phenomenon. The factors are considered as
the possible causes of the response. The factors are the independent variables.

Level: The level is the state, the value of a factor.

Standardisation of the factors: There is significant interest in working with
coded factors centered on zero and varying in the interval [—1,1]. It allows a direct
comparison of the effects of each factor independently of their respective range and
order of magnitude. As presented in figure 4.2, the coded variable x; is achieved by
the transformation of the natural variable wu;:

max u;+min u;

Uio =
T; = UZA Hio with ’ . (4.2)
Us; Aul — maxuiQ—mmui
The reverse function is:
U; = Ujo + T4 AUZ (43)

4.1.1 Matrix of experiments and matrix of the model

Matrices of experiments, and of the model, are the key concepts on which the
theory is built. Let us continue with a few generic definitions :
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u? 'y 'y

YA V7P G PR (5 >

U’Io

~- Uy
2Au,

Figure 4.2: Standardisation of the experimental domain.

Matrix of experiments: The matriz of experiments E is the matrix of N rows
and k columns whose element z;; corresponds to the level of the factor j in the
experiment 7. There is then one row per experiment, and one column per factor.
In the example below, a set of 9 experiments to test a solar panel in function
of 3 factors, intensity of the radiation I, the angle of incidence 6 and the out-
door temperature T, is given with the original values of the factors , W/m?, deg, °C' .

I 0 T Ty X T

150 35 15 0 0 0

v e 100 30 —10 1 -1 -1
b , 200 30 —10 1 -1 -1
D : 100 30 40 1 -1 1
E=| : : = | 200 30 40 | = 1 -1 1
100 40 —10 11 -1

S ' 200 40 —10 11 -1
TN1 Nz TIN3 100 40 40 1 1 1
200 40 40 1 1 1

(4.4)

Empirical models: When dealing with quantitative factors it is possible (and
interesting) to mathematically model the data. The parsimony principle, one of the
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basic principles of science, asks us to give priority to the simplest possible model
that adequately explains the data. In this perspective the following set of empirical
models are of major importance (a graphical representation is given in figure 4.3):

e The constant model y = a, + €, that tends to model the data as a constant
a, with a residue ¢ for each of the £ measurements.

e The first degree model y = o, + Y; a;z; + € that tends to model the data as
a constant plus linear effects «; for each of the z; factors and a residue.

e The first degree model with interactions y = a, + 3°; ;; + >0 j iz + €
that integrates interaction effects a;; to model the coupled effect of factors x;
and ;.

e The second degree model y = a, + 3, ;x; + 3°;<; sz + €, that integrates
second degree effects ay;.

Matrix of the model: Saying that an experimental result follows a given linear
model is equivalent to saying that a linear system of equation relate the vector 77 of
the results of N experiments and the vector @ with the coefficients of the model:

7=Xa (4.5)

The model matrix X is built by the association of a linear model and a matrix of
experiment E and has then a row per experiment and a column per coefficient. For
a linear model with interactions for 2 factors x; and s, with N experiments the
matrix of the model is a matrix N x 4 as presented in equation 4.6.

Y = Qo + Q1 T1] + Qoo + Q120172 + €
1z o; T11T21
T T2 X

(4.6)

1 iy xon TiNTon
1IN T2N

In Matlab: There is a built-in function x2fx(X,m1d_ spec) that builds the matrix
of the model, where X is the essay matrix and m1d spec the model specification
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Constant model First degree model

First degree model with interaction Second degree model

Figure 4.3: Empirical models of increasing degree usable to model phenomena.

with a column per factor and a line per coefficient. To build the model matrix of
equation 4.6, the model specification would be the following:

mld spec =

_ o = O
— = O O
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4.1.2 Least squares fit, matrix of dispersion and matrix of
correlation

Least squares resolution: In most of the cases, the matrix of the model is not
square and thus not inversible. The coefficients a; of the model can be obtained
by way of a numerical process. The most current process is the least squares fit
algorithm (LSF)!. For this algorithm, the linear system of equation 4.5 is replaced
by

Y =Xa+¢ (4.8)

The hypotheses are that the measurements Y are random variables following a
normal distribution N(n(z),c?) and that the components of the vector of residue €
follow a normal distribution N(0,5?). The coefficients a; of the model can then be
estimated through the generalized least squares algorithm :

G=(xTx)" X"y (4.9)

in Matlab: There is a built-in function mdl = fitlm(X, y, modelspec) that per-
forms the multilinear regression of ¥y on X. The output is a linearModel class
object to which several methods can be applied to obtain standard plots, tests and
diagnostics.

Matrix of dispersion: In this algorithm, the matrix of dispersion
-1
(D) = (X"X) (4.10)

plays an important role. Its elements are the coefficients that describe the transfer
of the experimental error to the model as seen in the calculation of the variance of
the model coefficients here below:

var(d) = var <<XTX)_1 XTY> = (XTX)_1 var(Y) (4.11)

Its analysis, that can be performed before the essays, provides a lot of information
on the quality of the design of experiments.

!This presentation of the LSF is really simplified at the maximum. For a more rigorous
presentation see [4] pp. 390.



4.1. REPRESENTING EXPERIMENTS WITH MATRICES 43

Matrix of correlation: If the elements of the matrix of dispersion are divided
by the square root of the corresponding diagonal elements, we obtain a matrix
given the correlation coefficients of the factors taken two by two:

V DiiDjj

;= (4.12)

in Matlab: There is a built-in function corrcov(D) that transforms the dispersion
matrix into a correlation matrix.

Variance inflation factors: The variance inflation factors (VIF) are indicators
of colinearities between factors and predicts the quality of the estimation of the
model coefficients. They are the diagonal elements of the inverse of the correlation
matrix.

VIF(d) = diag(C™") (4.13)

By definition they are bigger or equal to 1, 1 being the best possible VIF. The
square root of the VIF tells you how much larger the standard error is, compared
with what it would be if that variable were uncorrelated with the other predictor
variables in the model. When the VIF are bigger than 10, it is recommended to
avoid performing the measurement, because the experimental error will have a too
important influence in the measurement.

Response variance function: The response variance function is a second degree
fonction defining the variance of the model in the experimental domain.

vary(z) = f'(x) (X"X) " f(x) o} (4.14)

Before the experiment, when 0% is not known, the function vary(x)/c% shows
where, in the experimental domain, the model will be of better or worst quality.
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Figure 4.4: Variance function of a linear model with interaction identified with a
cubic-centered design.

As example in figure 4.4 where the variance function of a design for two factors has
been plotted, it is possible to observe that the model would be very accurate at
the center of the domain and would lose accuracy when going away from it.

4.2 ANOVA and Orthogonality

In figure 3.1 it has been shown that the regression of a model corresponds to the
projection of a response vector on a set of vectors. This becomes evident for a
parametric model when the linear system is re-written in the vectorial form as in
equation 4.15.

N | Vg
Y=Xa+e=) |:|a+¢ (4.15)
=1z,
By definition the vector of residue € is always orthogonal to the vector of the model

Y = Xa. Applying the Pythagoras’ theorem it is then possible to write

SS(Y;) = SS(Y;) + SS(e;) (4.16)
Where the notation S\S(y) represents a sum of squares of y. Based on this breakdown
into two orthogonal elements, an ANOVA table can be built as shown in table 4.1
Now we want to dig further and perform a breakdown of the model ¥ to be able
to determine the level of confidence not only of the model as a whole, but also of
its different coefficients.
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Table 4.1: ANOVA table of a parametric model.

Source SS DF MS F p
Model YTy P

Residue €fe N —p N—€ €

Total YTy N

We now separate the model into two parts:

V = Xa
Y=Y1+Y, with { ¥, =X (4.17)
?2 = Xoay
The sum of squares can be calculated:
N W AN o R
V2= (Vi4Ya) = VP4 VY + YV, 477 (4.18)

If the two parts are orthogonal their product is null and it is possible to write
VilY, = YV, =Y,¥1=0 = Y?=VY24V? (4.19)

The breakdown of the sum of squares allows us to compute a new ANOVA as
shown in table 4.2

Table 4.2: ANOVA table of a parametric model separated into two orthogonal
part with p; and py the number of parameters of part 1, respectively part 2.

Source SS DF MS F )
Part 1 Y/IT}Afl P1 %?1’11?1 4o F(xlvpl)N _p)
Part 2 ?QTY/Q D2 lf/ngfz ) F(3327p2, N — p)

Residue €fe N —p %GTG

Total YTy N

This procedure can be generalized for more than two parts. What to do when
the model has to be decomposed into non-orthogonal parts? Let’s consider an
experimental situation in which three measurements y; are fitted on a linear model
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Yy = a, + a1z + €. The three measurements constitute the coordinates of the vector
OY as shown in figure 4.5. The two regressors are the vector that support the
grand mean [1 1 1]7 and the vector [z1 x5 x3]" defined by the values chosen for z in
the three experiments and represented in the figure by I and X.The two regressors
form a plane and the estimate of the model, 17, is the projection of Y on this plane.
The projection of Y on the two vectors of base determines the points A; and B;
respectively and the distance OA; and OB, correspond to the coefficients of the
model a, and a,.

Figure 4.5: 3D representation of the least squares fit with two non-orthogonal
predictors.

2 =
The ANOVA requires an orthogonal breakdown. OY is orthogonal to Y'Y, but

—

OA; is not orthogonal to OB;.The situation is presented with more clarity in 2D
in figure 4.6. To have an orthogonal breakdown it is necessary to determine a
new axis OXl_o_()l;thogonal to OA; and in the plane OA;By. With this change the

projections of [0)% change also:

2 > >
OY == OAl + OBl == OAQ + OBQ (
—A> — — — —
OY =a,l + X =a, ] +a] X, (4.21
a, = a, + ay cosf (
(

a*x] = aqsinf
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The new breakdown can be written:
—2\ 2 — 2 —\2 =2
(01/) — (04, +0B,)" = (04) + (0B) (4.24)

and the sum of squares can be corrected. Table 4.3 presents the new ANOVA
scheme. In practice, the corrected coefficient a} for the constant is equivalent to the
coefficient obtained when regressing the data with only one regressor (the constant
in that case). The corrected sum of squares for the linear effect is computed
indirectly by difference between the model sum of squares, Y7V, and the corrected
sum of squares of the constant a**I71. This procedure can be continued step by
step in the same way when there are more than two coefficients in the model.

A, |
[ \
A,
! Y
a; =aq, +alCOSe 2
® < Al
0 5
) ~ O — :::;,::‘:' BZ
\ Xl.o y
Y
a. = a,sind

Figure 4.6: 3D representation of the least squares fit with two non-orthogonal
predictors.
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Table 4.3: ANOVA table of a linear model y = a, + a1z + € with corrected sum of
squares to mitigate non-orthogonality of the regressors.

Source SS SS* DF MS F p
Model YTy - 2 %?T? x F(z,2,1)
Residue el'e - 1 el'e

Measurements Y7V - 3

Constant al’r a2Itr 1

Linear effect a?XTX YTy — aI'r 1

Residue ele ete 1

Total - YTy 3

4.2.1 Example of a non-orthogonal situation

The preceding concepts are now illustrated with an experimental situation to test
the interaction between two factors. We want to test if the conjugate use of two
sugar substitutes P, and P, presents a combined negative effect for health. The
experiments would consist in feeding different dishes of cultured cells with different
sodas having different concentrations of the sugar substitute to be tested (figure
4.7a). After a period the dishes are analyzed to measure the level of an indicator
related to the risk of diabetes. Table 4.4a presents the height experiments and the
results. Figure 4.7b presents a scatterplot of the points of measurements in the
experimental domain. Table 4.4b presents the matrix of the model:

Y=0a,+a T4 + as To + a2 Toly +€ (4.25)

Applying the least squares fit algorithm given in equation 4.9, the coefficients of
the model with interaction can be computed. This would give the values of the
coefficients that appear at the bottom of table 4.4b. These coefficients are used to
calculate the estimates Y. The difference between measurement results and the
estimates gives the residue €, also presented in the same table. A representation of
the model as a surface is given at figure 4.8. An ANOVA analysis of the model
as a whole can be done based on the sum of squares (table 4.5). The very small
probability (p = 1.1 x 1078) of obtaining the Fisher ratio by chance concedes a
good level of validity to the chosen model. But would it be possible to conclude
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that the hypothesis on the combined effect of the sugar substitutes is validated?
No, because, even if the model is coherent with the experimental data,there is still
no evidence that the term of interaction is significant in itself. To answer that
question, it is necessary to go one step further by computing the level of significance
of each term. The difficulty to do so lies in the fact that the regressors (the vectors
constituted by the columns of the model matrix) are not orthogonal, as can be
observed in figure 4.9, and the sum of squares must thus be corrected.

0.25

0.2

0.15

P, [g/1]

0.1

0.05

0 0.2 04 0.6 0.8
Pl [g’l]

(b)

Figure 4.7: (a) Dishes for the culture of cells. (b) Scatterplot of the standardized
experimental points.

Following the procedure presented earlier in this chapter and summarized in table
4.3, the corrected sum of squares of our example can be computed step by step, as
illustrated in table 4.6, as follows:

1. Compute the total sum of squares of the measurements, SS(Y) = 3, V2

2. Compute the corrected sum of squares for the constant a,, SS(a,) = +(3; Vi)?
3. Compute the first residue by subtraction, SS(e;) = SS(Y) — SS(a,)

4. Compute the second residue, SS(ey) = SS(Y) — SS(a,, a1)

5. Compute the corrected sum of squares for the first linear coefficient a, by
subtraction, SS(a|a,) = SS(a,, a1) — SS(a,)?

6. Proceed the same way to get the corrected sum of squares of as,
SS(aslay, ar) = SS(ae, a1, as) — SS(ae, a)

7. And ajq, SS(a1z]ae, a1, az) = SS(ae, a1, as) — SS(ae, a1, as)
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Indicator

Figure 4.8: Representation of the model as a surface in the standardized experi-
mental domain with the experimental results (red dots).

Table 4.4: Sugar substitute experiments. (a) Experimental data constituted by
the concentration of products Py and Py in [g/l] and the corresponding level of
the indicator of diabetes. (b) Matrix of the linear model with interaction and the
computed coefficients.

(a) (b)

A

Xl X2 X1X2 Y €

-1.00  -1.00  1.00 85.6 -4.66
-0.60 0.17  -0.10 64.88 5.94
0.20 -0.83 -0.17 60.39 6.73
1.00 1.00 1.00 272.66 -2.65
-1.00  -1.00  1.00 85.06 4.66
-0.60 0.17  -0.10 64.88  -5.94
0.4 0.11 53.66 0.20 -0.83 -0.17 60.39  -6.72
0.6 0.2 27531 1.00 1.00 1.00 272.66  2.66

SS(Y) ap ap as a;a SS(Y) SS(e)
179’082 97.70 52.62 41.18 81.15 178863 219

Run Pl P2 Y

0.1 0.08 80.40
0.2 015 70.82
04 0.11 67.11
0.6 0.2 270.00
0.1 0.08 89.72
0.2 0.15 5894

O O UL ix Wi
I e T T S =Gy Sy
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Table 4.5: ANOVA table of a linear model with interaction for the experiments
with the sugar substitute.

Source SS DF  MS F )
Model 178863 4 44’715 8184 1.1 x 1078

Residue 219 4 54.6
Total 179082 8

90

60
=
El
-

30

0 7

X1 I-X2 I-X1X2 X1-X2 X1-X1X2 | X2-X1X2

‘Sériel 97.42 101.66 52.62 47.30 89.31 87.03

Regresors

Figure 4.9: Angles in degrees between the regressors.

Now corrected sums of squares are available for each coefficient and the last residue
and the ANOVA table can be completed as shown before. This shows that the
coefficient of interaction has a p-value of 4.6 x 10~7, which is fully acceptable. It
would be then possible to conclude that the experiment has shown the effectiveness
of a combined effect of the two sugar substitutes.

28S(A|B) is read sum of squares of A knowing B
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Table 4.6: ANOVA table of a linear model with interaction with corrected sum of
squares to mitigate non-orthogonality of the regressors.

Source SS SS* DF  MS F p
1% 178’863 4 44’715 8184 1.1 x 1078
€ 219 4 54.6

Total ~ ®179°082 8

o @116°635

€1 ®62°447

Total 1797082

o 116’635

a ®37°034

€9 @®25°413

Total 1797082

o 116’635

a 37°034

as ©9’'139

€3 16°275

Total 1797082

o 116635 1

ay 37034 1 37034 678 3.8x10°%
a9 9139 1 9’139 167 2.4x 1076
a12 @16°056 1 16056 294 4.6 x 1077
€3 219 4 54.6

Total 179°082 8
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4.2.2 Alternative sum of squares

The procedure presented in the previous sections for correcting the sum of squares
is called the sequential sum of squares. The sums of squares of the different parts
of the model are computed each time, based on the sums of squares of the previous
parts. This method is also called Type I. In this procedure, the order of the
coefficients has an influence on the final p-values. To avoid the latter, a Type I
procedure has been developed and is proposed as an option by most standard
softwares. The type II sum of squares procedure calculates the p-values in the most
unfavorable situation for each coefficient, with which we mean that each coefficient
would be placed ofter all the other ones.

Table 4.7 presents the ANOVA of the experiments of the sugar substitutes realized
with type-II sums of squares. It is possible to observe that the p-values are bigger
than in the type-I case, this procedure being more conservative.

Table 4.7: ANOVA with type II SS of a linear model with interaction for the
experiments with the sugar substitute.

Source SS DF MS F p
Go 15’911 1

ax 7130 1 7130 130 0.034%
a9 4’700 1 4700 86 0.075%
a2 16’122 1 16’122 295 0.007%
Residue 219 4 54.6

Total 179°082 8

in Matlab: The method tbl = anova(mdl, anovatype, sstype) can be applied
to a linearModel object mdl. The sstype parameter allows us to select the type of
sum of squares.

4.2.3 The use of the alias matrix

The procedure of orthogonalization can be formalized using the matrix of alias. Let’s
consider an experimental situation with an output Y obtained by n experiments.
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Now let’s assume that we are interested in regressing this data on two complementary
models whose model matrices are X; and [X; X5] so that:

V., = X (4.26)

651

}/b = [Xl Xg] [Oé ‘| = X1 (03] +X2 (65) (427)

2
a and [ajas| being the coefficients of the two models. The second model corre-
sponding to the first model plus a complement, there are the same number of
elements in « than in «;. If the alias matrix is defined as:

-1
A=(x{x1) (X7 xo) (4.28)
it is possible to write the following transformations:
a = o+ Aoy (4.29)
Xo1 = Xo— XA (4.30)

and the decomposition in orthogonal components is:
}A/:Xl (a1+Aa2)—|—(X2—X1 A) Qg :Xl Oé—i-XQ.l Qo (431)

The corresponding ANOVA table, now based on a sequential sum of squares, can
be written as presented in table 4.8

Table 4.8: ANOVA (type I SS) using the alias matriz.

Source SS SS*

ol ol XT X104 (a1 + Ay )TXle (a1 + Aag )
s oF XT X0 o (Xo— X1 AT (Xy — X14) ay
Residue el'e el'e

Total YTy YTy

For more than two parts, the procedure can be reformulated as follows:

1. Compute the coefficient estimates « for the full number of regressor N with
the LSF algorithm (equation 4.9)
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. Compute the full model estimates V = Xa and the corresponding residue,

and collect the sums of squares SS(Y) and SS(e).

. Compute the coefficient estimates o(n,—1) for (Ng — 1) regressors as defined

in equation 4.29 which gives:

A(Np-1) = [Q<(ve-1)] + Ag) g (4.32)

with the matrix of alias between the model of Ng coefficients and the one
with (Ng — 1) coefficients:

-1
Ay = (Xigcomn]” Kijeovan] ) Kijsvan]” Xan  (4.33)

. Compute the model estimates f/(NR,l) = [Xi j<(Na—1)] o(nyz—1) and the corre-

sponding sum of squares SS(Y Nr—1))-

. Compute the corrected sum of squares of oy,

SS(angllojzvp-1]) = SSVing-1) — SS(Y) (4.34)

. For the type I sum of squares, go to 3 for Ny — 2 regressors, get

SS(anp-1]lajcve—2]) = SSVing-2) — SSVinp—1))

and so on until reaching all the corrected sums of squares. For type II, go to
3 for Nr — 1 regressors and so on till every regressor has been excluded once.

. Settle the ANOVA table with the collected sums of squares.

4.2.4 Lack of fit, goodness of fit and parsimony principle

The ANOVA analysis provides a way to determine if the data is coherent with
a given model. The result of this analysis depends heavily on the design. The
more factors a model includes, the more explanatory the ANOVA table will appear,
but with a risk of over-fitting the data. Hence an equilibrium must be found as
Vandekerckhove et al [10] note:

Throughout history, prominent philosophers and scientists have
stressed the importance of parsimony. For instance, in the Almagest
(...) Ptolemy writes: “We consider it a good principle to explain the
phenomena by the simplest hypotheses that can be established, provided
this does not contradict the data in an important way." Ptolemy‘s prin-
ciple of parsimony is widely known as Occams razor(...); the principle



56 CHAPTER 4. QUANTITATIVE FACTORS

is intuitive as it puts a premium on elegance. In addition, most people
feel naturally attracted to models and explanations that are easy to
understand and communicate. Moreover, the principle also gives ground
to reject propositions that are without empirical support (...).

However, the principle of parsimony finds its main motivation in
the benefits that it bestows those who use models for prediction. To
see this, note that empirical data are assumed to be composed of a
structural, replicable part and an idiosyncratic, non-replicable part.
The former is known as the signal, and the latter is known as the noise.
Models that capture all of the signal and none of the noise provide the
best possible predictions to unseen data from the same source. Overly
simplistic models, however, fail to capture part of the signal; these
models underfit the data and provide poor predictions. Overly complex
models, on the other hand, mistake some of the noise for actual signal;
these models overfit the data and again provide poor predictions. Thus,
parsimony is essential because it helps discriminate the signal from the
noise, allowing better prediction and generalization to new data.

Occam’s razor is named after the English philosopher and Franciscan
friar Father William of Occam (c.1288-¢.1348), who wrote “Numquam
ponenda est pluralitas sine necessitate” (plurality must never be posited
without necessity), and “Frustra fit per plura quod potest fieri per pau-
ciora” (it is futile to do with more what can be done with less). Occam’s
metaphorical razor symbolizes the principle of parsimony: by cutting
away needless complexity, the razor leaves only theories, models, and
hypotheses that are as simple as possible without being false. Through-
out the centuries, many other scholars have espoused the principle
of parsimony; the list predating Occam includes Aristotle, Ptolemy,
and Thomas Aquinas (...), and the list following Occam includes Isaac
Newton (“We are to admit no more causes of natural things than such
as are both true and sufficient to explain their appearances. Therefore,
to the same natural effects we must, so far as possible, assign the same
causes."), Bertrand Russell, Albert Einstein ( “Everything should be
made as simple as possible, but no simpler"), and many others.

One tool to find the equilibrium between under- and over-fitting the the concept of
goodness of fit or its opposite the lack of fit.

Let’s consider an experimental situation with one output y that we want to model
with one factor x so that y = f(z). A set of experiments have been realized to
determine this relation as presented in the table 4.9. We can observe in figure 4.10
that the ten data points are constituted by experiments for five different values of
x that have been duplicated.
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Table 4.9: Set of 10 data points. The column y corresponds to the value of y
averaged for each value of x. The column 1 corresponds to the estimated value of y
by a linear model y = a,+ a1 x. The last row SS corresponds to the sum of squares.

Runs y y o oy—-y 4 y=4 y—y
1 -1 11.60 11.43 0.17 9.09 251 2.35
2 -1 11.27 1143 -0.17  9.09 218  2.35
3 -0.5  5.05 6.63 -1.58 7.51 -2.46 -0.88
4 -0.5  8.21 6.63 1.58  7.51 0.70 -0.88
5 0 3.19 28 033 593 -2.74 -3.07
6 0 2.53 286 -0.33 593 -3.40 -3.07
7 0.5 3.63 3.7  -0.12 435 -0.72 -0.60
8 0.5 3.86 3.75 0.12 435 -0.49 -0.60
9 1 5.56 498 057 277 278 221
10 1 4.41 498 -0.57 277 164 221

SS 449.27 443.33 5.94 401.42 47.85 41.91
14
¥

L
L

2 -15 1 -5 1] 0.5 1 L5 2

X
Figure 4.10: Scatterplot of the ten data points.
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The question is now to determine if a linear model is acceptable for modeling such
data. Table 4.10 presents an ANOVA analysis with some additional rows. The row
model shows a low p-value that could be acceptable following the usual criteria
(p-value < 5%). The duplication of the experiments has allowed the determination
of a pure error sum of squares. It can now be distinguished from the modeling
error sum of squares called lack of fit obtained by subtracting the pure error to
the sum of squares of the residue. When comparing these two sums of squares, a
p-value of 1.1% is obtained. This allows us the reasonably confident assumption
that there is a lack of fit and that it would be better to look for a better model.
To perform a lack-of-fit analysis it is necessary to have repetition of a few ex-
perimental points (to compute the pure error sum of squares) and to have more
experimental points than the number of parameters of the model.

Table 4.10: ANOVA table with lack of fit analysis.

Source SS df MS F p

Model 401.42 2 200.71 33.56 0.013%
Residue 4785 8 5.98

Lack of fit 4191 3 1397 11.76 1.1%
Pure error 5.94 5 1.19

Now the theoretical base is established, we will present a series of optimized designs.

4.3 Plackett-Burman design

The properties of the Plackett-Burman (PB) group of designs are very similar to
the factorial design [3]. These designs allow us one to estimate efficiently the main
effects of the factors of a system supposed to be without any interaction (additive
model). These matrices allow an efficient screening of a large number of factors
with a minimum of runs.

A PB design requires N runs for estimating the main effects of a maximum of
N — 1 factors. Matlab has a hadamard routine that computes PB matrix for the
cases where n, n/12, or n/20 is a power of 2.

The Plackett-Burman matrices are composed, like factorial matrices, of 1 and —1.
The construction of such a design starts from a generator. The generator is a list of
+ and — signs that constitute the first line of the matrix. A case of seven factors is
presented in 4.11.
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Table 4.11: Construction of a PBg from a generator.

instruction codification matrix
generator +++-+-- 1 1 1 -1 1 -1 -1
N-2 next lines - +++-+-—- -1 1 1 1 -1 1 -1
obtained by - —-4+++-+4+ -1 -1 1 1 1 -1 1

circular +-——4++4+- 1 -1 -1 1 1 1 -1
permutations —+--+4+4++ -1 1 -1 -1 1 1 1
+-4-—-++ 1 -1 1 -1 -1 1 1
+4+-+--+ 1 1 -1 1 -1 -1 1

Alineof— ——————— -1 -1 -1 -1 -1 -1 -1

Plackett and Burman present a list of generators for cases inferior to 100 factors.
This list is reproduced partially in table 4.12

Table 4.12: A few generators of Plackett-Burman design.

N=8 +++—+ ——

N=12 ++—-—4++ +———+ —

N=16 ++++—+—++——+———

N=20 +4+——++++—F—F+————++—
N=24 +++++—F+—F+——F+——+—F+————
N =40 Double of design N = 20

in Matlab: The build-in function X = hadamard(n) provides a model matrix X
of a Plackett-Burman design of n runs. This function handles only the cases where
n, n/12, or n/20 is a power of 2.
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4.4 Factorial design

Unfortunately, the most frequent design used in laboratories consists in varying one
factor at a time (OFAT): this has the disadvantage of neglecting the interactions
between factors. In this regard, the factorial design is a major improvement to
the experimental strategy. The advantage of the factorial design in comparison
to the OFAT design resides precisely in the fact that all the factors are varied
simultaneously, but in a structured way.

Factorial design is an ideal candidate for the identification of the polynomial model
of first degree with interactions, as presented in equation 4.35. A distinction is
usually made between designs of experiments after the number of levels of all the
factors, usually two or three. There are however composite designs that mix factors
with two levels and factors with three levels [11, 12, 13];

Let us consider a linear model with interactions (as, for example, the Taylor’s series
of a complicated function):

N N N
V() =ao+ > aimi+ Y i+ Y ety + -+ ap.yz - ay (4.35)
i=1 i<j i<j<k

This polynomial counts 2V coefficients a,, a; - - - ay and each factor appears only at
the first degree. The optimal design for determining the 2%V coefficients a; of this
model is a factorial design. The coefficients a,,aq, -+ , a2, -+ ,a;..n are called the
effects of the factors x;. A distinction is usually made between:

e the constant effect a,

e the main effects a; - -ay

e the first order (two-by-two) interaction effects
e the higher order interaction effects

The a; are the half-effects because they correspond to the variation between the
center of the domain and the border. The a; are commonly, if imprecisely, referred
to as the effects. In order to explore an experimental space of N factors, the inferior
and superior limits of each are considered. This is equivalent to considering a
system of N factors at two levels that then counts 2%V possible states. There are
several possibilities to represent such a system. For the sake of computation, the
state of a factor is represented by an index indicating if the factor is in one or the
other state. Usually the indices used are -1" and +1’, which has the advantage of
creating a transitive group with the operation multiplication of column®. The state

3Tagushi designs are coded with 0, 1, 2, ---.
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of the system is then fully determined by a state vector that contains the indices
of each factor and, for each factor, the real physical values corresponding to the
indices. This is shown in Table 4.13, where the line experiment is equivalent to the
line code.

Table 4.13: Example of coding for a factorial design.

Factors U[W] T[°C] Plpa] D[m]

Minimum 10 250 100000 —0.02
Maximum 20 350 150000  0.02

Experiment 20 250 150000 0.02
Coded 1 -1 1 1

The nomenclature of factorial designs is s™ where s is the number of states (levels)
for each factor and N the number of factors. The value sV corresponds to the
number of experiments of the design. A factorial matrix E can be systematically
constructed as follows:

e The first column is filled with —1 in the first half and with 1 for the second
half,

e The second column is filled in its first and third quarters with —1 and with 1
in its second and fourth quarters,

e We proceed in such a way for the other columns, alternating —1 and 1
following the successive fractions corresponding to (3)" till (3)V .

The matrix of experiments E of a design 22 is then the following:

(-1 -1 -1

-1 -1 1

-1 1 0

-1 1 1

E=|", _| (4.36)

1 -1 1

11 -1
11 1
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We can see that each column has the same number of 1 and of —1. The matrix
of the model X is constructed from the matrix of experiments E. The matrix of
the model X has the same number of columns as the number of coefficients of
the model. The column corresponding to the interaction x;z;, which is used to
calculate the coefficient a;;, is the product of the columns 7 and j of the matrix of
experiments. The product of two columns is a column with the same number of
elements as the multiplied columns and whose elements are the products, two by
two, of the original elements as shown in equation 4.37.

aq b1 a11)1
= : (4.37)

an by anby

The next step is to set up the matrix of the model for a model of three factors and
a factorial design 23. The model has one constant effect, three main effects and
four interaction terms:

Y(.’ﬂ) = Qo -+ a1 -+ AoT9 -+ asxs + 1919 + 13113 + Q92323 + 1231723 (438)

The first column of the matrix of the model, which corresponds to the coefficient
ap, is a column of 1. The next three columns, which correspond to the main effects
ai, as, as, are the three columns of the matrix of experiments (equation 4.36). The
four last columns are for the interaction effects a1o, a13, a3, a123 and are produced
by multiplying the columns of the matrix of experiments as they correspond to the
interacting factors.

-1 -1 -1 1 1 1 -1
-1 -1 1 1 -1 -1 1
-1 1 -1 -1 1 -1 1
-1 1 1 -1 -1 1 -1
-1 -1 -1 -1 1 1
1 -1 1 -1 1 -1 -1
1 1 -1 1 -1 -1 -1
11 1 1 1 1 1

(4.39)

— = = = e e e
—_

If the response of the system is organized in a vector R and the coefficients of the
model in a vector @, then the system of equations is written and solved as follows:

]

= Xa (4.40)
= (X"X)"'X"R (4.41)

QL

The model matrix (as well as the matrix of experiments) of a factorial design is
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a Hadamard matriz and has the property to be proportional to the inverse of its
transpose. This significantly simplifies equation 4.41, avoiding a matrix inversion:

{(XTX)= NIy} = {d= ;XT}?} (4.42)

For the factorial designs, the number of coefficients (and of experiments) grows
exponentially with the number of factors. For that reason, these plans rapidly
become too costly and then unusable. If the coefficients of highest orders of
interaction can be neglected, it is then possible to realize only a fraction of the
factorial design, as we will see in the next chapter. But let us first practice the
concept presented in this chapter in an example.

in Matlab: Several functions can be used to generate a full factorial design 2V:

e E = factyat(n) is a function of LISA, the library of the course and generates
an essay matrix £ coded with —1 and 1.

e E = ff2n(n) is a built-in function that generates an essay matrix coded with
0 and 1. A standard full factorial matrix can be obtained with the linear
transformation F = (E — 0.5) * 2;

e E = fullfact(levels) gives factor settings E for a full factorial design with
n factors, where the number of levels for each factor is given by the vector
levels of length n.

4.4.1 Example

A student wants to optimize her bicycle. She is aware of three factors about her
preparation and her material:

1. The height of the saddle relative to the pedal can vary between 75 cm and
80 cm.

2. Her diet can be composed of dry meat and bananas (animal proteins and
magnesium) or a mix of cereals (vegetable proteins and starch).

3. The derailleur gears: she has two models available, A and B.
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Our student wants to determine if there is a main factor and the optimal set for
improving her performance. In this perspective she plans a design of experiments
(Table 4.14). A run consists in measuring the time necessary to run the usual 50
km she cycles daily as training. She plans to fit the data on the following model:

time = meantime
+ saddle effect 4 diet effect 4 gear effect
+ interaction saddlexdiet 4 interaction saddlexgear + interaction diet x gear

+ interaction saddlexdiet x gear

Table 4.14: Factorial runs for determining the effects of the three factors supposed
to influence the student’s performance.

Run Saddle Diet Gear X; Xy X3
1 80 cm  dry meat & bananas A 1 1 1
2 80 cm  dry meat & bananas B 1 1 -1
3 80 cm cereals A 1 1 1
4 80 cm cereals B 1 1 -1
5 75 cm  dry meat & bananas A 1 1 1
6 75 cm  dry meat & bananas B 1 1 -1
7 75 cm cereals A 1 1 1
8 75 cm cereals B 1 1 -1

The matrix of the model is given in equation 4.39. The student makes a random
permutation to determine the order of the runs. She conducts the experiments at
a frequency of one per day, taking care to keep all external conditions as constant
as possible (climate, time schedule, daily activities, etc.). She gets the following
results (sorted in the original order and not the order of execution):

. T
Y = [ 92.1 138.3 117.9 155.7 104.7 96.9 129.3 125.1 } (4.43)
Applying equation 4.42, she can make the following inference :
T
d=[120 6 -12 -9 12 -12 —06 -15 | (4.44)

In figure 4.11 the height results have been placed in the experimental space. This
type of representation is especially indicated for presenting results to people with a
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minimum of knowledge about the design of experiments. We can observe that the
specific effects (the differences from one edge to another) for the saddle and the
gear are not the same, indicating the presence of a significant interaction. In table
4.15 the effects are presented in a relative value a;/ag which shows the importance
of each coefficient in relation to the constant effect ag. The relative half-effects give
a rapid insight into which factors and interaction are important and which are less.
So remember that the levels have been coded -1 and 1. So all the coefficients are
without dimension and can be compared. The same data is presented graphically
in figure 4.12.

Table 4.15: Half-effects and relative half-effects for the bicycle experiments.

Factor - saddle diet gear saddle saddle diet saddle
xdiet xgear xgear xdiet
X gear
Coef. Qo ay 5) as Q12 a3 23 123
half-effect 120 6 —12 -9 1.2 —12 —0.6 —1.5
Rel. effect - 5% —10% —-7.5% 1% -10% —5% —1.25%

4.5 Fractional factorial design of 2 levels

Fractional factorial designs are an important category of factorial designs because
they allow us to avoid the exponential expansion of the number of experiments with
the number of factors. This chapter presents the basic concepts of fractional factorial
designs. For a deeper understanding consult the book Statistics for experimenters
by Box [3]. It provides a very comprehensive and didactical explanation, fully
illustrated by practical examples. In the book by Montgomery [1], chapter 8 covers
to the same topics with a broader view.
The number of experiments NN, of a fractional factorial design is a power of 2 and
the number of experiments is still used as a base for the nomenclature for those
designs:

N, =2V (4.45)

N being the number of factors and r being an integer smaller than N.
To understand how this works, we can start from a property of the full factorial
design: each column of a full factorial design is independent of the other columns.



66 CHAPTER 4. QUANTITATIVE FACTORS

x3:gear

I x2:diet

x1:sadle

Figure 4.11: FEzperimental data and specific effects. The change for the different
specific effects (4.2, 7.8, -46.2, -37.8) indicates strong interaction.
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Figure 4.12: Bar chart graphic of the half-effects for the bicycle experiments.
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This means that none of the columns of the experiment matrix can be obtained as
the product of a set of the other columns. This independence is related to the lack
of co-variance between the determined coefficients of the model that characterizes
an orthogonal design. Fractional factorial designs are based on the fact that the
coefficients of the highest levels of interaction can be neglected and that their
corresponding columns in the model matrix can be used for introducing additional
factors.

4.5.1 Construction of a fractional factorial design
The construction of a fractional factorial design can be done as follows:

(N—

1. Set-up of a full factorial matrix 28" for N — r factors

2. Build r generators based on the r highest interactions that will be associated
with r additional factors. These generators are usually written as j = k...n
where each letter corresponds to a factor. Later on, we will see how to work
with the generators and how to determine their properties.

3. Determine the list of the contrasts and alias groups that define the list of
linear combinations of the coefficients that can be estimated by the design.

The consequence of associating additional factors with particular interactions is
that the system of equations is now under-determined. It is then no longer possible
to estimate all the coefficients of the model independently, but only some linear
combinations of them.

in Matlab: The built-in function [E, conf] = fracfact(gen) creates the two-level
fractional factorial design defined by the generator string gen. the generator is
a string indicating the construction of the columns (example: ’a b ¢ abc’ for the
generator I = abc). conf is a cell array of strings containing the confounding
pattern for the design.

4.5.2 The alias concept

The group (A, *) made with the set A of the columns of a model matrix of a
full factorial design and the operation column multiplication represented by the
symbol *, constitutes a commutative group. An example will help us to understand
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the mechanism of the generators and alias. Consider a system of five factors
{X1, X2, X3, X4, X5} and a generator of size 5:

5=1234 (4.46)

The first four columns of the matrix of experiments correspond to the columns of a
full factorial matrix of sixteen experiments. The fifth column is built by multiplying
the first four columns. The product of a column by itself gives a column of 1
represented by the identity symbol I, associated with the constant coefficient «,
which is the identity element of the group (A, ). A group structure also requires
that each element has an inverse. In this type of group each element (each column)
Is its own inverse:

55=5"=1 (4.47)

then
12345 =1 (4.48)

This relation indicates that the coefficient 2345 is an alias of a,. By multiplying
the two sides of equation 4.46 by the column 1, the following relation is obtained:

15 =234 (4.49)

This means that a5 is aliased with awgs. Continuing the same way, equation 4.46
lets us define the sixteen alias set which also determines the sixteen contrasts that
can be obtained with this fractional design - they are listed in table 4.16.

Table 4.16: Set of contrasts of a factorial design 2°~! defined by the generator
5=1234.

{ Qo , (112345 }

{ Qq , (2345 } { Qo , (1345 } { Qg , (1245 } { Qy , (1235 } { Qs5, (1234 }
{ Q12 , (345 } { Q13 , Qiggs } { Q14 , Qi35 } { Q15 , (234 } { Q23, (X145 }
{ Qg4 , (135 } { Qg5 , (134 } { Qi34 , (125 } { Q35 , (124 } { Qly5, (X123 }

Another generator would give another distribution of the coefficients within the
sets, but the same number of sets. In a first step, five factors have been considered
that involve 32 coefficients (of the linear model with interactions). Now, with
a generator, sixteen sets of aliases have been identified corresponding to sixteen
independent contrasts that can be represented by the symbol /; to differentiate them
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Table 4.17: Relation between the contrasts and the coefficients of the linear model
with interaction in a factorial design 2°~% defined by the generator 5 = 1234.

lo = ap + i23s5 ls = g + 33

[y = a1 + agses lg = a5 + oz

ly = ap + 1345 lip = a3 + augs
I3 = az + a1245 lin = a4 + aiss
ly = oy + 1235 lio = o5 + i34
ls = a5 + aio34 lis = ai3q + 195
le = aia + aizgs liy = azs + a1
l7 = a3 + aoss 15 = aus + 93

from the non-aliased coefficients «;. If the design is executed without introducing
any additional generator, it is possible to estimate the sixteen coefficients /; that
will have the relationship with the model coefficients «;, as presented in Table 4.17.

Observe that if the 3 x 3 and 4 x 4 interactions (o and o;;x) are negligible, then
the design allows us to estimate the main effects o; and the 2 x 2 interactions a;
without bias. Moreover, and if necessary, complementary experiments can be made
(the second half of the full factorial design) so that the alias would be removed and
all the coefficients be estimated.

An additional generator would let us further divide the number of experiments by
two, but would also complicate the alias structure as a consequence.

The number of independent contrasts that can be estimated corresponds to the
rank of the model matrix. Usually, interactions of highest levels are neglected and
are not even mentioned in the alias table. In our example this would mean that
only the coefficients o; and «a;; would be mentioned in the alias table.

When writing down the alias table we must be cautious of the fact that several
generators induce aliases that do not appear in the individual analysis of each
generator. As an example, the two generators I = 1235 and I = 1246 of the 262
design induce the alias 34 = 56 that does not appear straight ( 3 = 125 and 4 = 126
, then 34 = 125126 = 56 ). To guarantee that no alias has been missed, we need to
check that all the main and interaction coefficients are present once, and only once,
in the alias set. A quick way to do that is by writing down all the interactions as
in the table 4.18 and tracing them successively.
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Table 4.18: Triangle of interactions 2 x 2.

12 13 14 15
23 24 25

34 35

45

4.5.3 The resolution of a fractional design

The resolution R is an important concept for selecting a fractional design. It
describes the type of alias induced by the reduction of the full factorial design.
The resolution indicates which levels of interaction are aliased. The most common
resolution levels are:

IIT: A design of resolution R = I'I] confounds no main effects a; between them,
but confounds main effects ; with interaction coefficients of first level o;;. (and
second level coefficients «;;, with the constant effect o).

IV: A design of resolution R = IV confounds neither main effects a; between
them, nor with first level interaction coefficients «;; ; but it confounds first level
interaction coefficients «;; between them (and main effects «; with second level
coefficients ).

V: A design of resolution R = V confounds neither main effects «; between
them, nor with first level interaction coefficients «;; ; nor first level interaction
coefficients a;; between them; but it confounds first level interaction coefficients
a;; with second level coefficients vy

The resolution of a design corresponds to the size of the smallest generator and
can be indicated by a Roman number as an index of the design: e.g. 23} is a
2-level factorial design for three factors, with one generator and its resolution is

R=1I1I.

4.5.4 Fractional factorial table

Fractional factorial designs up to 11 factors are listed in figure 4.13 . This is a copy
of a page of Statistics for experimenters by Box [3], which is famous among DOE
users. I have heard a statistician saying that “ with this page in your pocket you
can find a job in fifteen minutes " , and I tend to agree!
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3 4 5 6 7 8 9 10 11
3-1
2HI
+3=12
23 4-1 5-2 6-3 7-4
2 w 2 m 2HI 2 I
+4=12
+4=12 +5=13
+4=12 +5=13 +6=23
+4=123 15=13 +6=23 +7=123
2} 24 5-1 6-2 7-3 8-4 9-5 10-6 11-7
2 Vv 2 w 21V 2”’ 2 I 2HI 2HI
+5=123
+5=123 +6=234
+5=123 +6=234 +7=134
+5=234 +6=234 17=134 +8=124
+5=123 +6=134 17=134 +8=124 +9=1234
+5=123 +6=234 +7=123 +8=124 19=1234 +10=12
2 times +5=1234 +6=234 +7=134 +8=124 19=1234 +10=12 +11=13
3 ) 5 = - = B - 6
2 2 2 2’6,]1 2;;,2 2;,3 23’,4 21[(:, 5 2},1,
+6=123
+6=1234 17=234
16=2345 +7=1235 +8=345
+6=123 17=1345 1+8=1245 +9=134
+6=1234 +7=124 1+8=1245 19=1345 +10=145
4 times 2 times +6=12345 +7=1245 +8=2345 19=1235 +10=2345 iﬂ=245
3 4 5 o - 8-2 9-3 10-4 11-5
2 2 2 2 %) ;I'Hl %) v 2 o 2 w 2 W
+7=345
17=2346 +8=1234
17=1234 1+8=1346 +9=126
+7=1234 1+8=1356 19=1245 +10=2456
8 times 4 times 2 times +7=123456 +8=1256 19=3456 +10=1235 iz=l456
3 24 28 26 27 8-1 9-2 10-3 11-4
2 2 v 2 Vi 2 vV 2 14
+8=1237
18=1237 +9=2345
+8=13467 19=2345 +10=1346
16 times 8 times 4 times 2 times +8=1234567 +9=23567 +10=1346 | +11=1234567

Figure 4.13:

Two-level fractional factorial design for k variables and N runs.
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4.6 Composite design

The central composite design (CCD) is obtained by the aggregation of a star design
to a factorial design as shown in figure 4.14. A matrix of experiments of a composite
design has three types of rows as shown in table 4.19.

Figure 4.14: Extension of a 23 factorial design (red dots) to a composite design
of 15 runs with 6 star points and one or more central points.

For response surface methodology, two important properties of the experimental
design have to be considered: the isovariance per rotation and the orthogonality.
The isovariance per rotation, also called rotatability, means that the variance of the
estimated model at a given point will depend only on the distance of this point to
the center of the domain. In other words, a design is rotatable when the variances
of the model does not depend on the design orientation. To ensure this property,
the axial distance «a of the star design must follow the following equation

Q= (Nfact)

ST

(4.50)

where Ny, is the number of factorial experiments (experiments placed at the
corner of the parallelepipedic domain).

Orthogonality has been presented extensively in section 4.2. In second degree
fonction regression, there is always a covariance between the constant a, and the
second degree coefficients a;;. But it is possible to get orthogonality between the
other coefficients. In such a perspective, a central composite design is orthogonal if
the following relation is respected:

1 971/4
& = |5 Npaet (y/Nraat + Noot Ny = Ngua) | (4.51)
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Table 4.19: Structure of a central composite design.

Number of runs 1 29 ... ... ZN

Factorial Matrix Ntact -1 -1 L -1
(full or fractional) -1 -1 s 1
1 1 1

Center points N, 0 o ... ... 0
Star runs N, — 0o ... 0
« 0o ... 0

0 —a 0 0

0 a 0 0

0 0 «

0 0 —«o

with N, the number of points of the star design and N, the number of points
placed at the center of the domain.

To make a design approximately rotatable and orthogonal at the same time, we

would first fix the axial distance for rotatability, and then add center points, so
that [14]:

Ny > 4/Njoer + 4 — N, (4.52)

In classical texts, the orthogonal blocking is also covered for this design( See Box
[0] section 14.3).

To illustrate this type of design we can take an example proposed by Montgomery
[4]. It consists in the modeling of a chemical process. The variables are the time
and the temperature. Within the neighborhood of a probable maximum, a CCD is
performed. The data is reproduced in table 4.21. The model matrix for a quadratic
model is given at equation 4.53 and the dispersion matrix at equation 4.54. The
design is almost orthogonal, the only extra-diagonal terms being between the
constant a, and the quadratic terms a;;. Figure 4.15 shows the variance function
in which we can observe the quite constant and low variance in the center of the
experimental space.
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Table 4.20: Relation between the azial distance o and the number of points at the

center N,.

Number of factors 2 3 4 5 5 6 6
Factorial design 22 23 24 271 95 96—l 96
Number of factorial runs 4 8 16 16 32 32 64
Number of star runs 4 6 8 10 10 12 12
Value of o if N, =1 1.0 122 141 155 160 1.72 1.76
if N, =2 1.08 129 148 1.61 1.66 1.78 1.82
if N, =3 1.15 1.35 155 166 1.72 1.84 1.89
if N, =4 1.21 141 161 1.72 1.78 190 1.94
a = (Njqet) T 141 168 2 2 238 238 2.82
if = 141 168 2 2 2 2 2.37
then for rotatability, N, = 5 6 7 7 6 6 9
then for orthogonality, N, = 8 10 12 12 10 10 15
1 -1 -1 1 1 1
1 -1 1 -1 1 1
1 1 -1 -1 1 1
1 1 1 1 1 1
1 0 0 0 0 0
1 0 0 0 0 0
X=11 0 0 0 0 0 (4.53)
1 0 0 0 0 0
1 0 0 0 0 0
1 141 0 0 2 0
1 -141 0 0 2 0
1 0 1.41 0 0 2
1 0 -1.41 0 0 2
0.2 0 0 0 -0.1 -0.1
0 0.125 0 0 0 0
0 0 0.125 0 0 0
D=1y 0 0 025 0 0 (4.54)
-0.1 0 0 0 0.14 0.019
-0.1 0 0 0 0.019 0.14
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Table 4.21: Data from a chemical experiment.

run time temperature yield viscosity molecular 1 o
[min] [°C] (%] [Pa-s] weight
1 80 170 76.5 62 2940 -1 -1
2 80 180 77 60 3470 -1 1
3 90 170 78 66 3680 1 -1
4 90 180 79.5 59 3890 1 1
5 85 175 79.9 72 3480 0 0
6 85 175 80.3 69 3200 0 0
7 85 175 80 68 3410 0 0
8 85 175 79.7 70 3290 0 0
9 85 175 79.8 71 3500 0 0
10 92.07 175 78.4 68 3360 1.414 0
11 7793 175 75.6 71 3020 -1.414 0
12 85 182.07 78.5 58 3630 0 1.414
13 85 167.93 77 o7 3150 0 -1.414

model variance

Figure 4.15: Variance function of a composite design for a quadratic model of
two factors with one single run at the center of the domain (9 runs) and o = 1.41.
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In Matlab: There is a built-in function E = ccdesign(n) that generates a
central composite design of n factors. The algorithm offers the possibility to favor
the orthogonal or the isovariance per rotation characteristics of the design.

4.7 Doehlert design

Equiradial designs are constituted by points distributed on a sphere. To achieve
this, regular geometric figures such as the pentagon, the hexagon, the octagon
and the icosahedra are used. In this case also, the number of points at the center
has an influence on the properties of the design. The most interesting case is the
hexagonal design, also called a Doehlert network, which allows us to move the
center of interest easily one step further along a gradient. This design is a good
candidate for an optimization process.

At two dimensions, the matrix of experiments is constituted by the seven points
presented in figure 4.16 and represented by the matrix of experiments given in
equation 4.55. The number of levels is not the same for all the factors. The first
factor is tested at five levels {—1,—0.5,0,0.5,1}, and the second factor is tested
at three levels only {—0.866,0,0.866}. Figure 4.17 shows the variance function
over the whole experimental domain (radius 1.41). Comparing with the composite
case presented in figure 4.15, observe the difference of geometry and of values. The
Doehlert design has higher variance values at the border of the domain, mainly
because of a smaller number of runs.

1o 0.5 0.866
-1 B 0.5 0.866
E=| -1 0 - =1 0 (4.55)
1 0.5 -0.866
13 0.5 -0.866
5 o 0 0

The Doehlert design has two interesting properties:

Ease in shifting the design, giving the possibility to explore the neighborhood
of the original experimental domain with a minimum of additional points. In
figure 4.18 the seven original points (in red) are completed by three points (in
green) which could allow the shift of the domain in six possible directions (three
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Figure 4.16: Extension of a 2* factorial design (blue dots) to a Dochlert design.

model variance

Figure 4.17: Variance function of a Doehlert design for a quadratic model of
two factors with one single run at the center of the domain (7 runs) and a radius
p=141.
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are represented in the figure). This property, illustrated here for a case in two
dimensions, is also available in a domain with more dimensions. It is useful for
optimisation, letting the experimenter follows an ascending or descending slope to
reach a local extremum.

P

® Py

®p,

Ps Py Pio Pig

Figure 4.18: Examples of the extension of a Doehlert design of two factors in 7
runs (red dots) with 3 additional runs (green dots).

Ease in including new factors, making it possible to introduce additional
factors after the start of the experiments. In figure 4.19 we can observe that a 2D-7
runs design can be converted to a 3D-13 runs design by adding six runs distributed
in two triangles up and down of the original plane. This property is identifiable
in table 4.22 giving the values of the experimental points up to five factors, and
where we observe that the values of the factors positioned at the end of the list
stay constant at a mid range value in the first experiments.

In Matlab: To date, there is no built-in function to generate a Doehlert design.
The library of the course, LISA, offers a function E = doehlert(n) that generates
a Doehlert design of n factors.
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Table 4.22: Coordinates of the Doehlert network up to 5 factors.

runs T ‘ I ‘ T3 ‘ Ty Ty
1 0 0 0 0 0
2 -1 0 0 0 0
3 1 0 0 0 0
4 1-0.5| -0.866 0 0 0
) 0.5 0.866 0 0 0
6 |-0.5 0.866 0 0 0
7 0.5 | -0.866 0 0 0
8 |-0.51-0.2887 | -0.8165 0 0
9 0.5 ] 0.2887 | 0.8165 0 0
10 | -0.5 | 0.2887 | 0.8165 0 0
11 0]-0.5774 | 0.8165 0 0
12 0.5 | -0.2887 | -0.8165 0 0
13 0| 0.5774 | -0.8165 0 0
14 | -0.5 | -0.2887 | -0.2041 | -0.7906 0
15 | 0.5 | 0.2887 | 0.2041 | 0.7906 0
16 | -0.5| 0.2887 | 0.2041 | 0.7906 0
17 0 ]-0.5774 | 0.2041 | 0.7906 0
18 0 0 |-0.6124 | 0.7906 0
19 0.5 | -0.2887 | -0.2041 | -0.7906 0
20 0| 0.5774 | -0.2041 | -0.7906 0
21 0 0| 0.6124 | -0.7906 0
22 1-0.5|-0.2887 | -0.2041 | -0.1581 | -0.7746
23 0.5 | 0.2887 | 0.2041 | 0.1581 | 0.7746
24 | -0.5 | 0.2887 | 0.2041 | 0.1581 | 0.7746
25 0 [-0.5774 | 0.2041 | 0.1581 | 0.7746
26 0 0-0.6124 | 0.1581 | 0.7746
27 0 0 0 ]-0.6325 | 0.7746
28 0.5 | -0.2887 | -0.2041 | -0.1581 | -0.7746
29 0| 0.5774 | -0.2041 | -0.1581 | -0.7746
30 0 0] 0.6124 | -0.1581 | -0.7746
31 0 0 0| 0.6325 | -0.7746

79
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.

Figure 4.19: Extension of a Doehlert design of two factors in 7 runs (red dots)
to three factors with 6 additional runs(green dots).

4.8 Box-Behnken design

Box-Behnken have proposed a 3-level design to collect data to fit a second degree
model. It is constituted by the points at the center of the ridges with some
additional center points. Figure 4.20 illustrates the situation for three factors. This
is a spherical design as each external point lays at a distance of /2 of the central
point. These characteristics confer a rotatable property to this design.

This type of design exists only for three or more factors. It can be decomposed in
a series of factorial designs of two factors, the other ones remaining in their middle
values as illustrated in table 4.23 for the case of a 3-factor design.

The number of runs is then obtained by

N
N, —22. (2) +N, (4.56)

In conclusion, this design has the advantage of a lower cost (reduced number of
runs) in comparison to a 3" or a composite design. Another advantage is the
possibility to separate blocs. Table 4.24 provides a comparison between response
surface designs and figure 4.21 compares them in term of number of runs for
different number of factors.



4.8. BOX-BEHNKEN DESIGN 81

y

Figure 4.20: Azonometry of a 13 run Box-Behnken design for 3 factors.

Table 4.23: A three-variable Box-Behnken design parted in three blocs of 5 runs.
Each bloc corresponding to a 2% factorial design, plus a central point.

run r1 To9 X2
1 -1 -1 0
2 -11 0
3 1 -1 0
4 1 1 0
) 0 0 0
6 -1 0 -1
7 -1 0 1
8 1 0 -1
9 1 0 1
9 0 0 0
11 0 -1 -1
12 0 -1 1
13 0 1 -1
14 0 1 1
15 0 0 0
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Table 4.24: Comparison of three classical 2nd-degree designs.

Design runs Advantages Disadvantages
3-level factorial 3N medium variance high cost
Composite 2N 1 2N + N, low variance medium cost
Doehlert N2 + N+ N, low cost, extensions high variance at the vertex
Box-Behnken 4(];> + N, low cost, blocking  high variance at the vertex
10* . . . :
@ Factorial
r © Composite
I O Doehlert
103k @® Box-Behnken __
3 P3 3
:
kS
_Q;j 102 3 ) Q i
g 9 o
. )
10'g 3
100 1 1 1 1
2 3 4 5 6 7

Number of factors

Figure 4.21: Comparison of the number of runs for classical response surface
designs.
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In Matlab: There is a built-in function E = bbdesign(n) that generates a Box-
Behnken design of n factors. The algorithm offers the possibility to fix the number
of central points and also the size of the blocs .

4.9 Extension

When in a hurry to get a first estimation of the second degree coefficients, a design
called eztension can be an interesting alternative. This is nevertheless a quick-fix to
rapidly, but not very accurately, estimate the second degree curvature. Two options
are presented in figure 4.23 with their respective variance function. The extension
can be made by the frame (a), extending in orthogonal directions points that are
positioned on a diagonal, or centrally (b) extending one point in two orthogonal
directions. In two dimensions, there are four possible extended zones which will be
chosen in function of the first results and of the objective of the study (figure 4.22).

(<) 'b) -hx%v
05
%

%‘) % /

/

Original
experimental
domain

Figure 4.22: Experimental domain (in yellow) with the extended zones. One is
hatched in the upper-right corner. The other possible zones of extension are placed
symmetrically at each corner.

The variance functions show the characteristics of each design. Obviously the
quality of the model is better in the neighborhood of the experimental points. The
framed extension then provides a quite low variance in a diagonal band that is
positioned at the lower-left corner (for the setup used here as illustration). But
the variance increases rapidly when approaching the upper-right corner. The
central extension would give better confidence for the model at the center of the
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Figure 4.23: 2D extension designs with their respective variance function.

O O
® @
@ @
(a) 2D frame extension. (b) 2D central extension.

4 \

(c) Variance function of a 2D frame (d) Variance function of a 2D central
extension. extension.

new domain, with a deterioration when approaching the lower-right corner or the
upper-left corner where there is no experimental point.

The comparison of the two designs shown in table 4.25 indicates that the central
extension is more interesting, from a statistical point of view.

To illustrate the usage of this design, we can consider the experiments with the
sugar substitutes already presented in 4.2.1. This time, a factorial design 22 has
been conducted (table 4.26). The regression of this data on a model with interaction
Y = ag+a1x1+a1T2+a12r1 2o gives the standardized coefficients. Applying equation
4.2, coefficients for the function over the original domain can be computed and a
corresponding response surface can be plotted, as shown in figure 4.24a:

:<a _a1U1_a2U2>+<a1 _G12 Up >u +(a2 12 Uy )u 4
Y © Au1 AUQ Aul AulAUQ ! AUZ AulAuz 2 AUlAUQ
(4.57)
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Table 4.25: Comparison of the two designs at the level of the trace and the
determinant of the dispersion matriz, the variance inflation factors of the quadratic
terms and of the mazimum of the variance function for the extended experimental
domain.

Design Trace Determinant VIF(a;) max{var(Y)}
Framed extension 15 0.0625 6 60 o
Central extension 9 0.0625 4.5 12 o

In a second step, it is interesting to determine if the surface response has a
significative curvature as well as to determine if the maximum observed at the
point [0.6,0.2] is a real maximum or only a point on an increasing slope. As we are
dealing with toxicity, a model with a local maximum is not likely, but a curvature
is a rational hypothesis, indicating a non-linear response of the cells. A rapid way
to determine possible curvature would be performing a measurement at the center
of the domain, point [0.35,0.14] in the original domain, [0,0] in the standard one.
But this single measurement would not be sufficient to determine the two second
degree coefficients a;; and ass. Two additional measurements at least are necessary.
The question is then to decide between a long term strategy or a short term.

For a long term strategy, the next step would consist in completing the factorial
design to a composite design (section 4.6) or a Doehlert design (section 4.7 ) as
shown in figure 4.25.

For a short term strategy, an extension design would be a good solution. In figure
4.24, the bar charts presented in (c) and (d) show clearly the advantage of the
central extension in comparison with the framed extension. Table 4.27 gives the
additional points and the coefficients resulting from a regression on a second degree
model y = ag+ a7y + a1T9 + a9, T2 + a1, 73 + azxi. The curvature of the response
surface is confirmed, which would indicate a stabilisation of the toxicity for product
2.
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Table 4.26: Data of two replicates of a factorial design 2% for experiments with
sugar substitutes with x1 and xo corresponding to the standardized coordinates and

o, G1, G2, a12 to the coefficients of a linear model with interactions.

Product 1 Product 2  Indicator I T T T1T9
[g/1] [g/1] # - -
1 0.1 0.08 80.40 1 -1 -1 1
2 0.1 0.2 150.82 1 -1 1 -1
3 0.6 0.08 117.11 1 1 -1 -1
4 0.6 0.2 250.02 1 1 1 1
5 0.1 0.08 76.05 1 -1 -1 1
6 0.1 0.2 152.35 1 -1 1 -1
7 0.6 0.08 115.81 1 1 -1 -1
8 0.6 0.2 246.62 1 1 1 1
Coefficients Qo a1 as Qo
standard 148.6  33.7 51.3 14.6
SE 0.7 0.7 0.7 0.7
original 29.5 —1.5 514 975




4.9. EXTENSION 87

Table 4.27: Data of two replicates of a central extension of a factorial design
22 for the experiments with sugar substitutes with x; and xo corresponding to the
standardized coordinates and a,, ayi, as, a2, a1, age, to the coefficients of a quadratic
model.

Run Product 1 Product 2 Indicator I T To T1T9 x% a:%
[g/1] [g/1] =
1 0.1 0.08 80.40 1 -1 -1 1 1 1
2 0.1 0.2 150.82 1 -1 0 0 1 0
3 0.6 0.08 117.11 1 0 -1 0 0 1
4 0.6 0.2 250.02 1 0 0 0 0 0
5 0.1 0.08 76.05 1 -1 -1 1 1 1
6 0.1 0.2 152.35 1 -1 0 0 1 0
7 0.6 0.08 115.81 1 0 -1 0 0 1
8 0.6 0.2 246.62 1 0 0 0 0 0
9 0.6 0.2 246.62 1 0 1 0 0 1
10 0.6 0.2 246.62 1 0 1 0 0 1
11 0.6 0.2 246.62 1 1 0 0 1 0
12 0.6 0.2 246.62 1 1 0 0 1 0
Coeflicients o al as a1 ail ao9
standardized 248.3 95.2 102.4  58.5 —-1.5 —=29.5
standard error 2.0 1.4 1.4 4.0 2.4 2.4

original -3.7 2.7 1087.5 975 —6 —2049
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Interaction model Quadratic model
500 500
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(a) Interaction response surface. (b) Quadratic response surface.
VIF central extension VIF framed extension
20 20
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16 16
14 14
=
>
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Coefficients Coefficients
(¢) VIF for the central extension. (d) VIF for the framed extension.

Figure 4.24: Response surface and VIF for the extension of a 2° factorial design.

(a) (b)

Figure 4.25: Extension of a 2% factorial design (blue dots) to a composite design(a)
and a Doehlert design (b).
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4.10 Canonical analysis

When fitting a second degree model, the resulting geometry will belong to the conic
family. This means, for example in three dimensions (for three factors), that the
isolines of the model are ellipsoid or a hyperboloid as presented in figure 4.26.

(b)
Figure 4.26: Ellipsoid (a) and hyperboloid(b).

The canonical analysis consist in placing this geometric figure in the experimental
space and orienting its axes. The model of second degree can be written classically
as:

N N
Y = a, + Z a; T; + Z Q3T (458)
=1 i<j

This equation can be re-written in a vectorial form as

1 ai %CMN L1

Y =a,+ (a1 aN> S+ (ml xN) : (4.59)
IN %Gu\r aNN N

y=a,+a-7+7TAT (4.60)

To place the figure within the experimental space, let‘s start by determining the
fix-point, which is the point corresponding to the extremum of y, the center of
the ellipsoid or the point at the center of the segment joining the extremes of the
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hyperbolic surfaces for the hyperboloid. This fix-point x, is situated where % =0

1
To=——a A"

2 (4.61)
Ys =0o + 56 - T

The orientation of the figure is done by the way of the eigenvectors of the matrix
A. As Ais a N x N symmetric matrix , it has n real eigenvalues \; and the
N eigenvectors are orthogonal. Once these elements have been determined, it is
possible to re-write the model in a canonical form:

N
J=ys+ > N X7 (4.62)
=1

where the X; are the coordinates of a point of the experimental space in the base
of the eigenvectors.

In Matlab: The built-in function [V,D] = eig(A) returns diagonal matrix D of
eigenvalues and matrix V' whose columns are the corresponding right eigenvectors,
so that AV =V x%D.

The library of the course, LISA, offers a function viz_quad() that analyses a
quadratic function and draws a slice plot and a isosurface plot of the model

Here is a small example: Imagine that we have an experimental situation with
three factors that are investigated with a composite design as presented in table
4.28.

Fitting this result with the least squares algorithm on a second degree model
provides the following function:

y(x1,z9,3) = 9.26 — 1.61 7 — 1.14 25 + 0.88 3
+1.67 21 9 — 2.03 21 25 + 1.37 29 23 (4.63)
+1.12 27 — 3.27 25 — 2.06 73

which is not straightforward to interpret. The function can be written as follows:

—1.61 1.12 0.83 —-1.01
y=a,+ | -114|2+2| 083 =327 0.69|7 (4.64)
0.88 —1.01  0.69 —-2.06
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Table 4.28: A three-variable standardized composite design and the corresponding
experimental results.

Run T To T3 Result
1 -1 -1 -1 7.70
2 -1 -1 1 10.41
3 -1 1 -1 1.02
4 -1 1 1 8.68
5 1 -1 -1 4.67
6 1 -1 1 -1.27
7 1 1 -1 4.13
8 1 1 1 4.22
9 1.215 0 0 10.55
10 -1.215 0 0 11.84
11 0 1.215 0 1.01
12 0 -1.215 0 8.41
13 0 0 1.215 8.62
14 0 0 -1.215 4.39
15 0 0 0 8.40

Then, applying 4.61, we get the coordinates of the fix-point, which lies within the
standardized experimental domain

0.64
z, = | —0.03 (4.65)
—0.11

and the value of the function at the fix-point:
ys = 8.71 (4.66)
The calculation of the eigenvectors and eigenvalues provides:

A =—3.87 Ay =—184 A3 =150

0.24 0.15 0.96 (4.67)
7 =|-08| =050 #%=| 013
0.46 0.85 —0.25

Figure 4.27 shows that the model corresponds to a hyperboloid structure with a
fix-point within the domain.
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Figure 4.27: Isosurfaces of the model produced with the LISA function viz__quad()
and showing an hyperboloid structure.
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Chapter 5

Notes

5.1 The order of the factors in the sweeping does
not matter

Consider a table of data in thee dimensions x;j, withi=1:n,j=1:m and
k =1 : r corresponding to r replicates of a set of experiments of two variables
with respectively n and m levels. We want to summarize it by the model z;; =
i+ o + B + afi; + €. The grand mean p corresponds to

Zzz%k (5.1)

nmr

The first residue R(1);;;, is obtained by subtracting the grand mean to each element:

Zzz%k (5.2)

R(1)iji = iji — o = Tijp — —

The effects of the column variable a; are computed by averaging each column for
all the replicates:

= ;Z;R(l)wk = ;Z;(wwk—u) = nlrzzk:m”k — U= (5.3)

With p; the average of the column j for all the replicates. The second residue
R(2);;1 is computed by subtracting the effect «; to the first residue R(1);; then

R(2)ijk = R(V)ijr — o = (ziji — 1) — (15 — 1) = Tie — 1y (5.4)

93
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The effects of the row variable [3; are now computed by averaging the residue
R(1);j, for each row and for all replicates, so:

1
:%ZZR( Uk_izzxwk 5) 722%116 p=pi—p (5.5)
ik
The residue R(3);;), is calculated the same way as the other residues:

R(3)ije = R(2)ijk — Bi = R(1)iji —aj — Bi = wiji — p — o; — 5B (5.6)

The interaction effects are computed by averaging R(3)ijk for each row, for each
column for all the replicates:

1 1
by ==Y RB)ijk == xiyju— p—a;— [ (5.7)
"% "%
And finally the last residue is
€ijk = Tij — b — a; — P — aff (5.8)

The sweeping can be simplified by subtracting the grand mean to the average of
the rows and the columns.

5.2 The confidence region around the solution of
the LSF is an ellipse

Let consider that the true model to be identified is given in equation 4.5 and the
solution obtained through LSF in equation 4.9. If the measurements y; are normally
distributed and under the hypothesis of homoscedasticity is is possible to write
that

&~ N (o, (X"X)"0?) (5.9)
Let now compare the true model 1 with the estimated model YV

n—Y =Xa—Xa=X(a—a) (5.10)

It can be demonstrated (see [6] pp. 74-76) that the distance between them divided
by the square of the MSE s? follows a Fisher distribution :

(o — &) (XTX)(a — &) /ps* ~ F(p,v) (5.11)

with p the number of parameters of the model and v the degree of freedom of s2.
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Now let define Fj(p, v) the S-significance level of the F' distribution. The equation
(0 — &) (XTX) (0 — 4)/ps* = Fa(p,) (5.12)

defines an ellipsoidal 1 — 3 confidence region for a. That means that there is a
probability 1 — 8 to find the true o within this region. If the matrix of information
XTX is diagonal, then this ellipsoid will be aligned with the axis of the parameter
space.
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