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7.1.1 Specificity of mixture spaces

» A mixture space is considered when the factors x; are fractions of a
whole and that the increase of one factor implies the decrease in
proportion of one or more other factors.

» This situation then implies in addition to the model f(X) to be
determined, two other conditions :

q
1. aconstantsum: > x; =1
=

2. positive values x; >0
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7.1.2 A mixture of two components

» Simple example to illustrate
the principle

A X2
» Two variables x; and x; like
the concentrations of two N
products : 1\ |
X1 —+ Xy = 1
0 S >
0 1 X1

» The experimental space has
one degree of freedom only
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7.1.3 Ternary plot o

y D a%,
g ~n0%,
= %
80/ \\/\(\ 0
» A ternary plot, ternary graph, triangle AVAVAVAVAVAVAVAVA >1"N,
plot, simplex plot, or Gibbs triangle is a Fe o2 a e a0 0 a0 a0 NI
barycentric plot on three variables which Stainless austenic steel

sum to a constant.

> It graphically depicts the ratios of the three
variables as positions in an equilateral
triangle.

» Ternary plots are tools for analyzing
compositional data in the el A
three-dimensional case. s samtoam\ /e e

loar} - s

sandy clay
loam

Soil types
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7.1.4 Ternary plot : from 3D to 2D

For the case of 3 components, it is usual and useful to draw a ternary diagram.

X3

X2

x1+x2+x3 =1
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7.1.5 Computing a ternary diagram

MATLAB

No native functions, but a few user defined routines on
https://ch.mathworks.com/matlabcentral/fileexchange/
2299-alchemyst-ternplot

ternaxes(12) create the axis system
ternplot(A,B,C,or’) place points in the diagram
ternpcolor(A,B,Z) create a colorplot
ternsurf(A,B,Z) create a surfaceplot
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https://ch.mathworks.com/matlabcentral/fileexchange/2299-alchemyst-ternplot
https://ch.mathworks.com/matlabcentral/fileexchange/2299-alchemyst-ternplot

7.1.6 Example with ternplot()

ternaxes ; % ternary axes

ternlabel(’x17'x27x3’); % placing labels ..-“ ,
F=(fullfact([5 5 5])-1)/3; % generating a FFD . Avv%v%ve
index=sum(F,2)==1; % selecting coordinates =L o
E=F(index, :); % essay matrix /<><><><><><>Q<><>\
ternplot(E( ;,1),E( :,2),E( :,3),or’); % plotting B R A S
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7.1.7 Example : Optimization of a greenhouse
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7.1.8 Optimization of a greenhouse : mindmap

Model the behaviour of a greenhouse during the cold season
in relation with the ratio of glass and wall

Objective :

Investigation : Observational study based on in-situ monitoring

(1) Surface of wall

Factors : (2) Surface of window
Greenhouse (1) Average of overheated hours by day in one month in-situ
Responses : monitoring in three buildings during the cold season
(2) Average vote about the comfort in the greenhouse
(1) Linear model
Models : (2) Quadratic model
Strategy : In-situ measurements and questionnaires
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7.1.9 Optimization of a greenhouse : data

Table — Average overheating hours (T;, > 25°C)

Building A B C
Window 40% 55% 80%
D 2.2 hrs/D 2.8 hrs/D 4 hrs/D
J 25hrs/D 3.1 hrs/D 4.8 hrs/D
F 2.8 hrs/D 3.2 hrs/D 5 hrs/D
y o -~
.- "o
e i
’,—’* /Ql())(smﬁﬂ
N -
0 X1
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7.1.10 Optimization of a greenhouse : model

Here is the solution in the plane x; + x; = 1
y




7.1.11 There are an infinity of solutions

7 =0.26 + 5.35x; = 0.26(x; + x;) + 5.35x; = 5.61x; + 0.26x,
J=545.35% — 4.74(x; + x2) = 5+ 0.61x; — 4.74x




7.1.12 Average votes about the comfort

Building A B C

Window 40% 55% 80%

P1 15 20 10
P2 16 22 11
P3 17 19 12
y .-$--.
/., \\\

,' 8

/= =32+ 1860 — 166x2 N

0 : :

0 X



1

+ Xz

7.1.13 Solution in the plane x;
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7.1.14 A possible model in 3 dimensions

» The function
y = —32+ 18x; — 166x}
can be interpreted as a
paraboloid in the 3D
space x;xay

» But an infinity of
functions have the same
intersection with the
vertical plane
X1 + Xy = 1
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7.1.15 Here is another possible model

y = —32+18x — 166x7
= —32+186(1 — x3) — 166(1 — x,)?
= —12+ 146x, — 166x2




Basic principles
Mixture models
Constraints

Mixture designs

7.2.1 Scheffé’s and slack models

Mixture space

» The reduction to a (N — 1) dimension experiment space, due to the

q
additional equation > x; = 1, has the consequence that several
i=1
models allows to model a given response.

» The imposed correlation between the factors reduces the rank of the
essay matrix E of one unit.

» A canonical model is needed : a unique representation for the
different models that represent the same response

» There are several possible choices

» Scheffé’s models (models without an intercept)
» Slack models (models with an intercept)
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7.2.2 Scheffé’s linear mixture model

» Let’s start with a standard linear model of rank (g + 1) :

q
y =ao+ Z aixi
i=1

> Let’s introduce, at the level of the constant a,, the
q
proportionality constraint ) x; = 1
i=1

» The Scheffé’s model (of rank q) is then :

q

q
y = Z(ao + ai)x; = Z Bixi
i=1

i=1
» With the Scheffé’s linear coefficients 3; = (a, + a;)
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1. A recipe is made with three ingredients x, x,
and x3sothat x; +x +x3 = 1

2. Essays have been made at the middles of the
vertices of the ternary scheme. The output y is
a KPI of the process.

X1 X2 X3 y
0.5 0.5 0 2
0.5 0 05 3
0 0.5 05 1

3. Determine the coefficients of the Scheffé’s

linear model
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7.2.4 Identification of a Scheffé’s linear model

Model : Y = Bixi + Boxa + Bsxs + €

Linear system :

2 1 1 0 B B+ B =4
3 =111 0 1 Bl ©<XpBi+B:=6
1 0 1 1 /83 ﬂ2+/33:2

Solution :
Bs=2
B=0 = YV =ax+2x

pr=4

Isolines :
X1 = Xq

X2:X1—§+1

X3:%—2X1
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7.2.5 Quadratic Scheffé’s model

» The standard quadratic model of rank (¢ + 1)(q+2)/2 is :

q q
y:ao+g aiXi+E ajj Xi Xj
i=1

i<j

» The constraint of proportionality allows to write :

q q
Ao =ap 1 =00 Y X; = Y AoX;
i=1 i=1
) q
a;i Xi = ajj Xj 1— ij
JF#i
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7.2.6 Quadratic Scheffé’s model (2)

» When recombining the coefficients the quadratic Scheffé’s
model of rank q(q + 1)/2 is then

q q
y:ZBiXi+ZBIj Xj Xj
i=1

i<j

Modéle quadratique de Scheffé
Modéle quadratique de Scheffé - Modéle quadratique de Scheffé
o /\
/ A
\
o5 \oz
X3
o \eos
N\
£ “N
o1 o2 / Aes
x o
0 m o M
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7.2.7 Cubic Scheffé’s model

» The standard cubic model is :

—ao+g ax,+§ ajjXiXj + E Qjjk XiXj Xk

i<y i<j<k

» Integrating the constraints coming from the ratios of the
mixture, the cubic Scheffé’s model becomes

q
y = Z 61)(1 + Z BIJXIXJ + Z flelXj ) + Z BiijinXk

i<j i<j i<j<k

» ltsrankis g(qg+ 1)(qg+2)/3!
» Truncated form if v;; = 0 (allows to diminish the number of
runs)
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7.2.7 Example of cubic Scheffé’s model
y = 12x; + 8x2 + 4x3 + 8x1x3 — 8x2x3 + 54x1X2X3

y = 2x1 + 8x2 + 4x; + 8x1x2 — 8x1x3 + 54x1x0x3 + 48x1x:3 (% — x3)

Scheffé Special cubic Scheffé full cubic

Full Guic

Specia Cubic

o c(f)
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7.2.8 Slack model

» It is in neglecting one factor in the model. It represents a risk if
the neglected factor is active. So it is better to reserve this for
factors having only linear effect.

» SV means Slack Variable
» Full linear SV model

q—1
y=a + Z a;X;

i=1

» Full quadratic SV model

q— q— q—2 q-—1
2
=da, + E ajxj + E aiix; + E E ajjXiX;
=1 i=1 i=1 j=i+1
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7.3.2 Transformation ternary to Cartesian

» Ternary variables xy, x; et x3
» Cartesian variables W; et W,

» The matrices for the change of base are W ° A1
1 2 »

M 2 0 X1 ¢ %
W, = 0 ? 0 X2

1 1 1 1 X3 B . 25
X 1 — é 0 WI 0 2 )l() 75 W4100
X2 = 0 2T\/§ 0 W,
X3 -1 7@ 1

3

Dr Jean-Marie Fiirbringer Modelling and design of experiments



Basic principles

Mixture models

Mixture space = .
P Constraints

Mixture designs

7.4.1 Simplex lattice design {q,m }

Factorial design for g components with levels (2, L ... 1)

» Example {q=3,m=4}

» Thelevels are (0,3,3,3,1)

» The matrix of experiments

1 0 0
0.75 0.25 0
0.75 0 0.25

0.5 0 0.5
0.5 0.25 0.25
0.25 0.75 0

0.25 0 0.75
0.25 0.5 0.25
0.25 0.25 0.5

0 1 0

0.75 0.25
0 0.5 0.5
0 0.25 0.75
0 0 1
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Nexp = <

m
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q+m—1) _ (g+m—1)!

ml(qg—1)!

Number of points per design

q m
2 3 4
3 6 10 15
4 10 20 35
5 15 35 70
6 21 56 126
7 28 84 210

Dr Jean-Marie Fiirbringer

Number of coefficients per model

q linear quad- special full
ratic ~ cubic  cubic
3 3 6 7 10
4 4 10 14 20
5 5 15 25 35
6 6 21 41 56
7 7 28 63 84
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7.4.3 Simplex lattice design {4,2 }

3e)

> Nep = 10
» Sufficient for a quadratic
model
q q
y = > Bixi+ Y Bijxix
i=1 i<j Ce
» But No point within the o
domain : no full mixture . o
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4431
Nex = ( 3 > =
6

Sufficient for a full cubic
model

But No point within the
domain : no full mixture

We need another type of
design to bu sure to enter in
the domain

Dr Jean-Marie Fiirbringer
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7.4.4 Simplex lattice design {4,3 }
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7.4.5 Simplex response surface

» If m < q there is no full mixture

» Then designs {q,2 } have to be
completed with g + 1 points

» One point at the center
(1/9:1/q,.-.)

P q points at he middle of the
distance between the center

and the vertices (axial check
blends)

» This has the advantage of
offering additional degrees of
freedom

100
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7.4.6 Simplex screening design

P> As its name suggests, it is a question of
determining the variables that can be
eliminated from the problem.

» The design is composed by

» the vertices - q points

» the central point - 1 point

P the points in the middle of the
distance from the center to the
vertices (axial check blends) - q
points

» the end points - q points

» With 3 factors, it is the same design as
the Simplex response surface
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7.4.7 Conclusions

>

| 2

A comprehensive overview of important approaches in
mixture design.

These approaches offer a versatile toolkit for tackling diverse
mixture design problems allowing flexibility and
adaptability.

They reduce the need for extensive experimentation, saving
time and resources, providing robust solutions less susceptible
to variability and uncertainty : efficiency and robustness

Improved Decision-Making : enhance our understanding of
the relationships between components, enabling process
adjustments and improving product performance.
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