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4.1 The Plackett Burman design
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4.1.1 Introduction to Plackett-Burman Design

I Purpose and Origin : Developed by Robin Plackett and John
Burman in 1946 to efficiently screen large numbers of factors
with limited experimental runs.

I Efficiency and Assumptions : A two-level factorial design
focusing on main effects ; interactions are typically assumed to
be negligible in early-stage experimentation.

I Applications and Benefits : Widely used in fields like
chemistry, engineering, and biotechnology, where it identifies
key factors before committing to more complex experimental
designs.
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Example : Fermentation Process Optimization

I Challenge : Optimizing factors in fermentation, such as pH,
temperature, nutrient concentration, and aeration, traditionally
required numerous experiments.

I Solution with Plackett-Burman : By applying the design,
companies could efficiently screen multiple factors, saving time
and resources.

I Impact : Reduced time and cost, with quicker identification of
key variables that influence yield and efficiency, helping
companies like Merck streamline production.
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Example : NASA Materials Engineering

I Challenge : Identifying critical material properties affecting
durability and performance in harsh space environments would
traditionally require numerous tests.

I Solution with Plackett-Burman : NASA used the design to
screen multiple factors simultaneously, allowing efficient
narrowing down of essential properties.

I Impact : Enabled quicker optimization of materials for
spacecraft, resulting in robust material choices with fewer
resources compared to standard methods.
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4.1.2 Plackett Burman designs (Hadamard)

I Efficient estimation of the main effects of a system without
(important) interactions : y = ao +

∑
ai xi + ε

I N runs only necessary to analyze till N-1 factors
I Essay matrix composed of ‘1’ y ‘-1’ : some corner points of the

parallellepipedic domain
I Usage : for screening
I Model matrix generated with a Matlab function : hadamard(N)
I How to generate these matrices ?

I from the recursive relation
I from a generator that can be found in the literature
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4.1.3 Recursive construction for N = 2L

The Hadamard matrices of order N = 2L can be generated from
the recursive relation

Hk+1 =

[
Hk Hk

Hk −Hk

]
with H0 = 1. For example, when N = 4, we have

H2 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


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4.1.4 Generators of Hadamard matrices

I 8 runs, 7 factors max :
+ + +−+−− or −−−+−+ +

I 12 runs, 11 factors max :
+ +−+ + +−−−+− or ...

I 20 runs, 19 factors max :
+ +−−+ + + +−+−+−−−−+ +− or ...

I 24 runs, 23 factors max :
+ + + + +−+−+ +−−+ +−−+−+−−−− or ...
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4.1.5 Building a Plackett Burman

First line= generator −−−+−+ + 1
+−−−+−+ 2
+ +−−−+− 3

(N-2) next liges : −+ +−−−+ 4
circular permutations +−+ +−−− 5

−+−+ +−− 6
−−+−+ +− 7

Last line de + 1 + + + + + + + 8

When using the routine hadamard() with Matlab, the order of the experiments
is different and the column of ’+1’ corresponding to the constant is also
provided systematically

1. the number of + or of − must be the equal in each column
Dr Jean-Marie Fürbringer Modelling and design of experiments
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4.1.6 LSF estimates for orthogonal systems

The system Y = Xα + ε has for solution{
α̂ = (X ′X )−1 X ′Y

ε̂ = Y − X α̂

However (X ′X )−1 = 1
Nexp

INexp , thus α̂ = 1
Nexp

X ′Y

Example : H4

(H′4H4) =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 =


4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4


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4.1.7 Projectivity

•
(−1,−1,−1)

• (1,−1, 1)

•
(−1, 1, 1)

• (1, 1,−1)

•

•

•

•

When an Hadamard matrix is projected on a reference plane xi = 0,
the projection constitutes a factorial design.
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4.1.8 The VIF of an Hadamard design are optimal

DH4 =


4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4


−1

=


1
4 0 0 0
0 1

4 0 0
0 0 1

4 0
0 0 0 1

4



VIF = diag




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


−1 =


1
1
1
1


The design is orthogonal ( the vectors constituting the matrix of
the model are orthogonal , each one in reference to the others)

Dr Jean-Marie Fürbringer Modelling and design of experiments



Classical designs

Plackett Burman design
Full factorial design
Effect selection
Fractional factorial design
Rechtschaffner’s designs

4.1.9 Variance Function

xi

va
r y
(~ x
)

star

Hadamard

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

The variance function of the Hadamard
design is prefered because, even if it is
higher at the center of the domain, it
increases less when towards the limit of the
domain : the information is better spead in
the domain.

Model :
y = ao +

∑
ai xi

Variance function :

vary (~x) = f ′(~x) · (X ′X )−1 · f (~x)

For the star design :

vary (~x) =
1
6
+

1
2

∑
i

x2i

For the Hadamard design :

vary (~x) =
1
4
+

1
4

∑
i

x2i
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4.1.10 Optimizing for the bicycle race
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4.1.11 Mind map

Bicycle

Objective

Type of
investigation

Factors

Response(s)

Model(s)

Strategies

Optimization of a bicycle to maximize the chance to win the race

Experiment (factors can be manipulated)

I Continuous :
1 Height of the saddle
2 Height of the handle bar
3 Pressure of the tyres

I Discreet :
4 Breakfeast (Cereals/Beacon & eggs)
5 Jacket (standard/hightec
6 Gear (5-speed/7/speed)

Time to perform a given tour

Empirical linear model Y = ao +
∑

i ai x1

Plackett-Burman design : 8 runs
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4.1.12 Hadamard Design H8

Table – Hadamard design of 8 runs

Regime Saddle Handlebar Pressure Gear Helmet -

+ meat High high high 7 speeds profiled -
− pasta Low low low 5 speeds standard -

1 1 1 1 1 1 1 1
2 -1 1 -1 1 -1 1 -1
3 1 -1 -1 1 1 -1 -1
4 -1 -1 1 1 -1 -1 1
5 1 1 1 -1 -1 -1 -1
6 -1 1 -1 -1 1 -1 1
7 1 -1 -1 -1 -1 1 1
8 -1 -1 1 -1 1 1 -1
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4.1.13 Measurements

1 2 3 4 5 6 7 8

20

25

30

35
35.7

32.8

24.2

36.5

30.1

26.6

35.5

21

run
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4.1.14 Determination of the effects

α̂ =
(
X ′X

)−1
X ′Y =

1
N

X ′Y

α̂ =
1
8



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1



T 

35.7
32.8
24.2
36.5
30.1
26.0
35.5
22.1


=



30.4
1.0
0.8
0.7
1.9
−3.4
1.2
3.1


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4.1.15 Half-Effects

RMS error

Factors

−3

−2

−1

0

1

2

3

αi

1-Regim
e

2-Saddle

3-Handlebar

4-Pressure

5-Gear

6-Helm
et

7-dum
m
y

ŷ = a0 +
∑

ai xi = 30 + x1 + 0.8x2 + . . .Dr Jean-Marie Fürbringer Modelling and design of experiments
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4.1.16 Alias between main effects and interactions
I linear part of the model

y1 = ao +
∑

i ai xi = X1α

I interactions part of the model
y2 =

∑
i<j aij xi xj = X2α2

I Matrix of aliases between parts
A = (X ′1X1)−1 X ′1X2 = 1

8X ′1X2

l1 = a1 + a23 + a45

l2 = a2 + a13 + a46

l3 = a3 + a12 + a56

l4 = a4 + a15 + a26

l5 = a5 + a14 + a36

l6 = a6 + a24 + a35

l7 = a16 + a25 + a34

12 13 14 15 16 23 24 25 26 34 35 36 45 46 56

ao 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
a2 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
a3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
a4 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
a5 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
a6 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
a7 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0
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4.1.17 Full foldover

Design Essay matrix Model matrix

Hadamard E [1 E ]

Foldover −E [1 − E ]

Full foldover
[

E
−E

] [
1 E
1 −E

]

Dr Jean-Marie Fürbringer Modelling and design of experiments



Classical designs

Plackett Burman design
Full factorial design
Effect selection
Fractional factorial design
Rechtschaffner’s designs

4.1.18 Deliasing with the foldover

[1 E ]

l1 = a1 + a23 + a45

l2 = a2 + a13 + a46

l3 = a3 + a12 + a56

l4 = a4 + a15 + a26

l5 = a5 + a14 + a36

l6 = a6 + a24 + a35

l7 = a16 + a25 + a34

[1 − E ]

l1 = a1 − a23 − a45

l2 = a2 − a13 − a46

l3 = a3 − a12 − a56

l4 = a4 − a15 − a26

l5 = a5 − a14 − a36

l6 = a6 − a24 − a35

l7 = −a16 − a25 − a34

The foldover design changes the sign of the linear combination of the effects
and then doubles the rank of the system

Dr Jean-Marie Fürbringer Modelling and design of experiments



Classical designs

Plackett Burman design
Full factorial design
Effect selection
Fractional factorial design
Rechtschaffner’s designs

4.1.19 New Measurement

1 2 3 4 5 6 7 8

20

25

30

35

40

31.86

19.46

32.66
29.86

26.66

40.26

31.86
30.26

run
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4.1.20 New Half-Effects

RMS error

Factors

-3

-2

-1

0

1

2

3

αi

1-diet

2-saddle

3-handlebar

4-pressure

5-gear

6-helm
et

7-dum
m
y

23-saddle×
handlebar

25-saddle×
gear

35-handlebar×
gear

ŷ = a0 +
∑

ai xi + a23x2x3 + a25x2x5 + a35x3x5
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4.1.21 Interaction coefficients (bicycle case)

In the present case it is finally possible

I to identify existing interactions a23, a25eta35
I to see that they were not aliased in the full foldover
I to add columns x2x3, x2x5 and x3x5 to the model matrix
I to estimate the coefficients a23, a25 and a35

This aspect is used systematically in the Tagushi method
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4.1.22 An example of a model with aliases
I Let’s consider a model y = 10+ 12 x1 + 16 x2 + 6 x3 + 4 x1x2
I Let’s choose a design that aliases a12 with a3

E =


−1 −1 1
−1 1 −1
1 −1 −1
1 1 1


I The third column is created from the product of columns ’1’ and ’2’, the

generator being 3 = 12
I The results of the experiments are then the following

10+ 12× (−1) + 16× (−1) + 6× (+1) + 4× (−1)× (−1) + ε1 = −8+ ε1

10+ 12× (−1) + 16× (+1) + 6× (−1) + 4× (−1)× (+1) + ε2 = 4+ ε2

10+ 12× (+1) + 16× (−1) + 6× (−1) + 4× (+1)× (−1) + ε3 = −4+ ε3

10+ 12× (+1) + 16× (+1) + 6× (+1) + 4× (+1)× (+1) + ε4 = 157+ ε4
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4.1.23 Effect calculation

I The design has 4 runs, then 4 numbers (contrasts) can be computed
I If a model matrix with 5 columns is built :

X =


1 −1 −1 1 1
1 −1 1 −1 −1
1 1 −1 −1 −1
1 1 1 1 1


The two last columns are identical : they will the produce the same result

αT = (10 12 16 10 10)T

I Only lo = ao , l1 = a1 and l2 = a2 have been identified correctly.
I l3 = l4 = a3 + a12
I The matrix of the model can have only 4 columns
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4.1.24 Matrix of alias

The alias matrix of the linear model versus the interaction 12
confirms that the alias is precisely the expected one.

A =
1
4


1 −1 −1 1
1 −1 1 −1
1 1 −1 −1
1 1 1 1


T 

1
−1
−1
1

 =


0
0
0
1


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4.1.25 Summary - Plans de Hadamard

I Best possible estimates of the main effects : var(αi ) = σ2

Nexp

I The aliases are different from an Hadamard matrix to another
I Possibility to dealiase the main effects from the first order

interactions with a foldover
I Possibility to estimate the interactions if they are only a few

and identified
I Plackett-Burman designs are not the only screening designs...

it exists a few others such as the hyper-saturated designs
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4.2 Full factorial design 2n

Dr Jean-Marie Fürbringer Modelling and design of experiments



Classical designs

Plackett Burman design
Full factorial design
Effect selection
Fractional factorial design
Rechtschaffner’s designs

4.2.1 Full factorial design 2n

•
(−1,−1)

•
(1,−1)

•
(−1, 1)

•
(1, 1)

x1

x2

E =


−1 −1
−1 1
1 −1
1 1



•
(−1,−1,−1)

•
(−1,−1, 1)

•
(1,−1, 1)

•
(1,−1,−1)

•
(−1, 1, 1)

•
(−1, 1,−1)

•
(1, 1,−1)

•
(1, 1, 1)

E =



−1 −1 −1
−1 −1 1
−1 1 −1
−1 1 1
1 −1 −1
1 −1 1
1 1 −1
1 1 1


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4.2.2 OFAT vs factorial design

x1

x2

•

•

• •

x1

x2

•

• •

•

var(effet) = 2σ2

si σµ = 10% → s
m =

√
2 σ
µ = 14%

var(effet) = σ2

N
si σµ = 10% → s

m = σ√
4 µ

= 5%
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4.2.3 What can we do with a 2N factorial design ?

Identify the main effects and every interaction of n factors :

y = a0 +
n∑
i

ai xi +
n∑

i<j

aij xi xj +
n∑

i<j<k

aijk xi xj xk + . . .

The number of coefficients by level is

Nm =

(
n
m

)
=

n!

m!(n −m)!
, m = 0 : n

And we know that
∑n

m=0

(
n
m

)
= 2n = Nexp

In MATLAB use the function b=nchoosek(n,k) to calculate the binomial coefficient
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4.2.4 2N Factorial design on Matlab

Matlab
I Routine fullfact() generates a complete factorial plan depending on the number

of indicated levels for each factor
I The levels begin at 1→ standardize the matrix
I E=2*(fullfact([2 2 . . .])-1.5)

I Routine ff2n() generates a complete factorial plan with two levels for each factor
I The levels begin at 0→ standardize the matrix
I E=2*(ff2n(nfact)-0.5)
I E=fracfact(’a b c d’)
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4.2.5 Model matrix of a 2n design

Matlab
I X=x2fx(E,modelspec)
I If modelspec is the keyword ’interactions ’ only the interactions of first order are

computed
I To integrate more (or less) interaction coefficients 2× 2, 3× 3, . . . n × n, the

model must be defined by a coefficient matrix :

modelspec =



0 . . . . . . . . . 0
1 0 . . . . . . 0
0 1 0 . . . 0

1 1 0 . . . 0
1 0 1 . . . 0

1 1 1 0 . . .
etc



I Example :
modelspec=[ zeros(1,n) ;eye(N) ;unique(perms([1 1 0 . . . ],"rows")) ; . . . ]
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4.2.6 Case of a chemical reactor
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4.2.7 Block diagram

Reactor

1- Catalyst (kg)

2-Temperature (K)

3-Pressure (pa)

4-Reactant (%)

Conversion ratio (%)
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4.2.8 Mind map

Chemical reactor

Objective

Type of
investigation

Factors

Response(s)

Model(s)

Strategies

Identification of the dominant factors and interactions managing yield of the che-
mical reaction in an industrial reactor

Experiment (factors can be manipulated)

Continuous
1. Catalyst charge in[10lb, 15lb]

2. Temperature in[220◦C , 240◦C ]

3. Pressure in[50psi , 80psi ]

4. Concentration of reactant A in[10%, 12%i ]

Conversion ratio (%)

Empirical linear model with interaction Y = ao +
∑

i ai x1 +
∑

i<j aij xi xj

Full factorial design : 24 = 16 runs
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4.2.9 : Essay Matrix 24 → 16× 4

Standardized matrix
x1 x2 x3 x4

-1 -1 -1 -1
-1 -1 -1 1
-1 -1 1 -1
-1 -1 1 1
-1 1 -1 -1
-1 1 -1 1
-1 1 1 -1
-1 1 1 1
1 -1 -1 -1
1 -1 -1 1
1 -1 1 -1
1 -1 1 1
1 1 -1 -1
1 1 -1 1
1 1 1 -1
1 1 1 1

Matrix with laboratory values

Catalyst Temperature Pressure Reactant A

[lb] [◦C ] [psi] [-]

10 220 50 10%
10 220 50 12%
10 220 80 10%
10 220 80 12%
10 240 50 10%
10 240 50 12%
10 240 80 10%
10 240 80 12%
15 220 50 10%
15 220 50 12%
15 220 80 10%
15 220 80 12%
15 240 50 10%
15 240 50 12%
15 240 80 10%
15 240 80 12%

Matlab

E=fracfact(’a b c d’)
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4.2.10 Model Matrix (16 × 11)
y = a0 +

∑
ai xi +

∑
i<j

aij xi xj + ε (1)

I x1 x2 x3 x4 x1x2 x1x3 x1x4 x2x3 x2x4 x3x4

1 -1 -1 -1 -1 1 1 1 1 1 1
1 -1 -1 -1 1 1 1 -1 1 -1 -1
1 -1 -1 1 -1 1 -1 1 -1 1 -1
1 -1 -1 1 1 1 -1 -1 -1 -1 1
1 -1 1 -1 -1 -1 1 1 -1 -1 1
1 -1 1 -1 1 -1 1 -1 -1 1 -1
1 -1 1 1 -1 -1 -1 1 1 -1 -1
1 -1 1 1 1 -1 -1 -1 1 1 1
1 1 -1 -1 -1 -1 -1 -1 1 1 1
1 1 -1 -1 1 -1 -1 1 1 -1 -1
1 1 -1 1 -1 -1 1 -1 -1 1 -1
1 1 -1 1 1 -1 1 1 -1 -1 1
1 1 1 -1 -1 1 -1 -1 -1 -1 1
1 1 1 -1 1 1 -1 1 -1 1 -1
1 1 1 1 -1 1 1 -1 1 -1 -1
1 1 1 1 1 1 1 1 1 1 1

Matlab

X = x2fx(E,’interactions’)
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4.2.11Measurement
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4.2.11 Case 8 : Results of the measurement
Run Order Catalyst Temp. Pressure Reactant Conversion [%]

1 9 -1 -1 -1 -1 70
2 16 -1 -1 -1 1 60
3 15 -1 -1 1 -1 69
4 3 -1 -1 1 1 60
5 10 -1 1 -1 -1 89
6 11 -1 1 -1 1 88
7 1 -1 1 1 -1 88
8 6 -1 1 1 1 86
9 2 1 -1 -1 -1 60
10 5 1 -1 -1 1 49
11 9 1 -1 1 -1 62
12 12 1 -1 1 1 52
13 4 1 1 -1 -1 81
14 14 1 1 -1 1 82
15 13 1 1 1 -1 81
16 7 1 1 1 1 79

Run

Conversion ratio

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.25
0.5

0.75
1
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4.2.12 Effect inference

α̂ =
1
16

X ′Y

Coefficient Estimator Estimate

ao I 72.25
a1 1 -4.00
a2 2 12.00
a3 3 -0.13
a4 4 -2.75
a12 12 0.50
a13 13 0.37
a14 14 0.00
a23 23 -0.62
a24 24 2.20
a34 34 -0.13
a123 123 -0.38
a124 124 0.25
a134 134 -0.13
a234 234 -0.38
a1234 1234 -0.13
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4.2.13 Relative half-effects

Factors

ai/ao

-0.25

-0.15

-0.05

0.00

0.05

0.15

0.25

1 2 3 4 12 13 14 23 24 34 123 124 134 234 1234

1 Catalyst charge (Pb)
2 Concentration reactant A(%)
3 Pressure (psi)
4 Temperature (K)

Matlab

alpha = X’ * Y / Nexp
alpha_relative = alpha / alpha(1)
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4.2.13 Visualization of the Effects

x1

x2
x3

x4

70

69

88

89

60

62

81

81

10

0

-7

2

1

-1 0

2

19

19 19

21

60

60

86

88

49

52

79

82

-11

-8

-7

-6

0

-2 -3

3

28

16 27

33
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4.3.0 Methods for selecting significant effects

I Several methods exist
I Two are presented here :

I The reference distribution
I Normal plot
I Replicated runs and analysis of variance
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4.3.0 The reference distribution

I The method needs some
replicates of at least one
data point

I Let’s consider g sets with Ni

data in the set i

I The DF are νi = Ni − 1 and
the variances
s2i = 1

νi

∑
j (yij − µj )

I The variance is

s2y =

∑
i νi s2i∑

i νi

I If one experiment only has
been duplicated :

s2(y1, y2) =
1
2

(y1−y2)2 =
∆2

2

I with an estimate of s2, it is
possible to compute a
confidence interval (see
chap.2)

CI1−α = tα
2 ,ν

√
s2

N
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4.3.1 Discriminating half-effect with CI

Factors

ai/ao

-0.25

-0.15

-0.05

0.00

0.05

0.15

0.25

1 2 3 4 12 13 14 23 24 34 123 124 134 234 1234

1 Catalyst charge (Pb)
2 Concentration reactant A(%)
3 Pressure (psi)
4 Temperature (K)

Let’s consider that run 1 has been replicated with results 69% and 71% → S2 = 2

CI0.9 = t0.05,1

√
2
17 = ±2.2 in relative range it gives 3%
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4.3.2 Normal plot - rational (1)

I Each effect is a linear combination of random variables :

aj =
∑

i

xij Yi

I If effect would result from an experimental noise only, they
would follow a Normal distribution :

if yi ∼ N(µ, σ2) then aj ∼ N
(∑

xijµ,
∑

xijσ
2
)

I Then effects that are significantly distinct of a Normal
distribution have a large probability to be real.
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4.3.2 Normal plot - rational (2)

I To check if the effects follow a Normal distribution, the
cumulative distribution function of the effects

p(αi ≤ x) =

∫ x

−∞
p(x ′)dx ′

is compared to the Normal cumulative distribution function
(which is a sigmoid) :

p(X ≤ x) = Φ(
x − µ
σ

) =
1
2

(
1 + erf (

x − µ
σ
√
2

)

)
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4.3.3 The cumulative Normal distribution
CFD of N (ν = 0, σ = 1)

x

p(X 6 x)

-4 -3 -2 -1 0 1 2 3 4
0.0

0.25

0.5

0.75

1
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4.3.4 Normal plot - Reasoning(3)

I Each effect represents a fraction 1
Ncoef

of the considered population. Ncoef is
the number of coefficients without the
constant

I The Y axis is divided in Ncoef intervals

I The y-coordinate of the plot is placed
at the middle of each interval

I The first y-coordinate is thus in 1
2Ncoef

I The following y-coordinates are at
regular intervals 1

Ncoef

x(coefficients)

p

• 1
2Ncoef

• 3
2Ncoef

•
•
•
•
• 1− 1

2Ncoef

0

1
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4.3.5 Normal plot - Reasoning(4)

I Plotting {x = α[i ], y = p(i)}
produces a sigmoidal curve
fp(α)

I fp(α) is compared to Φ(x)

I However it is difficult to
visually compare curves !

I Then let’s transform the
sigmoid into a straight line
Φ−1(fp(α))

Matlab

normplot(x)
probplot(dist,x)

-10 -5 0 5 10

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
(X

 
 x

)

0 1 2 3 4 5 6 7

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1
(p

)
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4.3.6 Normal plot for the case of the reactor
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4.3.7 Function Φ(x) with x > 0

x

p(X ≤ x)

0

0.5

1

0 1
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4.3.8 Half-normal plot

I The sign of the effects depends on
the coding by −1 and 1

I Inverting the coding for the factors
with negative effects, main effects
are obtained

I Then for testing the normality of the
effects the sign has no specific
signification

I Then it is possible to work with half
of the normal distribution and so
increase the density of the sampling

Matlab

probplot(’halfnormal’,abs(x))
x(coefficients)

p

• 1
2 + 1

4Ncoef

•
•
•
•
•
• 1− 1

4Ncoef

0

0.5

1

Dr Jean-Marie Fürbringer Modelling and design of experiments



Classical designs

Plackett Burman design
Full factorial design
Effect selection
Fractional factorial design
Rechtschaffner’s designs

4.3.9 Half normal plot - reactor case
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4.3.10 Blocking to mitigate expected source of
error

I Sometimes it is not possible
tontreatv all the experimental units
the same manner :

I If the process require a
treatment that can not be
applied in a single batch

I the experiment are not done in
the same time

I If the measurement are shared
between different operators or
laboratories

I So what will be the impact of
separating the experimental unit in ,
let’s say, two batches ?

What would be the consequence of
separating the measurement in two
groups ?

•

• •

•

•

• •

•

x1

x2

x3

Batch 1 Batch 2
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4.3.11 Avoid Blocking aliased with a main effect

I The division into two batches according to
the value of a factor would cause an alias of
the main effect of this factor with a possible
batch effect

y = ao + (a1 + aB) x1 + a2x2 + . . .

I This is precisely what must be avoid because
it would degrade a part of the model that
interests us in priority

E =



−1 −1 −1
−1 −1 1
−1 1 −1
−1 1 1
1 −1 −1
1 −1 1
1 1 −1
1 1 1


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4.3.12 Blocking aliased with an interaction

•

•

•

•

•

•

•

•

x1

x2

x3

Batch 1 Batch 2

E =



1 −1 −1 −1 1 1 1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 1 −1 −1 1 −1 1
1 −1 1 1 −1 −1 1 −1
1 1 −1 −1 −1 −1 1 1
1 1 −1 1 −1 1 −1 −1
1 1 1 −1 1 −1 −1 −1
1 1 1 1 1 1 1 1



block1
block2
block2
block1
block2
block1
block1
block2
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4.3.13 Blocking vs randomisation

I Blocking is used to mitigate identified and predictable sources
of error

I Randomization is used to mitigate random sources of error
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4.3.14 Summary of full factorial design
I A 2N full factorial design is used to explore the relationship between

factors and their effect on a response variable. It involves testing all
possible combinations of the factors at two levels each.

I The variance coefficients are 1/N which is the optimum.

I The number of experimental runs required is equal to 2N , where N
is the number of factors : It can also be resource-intensive.

I The data from a full factorial design is typically analyzed using
ANOVA that is used to identify which factors have significant
effects on the response variable.

I In case of genuine replicate normal plot or half-normal plot can be
used to discriminate non significant effects.

I One limitation is that it assumes a linear relationship between the
factors and the response variable.
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4.4 Fractional factorial designs 2n−p
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4.4.1Critics of the full factorial designs

I With the factorial designs in general and 2n designs in particular,
the number of runs rapidly becomes too large in comparison to the
useful information that is gathered

I Let’s take the example of the 24 design
I 16 runs
I 4 main effects
I 6 first order interactions (2× 2)
I 4 second order interactions (3× 3)
I 1 third order interaction (4× 4)

I So 5 coefficients for which the interest is low, not to mention that
among the main effects and the first order interactions there can be
non significant effects

I We have to find a better design !
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4.4.2 Main Effects and First-Level Interactions

1. Efficiency in Experimentation
I Resource Optimization : Lower-order effects require fewer runs, saving time

and resources while providing robust data.
I Statistical Power : Concentrating on main effects and two-way interactions

increases precision in effect estimation by minimizing noise.
I Noise Filtering : Higher-order interactions often contribute minimal variation

and may be indistinguishable from random noise.

2. Practical Relevance
I Actionable Insights : Main effects and two-way interactions are easier to

interpret and apply in practical settings.
I Feasibility in Application : Simple interactions are more likely to be

implementable in real-world engineering and design contexts.
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4.4.3 Epistemology and Theory
3. Model Interpretability

I Conceptual Clarity : Lower-order interactions create more intuitive and
accessible models.

I Ease of Communication : Results are simpler to communicate to
non-specialists, aiding decision-making.

4. Scientific and Theoretical Alignment
I Hierarchical Principle : If higher-order effects exist, main and two-way

interactions likely dominate, forming a stable model foundation.
I Mechanistic Understanding : Main effects and two-way interactions reflect

primary causal relationships, making theories based on them more meaningful.

5. Theory Building and Simplified Models
I Generalizability : Simplified models based on main and two-way interactions are

more likely to generalize across contexts.
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4.4.4 Full factorial vs fractional
Fractional design allows to compensate the exponential expansion
of the factorial design

Nfact

Nexp

20

21

22

23

24

25

26

27

28

0 1 2 3 4 5 6 7 8 9 10 11

←
fu
ll
fa
ct
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ial

←
(N
−
1)
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ion
al

←
(N
−
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4.4.5 Fractional factorial design 2(4−1)

I Let’s consider an experimental situation with
4 factors whose main effects and first order
interactions has to be determined.

I In the situation with blocking(last chapter)
the interaction with the highest order has
been used to create batches,

I In the present example, it starts with 3
factors and then a fourth factor is introduced
as previously the partition of the runs into
two batches,

I Finally, it constitutes a design of 8 runs for 4
factors, but with aliases.

I It is named : 24−1

Fractional factorial plan 24−1
obtained by adding a column

123 to a design 23

E =



−1 −1 −1 −1
−1 −1 1 1
−1 1 −1 1
−1 1 1 −1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1
1 1 1 1


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4.4.6 Geometrical view of the 2(4−1) design

Fractional 24−1 factorial design

•

•

•

•

x1

x2

x3

x4

•

•

•

•

•
(−1,−1,−1)

•
(−1,−1, 1)

•
(1,−1, 1)

•
(1,−1,−1)

•
(−1, 1, 1)

•
(−1, 1,−1)

•
(1, 1,−1)

•
(1, 1, 1)
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4.4.7 What can be done with a 24−1 plan ?

I The model of interest has 11 coefficients

y = a0 + a1x1 + a2x2 + a3x3 + a4x4 +

a12x1x2 + a13x1x3 + a14x1x4 + a23x2x3 + a24x2x4 + a34x3x4

I They can not be all identified in only 8 runs

I What are the aliases ?

I between main effects and interaction effects
I between interaction effects
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4.4.8 The group of columns of a factorial matrix

The set of 2N columns of the model matrix of a factorial design and the
multiplication operation term by term form a group of Galois :

I The result of the multiplication of two columns in a column,

I The set that contain a neutral element, the column I of the
constant,

I Each column has an inverse, itself,

I The group is commutative.
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4.4.9 The aliases of the 24−1 design

I The fourth column of the essay
matrix has been built with the
product of the three first columns :

4 = 123

Which reveals the alias between a4
and a123

I We can multiply each side of the
equation by 4 :

44 = I = 1234

So ao is aliased with a1234,
I The relation I = 1234 is the

canonical form of the generator,

I We can multiply the previous
equation by 1 ( or 2, or 3) :

1 = 11234 = 234

Each main effect is aliased by an
interaction 3× 3

I We can multiply each side of the
equation by 2 ( or 3, or 4)

12 = 34

13 = 24

14 = 23

Which reveals the aliases between
the interactions 2× 2.
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4.4.10 The contrast table of the 24−1 design
l0 = ao + a1234
l1 = a1 + a234
l2 = a2 + a134
l3 = a3 + a124
l4 = a4 + a123
l5 = a12 + a34
l6 = a13 + a24
l7 = a14 + a23

I With a 24−1 design we can estimate
height contrasts

I Neglecting 3× 3 and 4× 4
interactions, it brings estimates of
the constant, the main effects and
linear combinations of the 2× 2
interactions.

I It can be sufficient in order to reveal
the significant effects

I A normalplot allows to select the
significant effects

I If all of the contrasts are significant,
it is possible to de-aliase the system
with a complementary plan and
dispose of a complete 24 factorial
plan.

Effects #

Constant 4!
4! 0! = 1

Main 4!
3! 1! = 4

2× 2 4!
2! 1! = 6

3× 3 4!
1! 2! = 4

4× 4 4!
0! 4! = 1
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4.4.11 Analyse 5 factors with 8 experiments

I A fifth column of the essay matrix
can be introduced in the model
matrix, for example :

5 = 12

I As previously, we can take the
canonical form of the generator :

I = 1234 = 125

I This new generator creates a list of
additional aliases :

1 = 25

2 = 15

I But also with the higher levels of
interaction, for example the 3× 3
interactions

135 = 23

145 = 24

235 = 13

245 = 14

345 = 1234
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4.4.12The table of the constrats of the 25−2 design

l0 = ao + a125 + a345 + . . .

l1 = a1 + a25 + a234 + . . .

l2 = a2 + a15 + a134 + . . .

l3 = a3 + a45 + a124 + . . .

l4 = a4 + a35 + a123 + . . .

l5 = a5 + a12 + a34 + . . .

l6 = a13 + a24 + a145 + a235 + . . .

l7 = a14 + a23 + a135 + a245 + . . .

Effects #

Constant 5!
5! 0! = 1

Main 5!
4! 1! = 5

2× 2 5!
3! 2! = 10

3× 3 5!
2! 3! = 10

4× 4 5!
1! 4! = 5

5× 5 5!
0! 5! = 1

I Usually the 3× 3 interactions
and higher are negligible
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4.4.13 Alias vs contrast

Alias An alias is a linear combination, which clarifies
the confusion between the unknowns
(coefficients) of the under-determined system.

Contrast A contrast is a number, often denoted li in this
course, resulting from the resolution of an
under-determined linear system.

Alias table The alias table is the list of correspondence
between contrasts and aliases.
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4.4.13 Contrasts of the 25−2 design

l0 = ao + . . .

l1 = a1 + a25 + . . .

l2 = a2 + a15 + . . .

l3 = a3 + a45 + . . .

l4 = a4 + a35 + . . .

l5 = a5 + a12 + a34 + . . .

l6 = a13 + a24 + . . .

l7 = a14 + a23 + . . .

I Once simplified, the table shows the
aliases between main effects and first
order interactions.

I It can be sufficient to reveal the
significant effects.

I A normalplot allows to select the
significant effects.

I The two generators share the 25 plan
in four

I If all of the effects are significant, we
can de-aliaze the plan with one of
the three fractions left and obtain a
25−1 plan.

I The other fractions are generated by
the following combinations :

I = 1234 = −125
I = −1234 = 125

I = −1234 = −125
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4.4.14 Generation of a fractional factorial matrix

MATLAB
I [E,conf] = fracfact(gen,’MaxInt’,m)

E : runs matrix
conf : table of alias
gen : generator in the form of a chain of characters such as ’a b c abc’
m : maximal level of the interactions to consider in the table of alias

I gen = fracfactgen(terms)
I gen = fracfactgen(terms,k)
I gen = fracfactgen(terms,k,R)

terms : factors in the form of a chain of characters such as ’a b c abc’
k : exponent defining the number of runs (Nexp = 2k )
R : resolution of the fractional plan (III, IV ou V, but in Arabic numbers)
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4.4.15 The table of 2n−p designs
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4.4.16 The resolution of a design
R=III No alias between the main effects ai ,

Aliases of the main effects ai with first order
interactions aij .

R=IV No alias between the main effects ai ,
No alias between the main effects ai and first order
interactions aij ,
Aliases between the first order interactions aij .

R=V No alias between the main effects ai ,
No alias between the main effects ai and first order
interactions aij ,
No alias between the first order interactions aij .
Aliases of the first order interactions aij with second
order interactions aijk .
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4.4.17 Chemical reactor with 5 factors

Chemical reactor

Objective

Type of
investigation

Factors

Response(s)

Model(s)

Strategies

Identification of the dominant factors and interactions managing yield of the che-
mical reaction in an industrial reactor

Experiment (factors can be manipulated)

Continuous
1. Feeding in[10l/min, 15l/min

2. Catalyst charge in[5lb, 7.5lb]

3. Mixing in[100rpm, 120rpm]

4. Temperature in[220◦C , 240◦C ]

5. Concentration of reactant A in[10%, 12%i ]

Conversion ratio (%)

1. Linear model Y = ao +
∑

i ai x1

2. Linear model with interactions Y = ao +
∑

i ai x1 +
∑

i<j aij xi xj

1. Full factorial design : 25 = 32 runs
2. Fractional factorial design : 25−1 = 16 runs, R=V
3. Fractional factorial design : 25−2 = 8 runs, R=III
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4.4.18 Runs and aliases
I We choose the 25−1V plan
I We choose as generator 5=1234
I The plan is

Matlab

I The plan is of resolution V and
allows thus to evaluate the 5 main
effects and the 10 first order
interactions

Dr Jean-Marie Fürbringer Modelling and design of experiments



Classical designs

Plackett Burman design
Full factorial design
Effect selection
Fractional factorial design
Rechtschaffner’s designs

4.4.19 Experimental Results

Feeding Catalyst Agitation Temperature Concentration Rate

l/min kg rpm ◦C % %
− 10 5.0 100 220 10
+ 15 7.5 120 240 12

1 1 -1 -1 -1 -1 53
2 -1 1 -1 -1 -1 63
3 -1 -1 1 -1 -1 53
4 1 1 1 -1 -1 61
5 -1 -1 -1 1 -1 69
6 1 1 -1 1 -1 93
7 1 -1 1 1 -1 60
8 -1 1 1 1 -1 95
9 -1 -1 -1 -1 1 56
10 1 1 -1 -1 1 65
11 1 -1 1 -1 1 55
12 -1 1 1 -1 1 67
13 1 -1 -1 1 1 45
14 -1 1 -1 1 1 78
15 -1 -1 1 1 1 49
16 1 1 1 1 1 82
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4.4.20 Standardized effects

Coefficients
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4.4.21 Normal plot of the 25−1 design
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4.4.22 Normalplot of the 25
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4.4.22 A smart Pareto analysis

How DOE helps to determine interactions
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4.4.22 Case presentation

width 1 :x1
radius 1 :x2

volume 1 :x3
volume 2 :x4

temperature 2 :x5

y : life duration
Production

process

Factors Response

I During a technology validation phase in laboratory, the process
of production is analysed to determine the dominant factors
(and their potential interactions) on the life duration of a
medical device.

I There are 5 factors, xi

I There is one answer, y , the life duration of a device
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4.4.22 Empirical model

y(~x) = ao + a1x1 + a2x2 + a12x1x2 + ε

I In this case, the target model has 16 coefficients

y = ao +
5∑

i=1

ai xi +
5∑

i>j

aij xi xj
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4.4.22Fractional factorial designs

Nfact

0 1 2 3 4 5 6 7 8 9 10 11

Nexp

0

10

20

30

40

50

60

70

80

•2
3

•2
4

•2
5

•2
6

•
24−1

IV

•
25−1

V

•
26−1

VI •
27−2

IV

•
27−1

VII •
28−2

V

•
28−3

IV •
29−4

IV

•
29−3

IV •
210−4

IV •
211−5

IV

Dr Jean-Marie Fürbringer Modelling and design of experiments



Classical designs

Plackett Burman design
Full factorial design
Effect selection
Fractional factorial design
Rechtschaffner’s designs

4.4.22The fractional factorial design 25−1V

x4
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x1

x2

x3

•
•

•
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•
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•
•

•
•

•
•

•
•

I To identify the 16
coefficients of the model, we
can use the 25−1V fractional
factorial design

I It counts 16 runs

I The variance of the
coefficients is var(β) = σ2

16
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4.4.22 Pareto Diagram
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4.4.22Conclusion for this case

I Interactions are key information for managing a
process

I In this case, the use of a DOE technique brings
efficiency in term of determining the interactions
and permitting a smart Pareto analysis.

I The choice of the adequate design let’s us
minimizing the number of experiments

I DOE expertise allows the experimenters to
determine before the experiments which
coefficients are calculable and also the size of
their confidence interval in function of the
precision of the measurement technique
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4.4.23 Summary fractional factorial design
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4.4.24 Summary fractional factorial design
I Definition : A fractional factorial design is a statistical technique used to study

the effect of a subset of factors on a response variable. Unlike full factorial
designs, fractional factorial designs do not test all possible combinations of the
factors, but instead test a carefully chosen subset of them.

I Design : In a fractional factorial design, the number of experimental runs
required is a fraction of the total number of runs required for a full factorial
design. The design is carefully constructed to minimize the confounding of
higher-order interactions between the independent variables.

I Analysis : The data from a fractional factorial design is typically analyzed using
an ANOVA to determine the main effects of each factors and their interactions.

I Advantages : Fractional factorial designs are more efficient than full factorial
designs, as they require fewer experimental runs while controlling for
confounding between higher-order interactions.

I Limitations : fractional factorial designs may not be able to identify higher-order
interactions between the independent variables, which may be important in
some applications. Finally, the choice of the fraction used in the design may
impact the accuracy of the estimates of the effects of the independent variables.
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4.4.25 Learning outcomes of lesson on fractional
factorial design

I At the end of this lesson, you must be able to select, use and
analyze a fractional factorial design → table by Box

I to choose a generator
I to determine the aliases
I to build the essay matrix
I to perform the analysis of the results → Normalplot
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4.5 Rechtschaffner’s designs
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4.5.1 Rechtschaffner’s designs

I Specialized design for estimating main effects and first-order
interactions,

I Three types of lines (for n factors) :
1. a line for the constant

[+ + . . .+] ou [−− . . .−]
2. n lines for the main effects

[−+ . . .+] ou [+− . . .−]
3. n!

2(n−2)! lines for the interactions of first order
[−−+ . . .+] ou [+ +− . . .−]

I The most interesting designs are R4,R6,R7 et R8 their
performances pass the factorial designs 24,26−1VI , 27−2IV , 28−3IV ,

I But these designs are not orthogonal
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4.5.2 Rechtschaffner VS factorial
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4.5.3 Rechtschaffner design for 4 factors R4

•

•
•

•

•

x1

x2

x3

•

•

•

•

•

•
x4

Essay matrix
E =



−1 −1 −1 −1
−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1
−1 −1 1 1
−1 1 −1 1
−1 1 1 −1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1


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4.5.4 Dispersion matrix (Rechtschaffner-4)

D =
1

144



14 −1 −1 −1 −1 1 1 1 1 1 1
−1 20 2 2 2 −2 −2 −2 7 7 7
−1 2 20 2 2 −2 7 7 −2 −2 7
−1 2 2 20 2 7 −2 7 −2 7 −2
−1 2 2 2 20 7 7 −2 7 −2 −2
1 −2 −2 7 7 20 2 2 2 2 −7
1 −2 7 −2 7 2 20 2 2 −7 2
1 −2 7 7 −2 2 2 20 −7 2 2
1 7 −2 −2 7 2 2 −7 20 2 2
1 7 −2 7 −2 2 −7 2 2 20 2
1 7 7 −2 −2 −7 2 2 2 2 20


I Transfer of the experimental variance : 10%(ao) and 14% (ai , aij ) to be

compared with 6.25% for a 24 design that counts 5 more experiments,
I VIF : 1.1(ao) and 1.5 (ai , aij ) to be compared to 1 for a 24 design.
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4.5.5 Angles between the estimators

~a · ~b = ‖~a‖‖~b‖ cosφ ⇒ cosφij =
1

Nexp
X T X

φij = {75o , 85o , 95o , 105o}
Alias with higher order interactions coefficients (aijk and aijkl)

A =
1
3



−1 −1 −1 −1 1
−1 −1 −1 2 −2
−1 −1 2 −1 −2
−1 2 −1 −1 −2
2 −1 −1 −1 −2
1 1 −2 −2 −1
1 −2 1 −2 −1
−2 1 1 −2 −1
1 −2 −2 1 −1
−2 1 −2 1 −1
−2 −2 1 1 −1


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4.5.6 Rechtschaffner - 6 factors

I Transfer of the
experimental error :
about 5%
compared to 3.1%
for the 26−1IV design
which has 10 more
experiments,

I VIF : 1.2(ao) and
1.15 (ai , aij ).

E =



1 1 1 1 1 1
1 −1 −1 −1 −1 −1
−1 1 −1 −1 −1 −1
−1 −1 1 −1 −1 −1
−1 −1 −1 1 −1 −1
−1 −1 −1 −1 1 −1
−1 −1 −1 −1 −1 1
−1 −1 1 1 1 1
−1 1 −1 1 1 1
−1 1 1 −1 1 1
−1 1 1 1 −1 1
−1 1 1 1 1 −1
1 −1 −1 1 1 1
1 −1 1 −1 1 1
1 −1 1 1 −1 1
1 −1 1 1 1 −1
1 1 −1 −1 1 1
1 1 −1 1 −1 1
1 1 −1 1 1 −1
1 1 1 −1 −1 1
1 1 1 −1 1 −1
1 1 1 1 −1 −1



Dr Jean-Marie Fürbringer Modelling and design of experiments



Classical designs

Plackett Burman design
Full factorial design
Effect selection
Fractional factorial design
Rechtschaffner’s designs

4.5.7Orthogonality vs. Resolution

I Orthogonality : Ensures that estimates of main effects are
completely independent of each other, but often requires a
larger number of runs.

I Resolution : Determines the level of confounding between
effects. Higher-resolution designs (e.g., Resolution V) allow
clear estimation of main effects and selected interactions, but
achieving this with orthogonality may demand more
experimental runs.

I Trade-off : Rechtschafner’s designs prioritize higher resolution
at the expense of full orthogonality, balancing interpretability
with resource constraints.
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4.5.8 The "Right" Trade-Off

I When to Prioritize Orthogonality :
I Main effects are the primary focus.
I Interactions are negligible or assumed unimportant.
I Ample resources to afford more experimental runs.

I When to Prioritize Resolution :
I Interactions may significantly influence outcomes.
I Limited resources (e.g., time, materials).
I Partial confounding is acceptable, especially during screening.
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4.5.9 Advantages of Rechtschafner’s designs

I Ideal for efficient screening of factors in resource-constrained
experiments.

I Resolution V separates main effects from two-factor
interactions.

I Structured confounding allows for interpretability without
requiring the extensive resources of fully orthogonal designs.
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4.5.10 Design 3/4 for 4 factors

•

•
•

•
•

•

x1

x2

x3

•

•
•

••
•

x4

Essay matrix
E =



−1 −1 −1 −1
−1 −1 1 1
−1 1 −1 1
−1 1 1 −1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1
1 1 1 1
−1 1 −1 −1
−1 1 1 1
1 −1 −1 −1
1 −1 1 1


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4.5.11 Conclusions - Rechtschaffner’s design

Feature Three-Quarter Design Rechtschafner Design

Levels per Factor Two (−1,+1) Two (−1,+1)

Number of Runs 3
4 × 2k 1 + k +

(k
2

)
Resolution Typically IV or higher Typically V

Confounding Reduced Minimal

Orthogonality Partial orthogonality Structured confounding

Use Case Sequential exp. or refinement Screening experiments, min. runs

Table – Comparison of Three-Quarter and Rechtschafner Designs
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