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5.1 Lack of Fit
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5.1.1 Two objectives for performing experiments

1. Quantify the effects of the factors xi on the response y in a minimal number of
experiments to :

I Select significant factors
I Perform a Pareto analysis (sort effects by order of importance)

For this objective a first degree model with or without interactions is sufficient :

ao +
n∑

i=1

ai xi +
n∑

i<j

aij xi xj

2. Determine the combination of the factors that allows us to optimize the
response, also with a minimal number of experiments
For this objective a quadratic model is necessary :

ao +
n∑

i=1

ai xi +
n∑

i6j

aij xi xj
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5.1.2 Is a quadratic function necessary ?

xi

y

•yi

•yj•
ȳf

•
y(x = 0)

−1 0 1
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5.1.3 Test the curvature with a central point
I An experimental situation with two

factors x1 and x2, 4 factorial
measurements, yf (i), 4
measurements at the center of the
experimental space, yc (j)

I Is the linear model with interactions
y = ao + a1x1 + a2x2 + a12x1x2
sufficient ?

Run Factorial Center

1 67.5 99.4
2 114.6 99.5
3 117.9 99.3
4 104.8 99.3

ȳ 101.2 99.4
s2 0.009
δ 1.83

•
67.5

•
117.9

•114.6 •104.8

•
99.4, .5, .3, .3

Tester Ho : α11 + α22 + · · · = 0

to =
ȳf − ȳc√

s2
(

1
nf

+ 1
nc

)
if |to | > tα/2,nc−1 then Ho is rejected.

In the present case :
to ≈ 27 > t0.025,3 ≈ 3.18
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5.1.4 With Matlab

anova(mdl2,’summary’)
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5.1.5 Is there a lack of fit ?
Situation : 10 data points yi have been acquired for 5 values of x .
Is this data better presented by a linear response or a quadratic
model ?

x y
1 -1 11.67
2 -1 10.82
3 -0.5 5.41
4 -0.5 5.36
5 0 3.10
6 0 3.43
7 0.5 3.17
8 0.5 3.39
9 1 4.40
10 1 3.80

−1 −0.5 0.5 1

2

6

10

x

y Data Points
y = 5.55− 3.18x

y = 3.41− 3.18x + 4.29x2
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5.1.6 Estimates, residues and sums of squares

i y ȳ y − ȳ ŷ1 ε1 ŷ1 − ȳ ŷ2 ε2 ŷ2 − ȳ

1 9.5 10.6 -1.08 9.4 0.12 1.2 10.7 -1.2 -0.12
1 11.7 10.6 1.08 9.4 2.29 1.2 10.7 0.97 -0.12
2 7.9 7.7 0.25 7.7 0.23 -0.02 7.0 0.89 0.64
2 7.4 7.7 -0.25 7.7 -0.28 -0.02 7.0 0.38 0.64
3 3.0 3.5 -0.41 6.0 -2.93 -2.53 4.7 -1.61 -1.21
3 3.9 3.5 0.41 6.0 -2.12 -2.53 4.7 -0.8 -1.21
4 4.9 4.6 0.36 4.3 0.67 0.31 3.6 1.33 0.97
4 4.2 4.6 -0.36 4.3 -0.04 0.31 3.6 0.62 0.97
5 3.0 3.6 -0.6 2.6 0.44 1.03 3.9 -0.88 -0.29
5 4.2 3.6 0.6 2.6 1.63 1.03 3.9 0.31 -0.29

SS 436.8 433.0 3.8 415.0 21.7 18.0 427.2 9.6 5.8

SSPE =
∑

i (yij − ȳi )2

SSLOF =
∑

i (ŷi − ȳi )2
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5.1.7 Differentiate first degree to quadratic model

Source ss df ms F p

ao 356.8 1
Linear 58.3 1 58.3 21.4 0.0017
ε1 21.7 8 2.7

LoF 18.0 3 6.0 7.9 0.02
Pure error 3.8 5 0.75

Source ss df ms F p

ao 216.6 1
Quadratic 210.6 2 105.3 77 0.000017
ε2 9.57 7 1.37

LoF 5.8 2 2.9 3.9 0.1
Pure error 3.8 5 0.75
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5.2 Classical designs
I Factorial 3k designs
I Composite design
I Doehlert design
I Box-Behnken
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5.2.1 The 3k designs

•

•

•

•

•

•

•

•

•• •
•

•

•

•

•

•

•

•

•

•

•

•

•

•

••

x1

x2

x3

3 factors : 27 measurement points , 3 levels per factor
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5.2.2 The central composite design (α = 1)

•

•

•

•

•

•

•

•

•• •
•

•

•

•

x1

x2

x3

3 factors : 15 measurement points , 3 levels per factors
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5.2.3 Central composite design (No = 1, α = 1.22)

•

•

•

•

•

•

•

•

•• •
•

•

•

•

x1

x2

x3

3 factors : 15 measurement points , 5 levels per factors
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5.2.4 Central composite design (No = 3, α = 1.353)

•

•

•

•

•

•

•

•

•••• •

•

•

•

•

x1

x2

x3

3 factors : 15 measurement points , 3 levels per factors
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5.2.5 Optimisation of the radius α

Trade off between isovariance per rotation and pseudo-orthogonality
I The isovariance per rotation (rotability) : vary (x1, x2, . . .) = vary (

√
x1 + x2 + . . .

I The pseudo-orthogonality : property limiting the number of terms in the matrix
of dispersion (improve the accuracy of the estimated coefficients).

I Matlab : E = ccdesign(n)

Nb of factors (n) 2 3 4 5 5 6 6
Factorial design 22 23 24 25−1 25 26−1 26

Nb fact exp (2n−k ) 4 8 16 16 32 32 64
Nbr star pts (2n) 4 6 8 10 10 12 12
Nbr central pts (no ) 1-3 1-3 1-3 1-3 1-3 1-3 1-3

Total (2n−k + 2n + No) 9-11 15-17 25-27 27-29 43-45 45-45 77-79
α si no = 1 1 1.22 1.41 1.55 1.60 1.72 1.76
α si no = 2 1.08 1.29 1.48 1.61 1.66 1.78 1.82
α si no = 3 1.15 1.35 1.55 1.66 1.72 1.83 1.89

Dr Jean-Marie Fürbringer Modelling and design of experiments



Surface response

Lack of Fit
Classical designs
Canonical analysis
Canonical analysis

5.2.6 Box-Behnken design

E =



0 −1 −1
0 −1 1
0 1 −1
0 1 1
−1 0 −1
−1 0 1
1 0 −1
1 0 1
−1 −1 0
−1 1 0
1 −1 0
1 1 0
0 0 0


I 3 levels per factor
I No experiments at the vertices
I Isovariant per rotation : 4 ou 7

factors
I Blocking : factorial design 22

I Matlab : E = bbdesign(n)

•

•

•

•

•

•

•

•

•

•

•

•

•

x1

x2

x3

Factors Coefficients Run

3 10 13
4 15 25
5 21 41
6 28 49
7 36 57
8 45 113
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5.2.7 2D Doehlert design

E =



0 0
1 0
1
2

√
3
2

− 1
2

√
3
2

−1 0
1
2 −

√
3
2

− 1
2 −

√
3
2

 •O •P1

•P2•P3

•P4

•P5 •P6

I 2 factors : 7 mesurement points, 3 and 5 levels per factor,
I No experiments at the vertices
I Isovariant per rotation
I Matlab : E = doehlert(n) to download from Moodle
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5.2.8 Shift of a 2D Doehlert design

•

••

•O •P1

•P2•P3

•P4

•P5 •P6

•

•

•

•O •P1

•P2•P3

•P4

•P5 •P6

•Q1

•Q2•Q3

•O •P1

•P2•P3

•P4

•P5 •P6
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5.2.9 Hexagonal simplex

•

••

•

• •

•

•

••

•

• •

•• •

••

•

• •

• •

••

•

• •

•

•

••

•

• •

•

I Sequential exploration of a domain (7+3+3+3+3=19 exp)
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5.2.10 Triangular simplex

•

•

•

• •

•

•

•• •

•

•

• •

•

•

• •

•

•

•

I Exploration séquentielle du domaine (3+1+1+1+1=7 exp)
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5.2.11 3D Doehlert design

E =



0 0 0
−1 0 0
1 0 0
− 1

2 −
√
3
2 0

1
2

√
3
2 0

− 1
2

√
3
2 0

1
2 −

√
3
2 0

− 1
2 −

√
3
6 −

√
2
√
3

3
1
2

√
3
6

√
2
√
3

3
− 1

2

√
3
6

√
2
√
3

3
1
2 −

√
3
6 −

√
2
√
3

3
0 −

√
3
3

√
2
√
3

3
0

√
3
3 −

√
2
√
3

3



•C •B

•K

•G•H
• I

•A•D
•
E

•
F

•J•L

x1

x2

x3
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5.2.12 Sequentiality with Doehlert designs

E =




0 0 0 0 0
−1 0 0 0 0
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√
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√
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
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5.2.13 Application : light transmission
I The transmission or reflection of

light by a thin film is a complex
phenomenon.

I Based on Snell and Fresnel
equations, for a perpendicular
non-polarized beam, the
transmission coefficient T giving the
fraction of intensity which is
transmitted is function of the wave
length λ, of the refractive index n
and the film thickness t such as

T =
(
1−
(n − 1

n + 1

)2
)

sin2
(2πnt

λ

)
I The objective is to experimentally

determine R around the point (λ =
475 nm(blue), t = 425 nm, n = 1.95)
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5.2.14 Dispersion matrices
Dispersion factorial 3k
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5.2.15 Diagonal elements of dispersion
Factorial 2k

Diagonal elements of dispersion
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5.2.16 Data points
Factorial 2k
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5.2.17 Fit

Coefficient estimates

a
o
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5.2.18 Plot added
Factorial 2k
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5.3 Canonical analysis
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5.3.1 Geometry of the second degree

I The function ao +
n∑

i=1
aixi +

n∑
i6j

aijxixj can be written as

y = ao+(x1, . . . , xn)
(

a1
...

an

)
+(x1, . . . , xn)

( a11 1
2 a1n

. . .
1
2 a1n ann

)(
x1
...

xn

)

I Equivalent to :

y = ao + ~x ·~a + ~xT A~x
I The isosurfaces of such a function are ellipsoids, or

hyperboloids
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5.3.2 Isosurfaces of a quadratic function

Ellipsoid

x2
1

a2 + x2
2

b2 + x2
3

c2 = y

Hyperboloid

x2
1

a2 + x2
2

b2 −
x2
3

c2 = ±y
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5.4.1 Canonical analysis - fix point
I The center of the figure and the orientation of the axes, as weel as

the ration of the axes is not knows a priori !
I The canonical analysis consist in determining those informations
I First identify the center of the figure that can be an extremum or a

saddle point
I We look for a point defined by ∇y = 0

∂y
∂xi

= ai + a1ix1 + . . .+ 2aiixi + . . .+ ainxn = 0

0 = ~a + 2A~x

~xs = −1
2A−1~a

ys = ao + ~xs ·~a + ~xT
s A~xs
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5.4.2 Canonical analysis - main axes
I Main axes are the eigen vectors A, x̃1, x̃2, x̃3
I The increase of the function y = f (~x) in the direction

corresponding to the main axes is given by the eigen values,
λ1, λ2, λ3

I In the directions where the eigen values are bigger, the
contour lines are close to each one

I The function y can be re-writen in a canonical form

y = ys +
n∑

i=1
λi X̃ 2

i

I If all the eigen values have the same sign the figure is an
ellipsoid, in the opposite case the figure is an hyperboloid
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5.4.3 Canonical analysis - example
I Original model
y = 100 + 10x1 + 12x2 − 4x1x2 − 3x21 − 5x22

I Fix point determination

A =
(
−3 −2
−2 −5

)
~a =
(

10
12

)
⇒ ~xs =

(
1.18
0.73

)

−1 −0.5 0 0.5 1−1

0

1

80

100

X1

X2

Y

I Eigen values and eigen vectors{
λ1 = −6.2
λ2 = −1.8 et

{
x̃1 = 0.53x̂1 + 0.85x̂2
x̃2 = −.85x̂1 + 0.53x̂2

I Canonical modelỹ = 110.3− 6.2 x̃21 − 1.8 x̃22

xs

x̃1

x̃2

x1

x2
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5.4.4 Surface response designs : pro & cons
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5.4.5 Conclusion
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