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6.1 Optimization of a workshop

Your company is producing mechanical pieces for the aeronautic
industry. An analysis of last year results has shown that the
workshop WA has a quality problem.

You are in charge of identifying the origin of the problem.

After discussing with the workshop supervisor, you have identified 3
possible factors that possibly affect the quality of the production :
1. The machines
2. The drills
3. The operators

You want now to evaluate their respective influence on the problem.
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6.2 Optimisation of a workshop
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6.3 The mind map

Production quality
in a workshop

Objective

Type of
investigation

Factors

Response(s)

Model(s)

Strategies

Identify the dominent factors to manage the production quality of a work-
shop

Experiment : factors can be manipulated

1. Operators (3 levels)
2. Machines(3 levels)
3. Drills(3 levels)

The quality could be mesured by different observations and measure-
ments : the surface quality is chosen : the data is in µm the biggest defect
detected on the surface.

A constant coefficient model (CCM) with or without interactions

1. Factorial design (all the possible experiments)
2. Latin square design ( based on a magic square)
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6.4 Factorial strategy

Table – Biggest defect detected on the surface in µm,

Operator Drill Machine
Deckel Schaublin Maho

1mm 23.46 28.46 27.06
Charlie 5mm 17.66 24,07 23.79

20mm 12.33 19.00 16.63

1mm 24.22 28.56 28.06
Pierre 5mm 18.87 25.32 22.24

20mm 10.85 19.21 17.75

1mm 22.55 29.69 28.50
Louis 5mm 16.93 24.92 24.99

20mm 12.25 17.24 16.72
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6.5 Constant coefficient model

I Qualitative variables (or discreet variables)

I When a synthesis of observations is needed
I Which ones are the important factors ?
I Which one is the best machine ?
I Which one is the best drill ?
I Does the operator performance depend on the machine ?

I For those situations, a constant coefficient model is used

Ymhoi = µ+ αm + βh + γo + εmhoi
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6.5 The final causal model
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6.6 Constant vs random coefficients
I Constant coefficients

→ which states of the factors optimise the response

→ Example : Modelling the performance of a workshop

→ The testing of the whole population is necessary

→ Ho : τi = 0,∀i

I Random coefficients
→ Which factors dominate the phenomenon

→ Example : A model about learning best practices
What is the best practice for preparing exams ?
1. To solve supplementary exercises,
2. To draw mind map of the different chapters,
3. To color the textbook.

→ The testing of a sample of the population is sufficient

→ Ho : στ = 0
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6.7 Inference of the effects

Ymhoi = µ+ αm + βh + γo + εmhoi m, h, o = 1, . . . , 3

Y

Ŷ

constant

effe
cts

ε
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6.8 Sweeping - basic scheme

Data
Grand
mean

Machine
effects

Drill
effects

Operator
effects

Residue 1 Residue 2 Residue 3 Residue 4

=

1. Compute the grand mean µ of all the results
2. Compute residues ε1
3. From residues ε1, compute means αm for each category of factor m
4. Compute residues ε2
5. From residues ε2, compute means βh for each category of factor h
6. Etc.
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6.9 Sweeping on a spreadsheet
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6.10 Model and dot plot

Ŷmho = 21.3 +


−4.01
2.65
1.368

 +


5.54
0.15
−5.38

 +


−0.66
0.44
0.24


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6.11 Sweeping - Estimation of the interactions

Ymhoi = µ+ αm + βh + γo + αβmh + αγmo + βγho + εmhoi
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6.12 Algorithmic perspective

I The data set can be represented by a pseudo-tensor yijk with for example i
and j representing P and Q levels of two variables, and k the R replicates

I The reduced means are then
I µij =

1
R

∑
k xijk

I µi =
1
QR

∑
j,k xijk = 1

Q

∑
j µij

I µj =
1
PR

∑
i,k xijk = 1

P

∑
i µij

I µ = 1
PQR

∑
i,j,k xijk

I If the model is yijk = µ+ αi + βj + αβij + εijk then
I αi = µi − µ
I βj = µi − µ
I αβij = µij − µi − µj + µ
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6.13 Cost-benefit ratio

I The model counts 10 coefficients

I The regression has 7 degrees of freedom

I The residue has 20 degrees of freedom

I Cost-benefit ratio ∼ 0.37

I Let’s try to find something better
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6.14 Latin square 3× 3

Operators

Machines

Drills
a b c
b c a
c a b

Deckel Schaublin Maho

1 mm Charlie Pierre Louis
5 mm Pierre Louis Charlie
10 mm Louis Charlie Pierre
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6.15 Sweeping

Dr Jean-Marie Fürbringer Modelling and design of experiments



Qualitative factors

6.16 Comparison of the two models

Model infered with 27 data points (factorial design)

Ŷmho = 21.3 +


−4.01
2.65
1.368

 +


5.54
0.15
−5.38

 +


−0.66
0.44
0.24


Model infered with 9 data points (Latin square)

Ŷmho = 21.90 +


−3.71
2.26
1.45

 +


4.94
0.63
−5.57

 +


0.18
−0.17
−0.01


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6.17 Graeco-Latin squares 3× 3

A B C
B C A
C A B

et
α β γ
γ α β
β γ α

⇒
Aα Bβ Cγ
Bγ Cα Aβ
Cβ Aγ Bα

I Factor 1 : by columns
I Factor 2 : by lines
I Factor 3 : by Latin letters
I Factor 4 : by Greek letters

Factor 1

Factor 2 Factor 3
Factor 4
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6.18 Hyper Graeco-Latin squares 4× 4

A B C D
B A D C
C D A B
D C B A

A B C D
D C B A
B A D C
C D A B

A B C D
C D A B
D C B A
B A D C

I Factor 1 : by columns
I Factor 2 : by lines
I Factor 3 : by first square
I Factor 4 : by second square
I Factor 5 : by third square

Factor 1

Factor 2 Factor 3
Factor 4
Factor 5
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6.19 Hyper Graeco-Latin squares 5× 5

A B C D E
C D E A B
E A B C D
B C D E A
D E A B C

A B C D E
D E A B C
B C D E A
E A B C D
C D E A B

A B C D E
E A B C D
D E A B C
C D E A B
B C D E A

I Factor 1 : by columns
I Factor 2 : by lines
I Factor 3 : by first square
I Factor 4 : by second square
I Factor 5 : by third square
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6.20 ANOVA for 27 and 9 runs

27-experiment set :
Source SS DF MS F p

Constant 12’465.7 1 12’465.70
Machine 264.5 2 132.23 109.3 0.000%
Drill 511.0 2 255.50 211.19 0.000%
Operator 5.2 2 2.62 2.2 14.1%
Residue 24.2 20 1.21 1

Total 13’270.6 27

9-experiment set :
Source SS DF MS F p

Constant 4’064.9 1 4’064.91
Machine 101.1 2 50.55 113.7 0.000%
Drill 173.2 2 86.61 194.7 0.000%
Operator 1.5 2 0.74 1.7 21.5%
Residue 0.9 2 0.44 1

Total 4’341.6 9
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6.21 Dotplot for 27 and 9 runs

Figure – 27-experiment set

Figure – 9-experiment set
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6.22 Routines on Matlab

Available information
I stats.resid : residues
I stats.coeffs : coefficients
I stats.terms : terms of the model
I stats.coeffnames : names of the coefficients
I stats.varnames : names of the variables
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6.23 The Student T distribution

If the observations Xi are independent identically distributed (IID),

then

(
X − µ
s/
√
n

)
∼ T (n − 1)

−8 −6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

x

p

1
2
3
20

Parent sampling dist.

distribution for ȳ

Mean η η

Variance σ2 σ2

n

Std dev. σ σ√
n

Form ∼ any more nearly
Normal
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6.24 Matlab : ANOVAN routine
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6.25 The rational of a statistical test

I One is testing an hypothesis Ho against an alternate hypothesis H1.It
must be binary :

I Ho is that the effect of the variable τ is negligible :
τ1 = τ2 = . . . = 0

I H1 is that the above is not true for atleast one τi .
I For taking the decision above Ho or H1, a criteria is chosen based on the

result of a calculation (a statistic), x in this case.
I In the ANOVA, the statistic is the ratio x between the mean square

related to the variable τ ,MSτ , and the mean square of the residue,
MSE .The law of x is the Fisher distribution

x =
MSτ
MSE

∼ Fν1,ν2 (13)

I The standard criteria is that Ho is rejected if x > Fo with Fo being the
ordinate of Fν1,ν2 defined so that P(x > Fo) = α = 5%.
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6.26 Type I error : rejection of a true H0

I When fixing a threshold α and then rejecting hypothesis Ho , there is a risk α
that Ho is, in fact, correct.

I Example : a test is done to determine if the choice of the tool has an effect on
the quality of the production.

I Ho : "The choice of the tool is negligible"
I H1 "At least one tool has a detectable effect"
I If α = 5%, it determines a limit value Fo to reject Ho .
I When performing the ANOVA, if x > Fo , then Ho is rejected.
I If the tools have, in fact, no effect, it would be a false positive.

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

Fo α

1− α

Ho accepted Ho rejectedF
x

f (x)

Fisher distribution: ν1 = 4, ν2 = 20
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6.27 Type II error : acceptance of a wrong H0

I When detecting an effect, depending on its magnitude there is a probability β
that the effect does not exist.

I Same example
I If x < Fo , Ho is accepted
I If, in fact, one tool at least has an effect, it would be a false negative

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

Fo α

1− α

Ho accepted Ho rejected
F

x

f (x)

Fisher distribution: ν1 = 4, ν2 = 20
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6.28 Probability of type I and II errors

Hypothesis decision
don’t reject reject

Ho
true 1− α α
false β p = 1− β

I The threshold α is chosen usually
at 5%, implying a confidence level
of 95% and a 5% risk for error
type I.

I This risk of type I is the risk of
the producer in the sense that if a
lot is rejected, there is 5% risk of
rejecting a product that is good.

z(α)

z(α)

µo µ1 x

p(x)

I The probability β depends of α
but also of other elements :

I the sample variance
I the number of samples
I the magnitude of the effect
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6.29 The concept of contrast
I Often the standard hypothesis Ho : µ1 = µi = 0 is not

answering the question of the investigator
I What is important is the comparison between treatments such

as Ho : µ3 = µ4

I It is equivalent to Ho : µ3 − µ4 = 0
I A contrast is defined as (a is the nb of treatments)

Γ =
a∑

i=1

ci µi (14)

I The t-statistics is then

to =

∑a
i=1 ci ȳi .√

MSE
n

∑a
i=1 c

2
i

(15)
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6.30 Contrast confidence interval and LSD
I The confidence interval (CI) of a contrasts can be evaluated by

∆ = tα/2,ν

√√√√MSE
n

a∑
i=1

c2i (16)

ν being the DF of the model and then
a∑

i=1

ci ȳi . −∆ 6 Γ 6
a∑

i=1

ci ȳi . + ∆ (17)

n being the number of samples for each treatment, N being
the total number of observations

I The least significant difference (LSD) is defined as

LSD = tα/2,ν

√
2MSE
n

(18)
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6.31 LSD for factorial and latin square design

Factorial design
I Nb of obs N = 27
I Nb of obs by level n = 9
I Significance α = 5%

I t0.975,20 = 2.1
I MSE = 0.6

LSD ≈ 2.1×
√

2× 0.6
9

≈ 0.42

Latin square
I Nb of obs N = 9
I Nb of obs by level n = 3
I Significance α = 5%

I t0.975,2 = 4.3
I MSE = 0.22

LSD ≈ 4.3×
√

2× 0.22
3

≈ 1.65
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6.32 Matlab multcompare routine
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6.33 Summary of ANOVA for CCM

I Decompose Y in orthogonal components
I Compute the sum of the squares
I Determine the degrees of freedom
I Compute the mean squares
I Compare with the residuals
I Disqualify the insignificants effects
I Compute again the error probability
I Analyse pairs of effects to determine significant contrasts
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6.34 Youden squares

A Youden square is a type of Latin square where each row and each
column contains a unique set of treatments or conditions.

B1 B2 B3 B4

C1 A1 A2 A3 A4

C2 A2 A3 A4 A1

C3 A3 A4 A1 A2
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6.34 Balanced Designs in DOE
I Completely Randomized Design (CRD) :

I Each treatment is assigned to experimental units completely at
random.

I Ensures that every treatment has the same chance of being applied
to any unit.

I Randomized Block Design (RBD) :
I Experimental units are divided into blocks based on a known source

of variability.
I Treatments are randomly assigned within each block, balancing the

design across blocks.
I Latin Square Design :

I Controls for two sources of variability.
I Treatments appear exactly once in each row and each column of a

k × k square matrix.
I Graeco-Latin Square Design :

I An extension of the Latin square design that controls for three
sources of variability.

I Uses two Latin squares overlaid so that each treatment combination
appears once.
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6.34 Balanced Designs in DOE

I Youden Square Design :
I Derived from a Latin square, but with one fewer column

(k × (k − 1)).
I Useful when there is an unbalanced number of treatments or when

one treatment is repeated.
I Factorial Design :

I All possible combinations of levels of factors are investigated.
I Can be balanced by ensuring equal replication of each treatment

combination.
I Balanced Incomplete Block Design (BIBD) :

I Not all treatments are applied in every block, but each pair of
treatments appears together in the same block an equal number of
times.

I Balances the design even with an incomplete representation of
treatments.
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6.34 Balanced Designs in DOE

I Split-Plot Design :
I Two levels of randomization : main plots receive one set of

treatments, and subplots within main plots receive another set.
I Ensures balance within the main and subplot treatments.

I Crossover Design :
I Subjects receive multiple treatments in a sequential manner.
I Balanced by ensuring each treatment is applied in every possible

position across different subjects.
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6.35 Conclusions
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