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7.1.1 Specificity of mixture spaces

I A mixture space is considered when the factors xi are fractions of a
whole and that the increase of one factor implies the decrease in
proportion of one or more other factors.

I This situation then implies in addition to the model f (~x) to be
determined, two other conditions :

1. a constant sum :
q∑

i=1
xi = 1

2. positive values xi ≥ 0
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7.1.2 A mixture of two components

I Simple example to illustrate
the principle

I Two variables x1 and x2 like
the concentrations of two
products :

x1 + x2 = 1

I The experimental space has
one degree of freedom only

0 x11
0

x2

1
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7.1.3 Ternary plot

I A ternary plot, ternary graph, triangle
plot, simplex plot, or Gibbs triangle is a
barycentric plot on three variables which
sum to a constant.

I It graphically depicts the ratios of the three
variables as positions in an equilateral
triangle.

I Ternary plots are tools for analyzing
compositional data in the
three-dimensional case.

Stainless austenic steel

Soil types
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7.1.4 Ternary plot : from 3D to 2D
For the case of 3 components, it is usual and useful to draw a ternary diagram.
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7.1.5 Computing a ternary diagram

MATLAB
No native functions, but a few user defined routines on
https://ch.mathworks.com/matlabcentral/fileexchange/
2299-alchemyst-ternplot

ternaxes(12) create the axis system
ternplot(A,B,C,’or’) place points in the diagram
ternpcolor(A,B,Z) create a colorplot
ternsurf(A,B,Z) create a surfaceplot
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7.1.6 Example with ternplot()

MATLAB code

ternaxes ; % ternary axes
ternlabel(’x1’,’x2’,’x3’) ; % placing labels
F=(fullfact([5 5 5])-1)/3 ; % generating a FFD
index=sum(F,2)==1 ; % selecting coordinates
E=F(index, :) ; % essay matrix
ternplot(E( :,1),E( :,2),E( :,3),’or’) ; % plotting
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7.1.7 Example : Optimization of a greenhouse
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7.1.8 Optimization of a greenhouse : mindmap

Greenhouse

Objective :

Investigation :

Factors :

Responses :

Models :

Strategy :

Model the behaviour of a greenhouse during the cold season
in relation with the ratio of glass and wall

Observational study based on in-situ monitoring

(1) Surface of wall
(2) Surface of window

(1) Average of overheated hours by day in one month in-situ
monitoring in three buildings during the cold season
(2) Average vote about the comfort in the greenhouse

(1) Linear model
(2) Quadratic model

In-situ measurements and questionnaires
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7.1.9 Optimization of a greenhouse : data

Table – Average overheating hours (Tin ≥ 25oC)

Building A B C

Window 40% 55% 80%

D 2.2 hrs/D 2.8 hrs/D 4 hrs/D
J 2.5 hrs/D 3.1 hrs/D 4.8 hrs/D
F 2.8 hrs/D 3.2 hrs/D 5 hrs/D

0 x1
0

y

••• •••
•
••

ŷ = 0.26 + 5.35x1
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7.1.10 Optimization of a greenhouse : model
Here is the solution in the plane x1 + x2 = 1
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y
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•
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7.1.11 There are an infinity of solutions
ŷ = 0.26 + 5.35x1 = 0.26(x1 + x2) + 5.35x1 = 5.61x1 + 0.26x2

ŷ = 5 + 5.35x1 − 4.74(x1 + x2) = 5 + 0.61x1 − 4.74x2
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y

•

•

•

•

•

•
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•

•
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7.1.12 Average votes about the comfort

Building A B C

Window 40% 55% 80%

P1 15 20 10
P2 16 22 11
P3 17 19 12

0 x1
0

y
•••

•••
•••

ŷ = −32 + 186x1 − 166x2
1
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7.1.13 Solution in the plane x1 + x2 = 1
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y
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•
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7.1.14 A possible model in 3 dimensions

I The function
y = −32 + 18x1 − 166x2

1
can be interpreted as a
paraboloid in the 3D
space x1x2y

I But an infinity of
functions have the same
intersection with the
vertical plane
x1 + x2 = 1 0
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7.1.15 Here is another possible model

y = −32 + 18x1 − 166x2
1

= −32 + 186(1 − x2)− 166(1 − x2)
2

= −12 + 146x2 − 166x2
2
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7.2.1 Sche�é’s and slack models

I The reduction to a (Nfact − 1) dimension experiment space, due to the

additional equation
q∑

i=1
xi = 1, has the consequence that several

models allows to model a given response.
I The imposed correlation between the factors reduces the rank of the

essay matrix E of one unit.
I A canonical model is needed : a unique representation for the

di�erent models that represent the same response
I There are several possible choices

I Sche�é’s models (models without an intercept)
I Slack models (models with an intercept)
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7.2.2 Sche�é’s linear mixture model
I Let’s start with a standard linear model of rank (q + 1) :

y = ao +
q∑

i=1

aixi

I Let’s introduce, at the level of the constant ao, the

proportionality constraint
q∑

i=1
xi = 1

I The Sche�é’s model (of rank q) is then :

y =

q∑
i=1

(ao + ai)xi =
q∑

i=1

βixi

I With the Sche�é’s linear coe�icients βi = (ao + ai)
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7.2.3 Example of a Sche�é’s linear model

1. A recipe is made with three ingredients x1, x2

and x3 so that x1 + x2 + x3 = 1

2. Essays have been made at the middles of the
vertices of the ternary scheme. The output y is
a KPI of the process.

x1 x2 x3 y
0.5 0.5 0 2
0.5 0 0.5 3
0 0.5 0.5 1

3. Determine the coe�icients of the Sche�é’s
linear model

•

r2 =
1

•
r3 = 0

•

r2 =
0

r3 = 1

r 1
=

0

r 1
=

1

•
y = 3

•y = 2•y = 1
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7.2.4 Identification of a Sche�é’s linear model

Model : Y = β1x1 + β2x2 + β3x3 + ε

Linear system :2
3
1

 = 1
2

1 1 0
1 0 1
0 1 1

β1

β2

β3

⇔

β1 + β2 = 4

β1 + β3 = 6

β2 + β3 = 2

Solution :
β3 = 2

β2 = 0

β1 = 4

⇒ Ŷ = 4x1 + 2x3

Isolines :
x1 = x1

x2 = x1 − y
2 + 1

x3 =
y
2 − 2x1
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7.2.5 Quadratic Sche�é’s model

I The standard quadratic model of rank (q + 1)(q + 2)/2 is :

y = ao +
q∑

i=1

ai xi +
q∑
i6j

aij xi xj

I The constraint of proportionality allows to write :
ao = ao 1 = ao

q∑
i=1

xi =
q∑

i=1
aoxi

aii x2
i = aii xi

(
1 −

q∑
j 6=i

xj

)
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7.2.6 Quadratic Sche�é’s model (2)
I When recombining the coe�icients the quadratic Sche�é’s

model of rank q(q + 1)/2 is then

y =

q∑
i=1

βi xi +
q∑
i<j

βij xi xj
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7.2.7 Cubic Sche�é’s model
I The standard cubic model is :

y = ao +
q∑

i=1

aixi +
q∑
i6j

aijxixj +
q∑

i6j6k

aijkxixjxk

I Integrating the constraints coming from the ratios of the
mixture, the cubic Sche�é’s model becomes

y =

q∑
i=1

βixi +
q∑
i<j

βijxixj +
q∑
i<j

γijxixj(xi − xj) +
q∑

i<j<k

βijkxixjxk

I Its rank is q(q + 1)(q + 2)/3!
I Truncated form if γij = 0 (allows to diminish the number of

runs)
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7.2.7 Example of cubic Sche�é’s model

y = 12x2 + 8x2 + 4x3 + 8x1x3 − 8x2x3 + 54x1x2x3

y = 2x1 + 8x2 + 4x3 + 8x1x2 − 8x1x3 + 54x1x2x3 + 48x1x3(x1 − x3)

Sche�é Special cubic Sche�é full cubic
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7.2.8 Slack model
I It is in neglecting one factor in the model. It represents a risk if

the neglected factor is active. So it is better to reserve this for
factors having only linear e�ect.

I SV means Slack Variable
I Full linear SV model

y = ao +
q−1∑
i=1

aixi

I Full quadratic SV model

y = ao +
q−1∑
i=1

aixi +
q−1∑
i=1

aiix2
i +

q−2∑
i=1

q−1∑
j=i+1

aijxixj
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7.3.1 Constraints

•

r2 =
1

•
r3 = 0

•

r2 =
0

r3 = 1
r 1
=

0

r 1
=

1
•

y = 3

•y = 2•y = 1
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7.3.2 Transformation ternary to Cartesian

I Ternary variables x1, x2 et x3

I Cartesian variables W1 et W2

I The matrices for the change of base are W1

W2

1

 =

 1 1
2 0

0
√

3
2 0

1 1 1

 x1

x2

x3


 x1

x2

x3

 =

 1 −
√

3
3 0

0 2
√

3
3 0

−1 −
√

3
3 1


 W1

W2

1



0

25

50
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100

0 25 50 75 100
0

25
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X
2X 3

X1
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7.4.1 Simplex lattice design {q,m }
Factorial design for q components with levels ( 0

m ,
1
m , . . . ,

m
m)

I Example {q=3,m=4}
I The levels are (0, 1

4 ,
1
2 ,

3
4 , 1)

I The matrix of experiments


1 0 0
0.75 0.25 0
0.75 0 0.25
0.5 0.5 0
0.5 0 0.5
0.5 0.25 0.25
0.25 0.75 0
0.25 0 0.75
0.25 0.5 0.25
0.25 0.25 0.5

0 1 0
0 0.75 0.25
0 0.5 0.5
0 0.25 0.75
0 0 1


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7.4.2 Simplex lattice design

Nexp =

(
q +m− 1

m

)
=

(q +m− 1)!
m!(q − 1)!

Number of points per design
q m

2 3 4
3 6 10 15
4 10 20 35
5 15 35 70
6 21 56 126
7 28 84 210

Number of coe�icients per model
q linear quad- special full

ratic cubic cubic
3 3 6 7 10
4 4 10 14 20
5 5 15 25 35
6 6 21 41 56
7 7 28 63 84
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7.4.3 Simplex lattice design {4,2 }

I Nexp = 10
I Su�icient for a quadratic

model

y =
q∑

i=1
βi xi +

q∑
i<j
βij xi xj

I But No point within the
domain : no full mixture •

A
•
B

•C

•D

•
• •

• •
•
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7.4.4 Simplex lattice design {4,3 }

I Nexp =

(
4 + 3 − 1

3

)
=(

6
3

)
= 20

I Su�icient for a full cubic
model

I But No point within the
domain : no full mixture

I We need another type of
design to bu sure to enter in
the domain

•
A

•
B

•C

•D

• •
•

•
•

•
•

•

•

•

•

•

•

•

• •
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7.4.5 Simplex response surface

I If m < q there is no full mixture
I Then designs {q,2 } have to be

completed with q + 1 points
I One point at the center

(1/q, 1/q, . . .)
I q points at he middle of the

distance between the center
and the vertices (axial check
blends)

I This has the advantage of
o�ering additional degrees of
freedom
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7.4.6 Simplex screening design

I As its name suggests, it is a question of
determining the variables that can be
eliminated from the problem.

I The design is composed by
I the vertices - q points
I the central point - 1 point
I the points in the middle of the

distance from the center to the
vertices (axial check blends) - q
points

I the end points - q points
I With 3 factors, it is the same design as

the Simplex response surface

•
A

•
B

•C

•D

•0

•

•

•
••

•
• •
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7.4.7 Conclusions

I A comprehensive overview of important approaches in
mixture design.

I These approaches o�er a versatile toolkit for tackling diverse
mixture design problems allowing flexibility and
adaptability.

I They reduce the need for extensive experimentation, saving
time and resources, providing robust solutions less susceptible
to variability and uncertainty : e�iciency and robustness

I Improved Decision-Making : enhance our understanding of
the relationships between components, enabling process
adjustments and improving product performance.
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