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4.1 The Plackett Burman design
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4.1.1 Introduction to Plackett-Burman Design

» Purpose and Origin : Developed by Robin Plackett and John
Burman in 1946 to efficiently screen large numbers of factors
with limited experimental runs.

» Efficiency and Assumptions : A two-level factorial design
focusing on main effects; interactions are typically assumed to
be negligible in early-stage experimentation.

» Applications and Benefits : Widely used in fields like
chemistry, engineering, and biotechnology, where it identifies
key factors before committing to more complex experimental
designs.
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Example : Fermentation Process Optimization

» Challenge : Optimizing factors in fermentation, such as pH,
temperature, nutrient concentration, and aeration, traditionally
required numerous experiments.

» Solution with Plackett-Burman : By applying the design,
companies could efficiently screen multiple factors, saving time
and resources.

» Impact : Reduced time and cost, with quicker identification of
key variables that influence yield and efficiency, helping
companies like Merck streamline production.
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Example : NASA Materials Engineering

» Challenge : Identifying critical material properties affecting
durability and performance in harsh space environments would
traditionally require numerous tests.

» Solution with Plackett-Burman : NASA used the design to
screen multiple factors simultaneously, allowing efficient
narrowing down of essential properties.

» Impact : Enabled quicker optimization of materials for
spacecraft, resulting in robust material choices with fewer
resources compared to standard methods.
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4.1.2 Plackett Burman designs (Hadamard)

v

Efficient estimation of the main effects of a system without
(important) interactions : y = a, + »_ ajx; + ¢
» N runs only necessary to analyze till N-1 factors

» Essay matrix composed of ‘1" y *-1' : some corner points of the
parallellepipedic domain

» Usage : for screening
» Model matrix generated with a Matlab function : hadamard(N)

» How to generate these matrices?

» from the recursive relation
» from a generator that can be found in the literature
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4.1.3 Recursive construction for N = 2t

The Hadamard matrices of order N = 2L can be generated from
the recursive relation

_ |Hk  Hk
Hk+1 - I:Hk _Hk:|

with Hy = 1. For example, when N = 4, we have

1 1 1 1
1 -1 1 -1
He=11 1 1 1
1 -1 -1 1

Dr Jean-Marie Fiirbringer Modelling and design of experiments



4.1.4

Plackett Burman design
Full factorial design
Classical designs Effect selection
Fractional factorial design
Rechtschaffner’s designs

Generators of Hadamard matrices

8 runs, 7 factors max :

ftt—F—— or -4+
12 runs, 11 factors max :
++—+++———+—  or..

20 runs, 19 factors max :

t+——++++—F—F————F+—  or..

24 runs, 23 factors max :

e+ttt -ttt ———
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4.1.5 Building a Plackett Burman

First line= generator | — — — 4+ —++ | 1
+———+-—+]2
++-—-—+-|3

(N-2) next liges : — 44+ ———+ |4

circular permutations | + —++——— | 5
- +—-—++-——16
——+—++-|7

Last line de +1! T rr++r+1 8

When using the routine hadamard() with Matlab, the order of the experiments

is different and the column of '+1' corresponding to the constant is also

provided systematically

1. the number of + or of — must be the equal in each column
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4.1.6 LSF estimates for orthogonal systems

The system Y = Xa + € has for solution

However (X'X)~! = fxp INeyp

Example : H,

(HaHa) =

= e

1 1 1 1
-1 1 -1 1
1 -1 -1 1
-1 -1 1 1
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-1 1 -1 | _| o 4
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4.1.7 Projectivity

_.»";__i_ _________ 1,11

& |- - - - (1,1,-1)

When an Hadamard matrix is projected on a reference plane x; = 0,
the projection constitutes a factorial design.
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4.1.8 The VIF of an Hadamard design are optimal

-1

4000 2000

D | 0400 o+ o0o0
#7100 40 oo Lo
000 4 000 %
1000\ " 1

. 0100 1

VIF = diag 0010 = 1
0001 1

The design is orthogonal ( the vectors constituting the matrix of
the model are orthogonal , each one in reference to the others)
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4.1.9 Variance Function

Model :
0.6 \ star y=aot Z aixi
Variance function :
o 047 ) ) L
< Hadamard vary (%) = f/(X) - (X' X)L ()
T g0l
' For the star design :
0 | | | 1 1
-1 -05 0 0.5 1 vary(X) = st3 > os?

Xi i

For the Hadamard design :

The variance function of the Hadamard

design is prefered because, even if it is = 1 1 2
) . vary(X) = = + = X

higher at the center of the domain, it v(X) 4 + 4 Z !

increases less when towards the limit of the '

domain : the information is better spead in
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4.1.10 Optimizing for the bicycle race

- '\: 3 - Handlebar
g i (Up / Down)

6- Helmet (Profiled [~ """ 7777777
HV /standard) |
i

1- Diet (Meat /
Carbohydrate)

mm-- + 4-Pressure of the
S - | tyres (hight/low)
2- Saddle(Up/Down) | % '

I
I
|

5 - Derailleur (5 or :'
7 gears) i
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4.1.11 Mind map

Objective

Type of
investigation

Factors

Response(s)

Model(s)

Strategies

Optimization of a bicycle to maximize the chance to win the race

Experiment (factors can be manipulated)

» Continuous :
1 Height of the saddle
2 Height of the handle bar
3 Pressure of the tyres
» Discreet :
4 Breakfeast (Cereals/Beacon & eggs)
5 Jacket (standard/hightec
6 Gear (5-speed/7/speed)

Time to perform a given tour
Empirical linear model

Y =a+Y;ax

Plackett-Burman design : 8 runs
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4.1.12 Hadamard Design Hg

Table — Hadamard design of 8 runs

Regime  Saddle Handlebar  Pressure Gear Helmet -
+ meat High high high 7 speeds  profiled -
— pasta Low low low 5 speeds  standard -
1 1 1 1 1 1 1 1
2 -1 1 -1 1 -1 1 -1
3 1 -1 -1 1 1 -1 -1
4 -1 -1 1 1 -1 -1 1
5 1 1 1 -1 -1 -1 -1
6 -1 1 -1 -1 1 -1 1
7 1 -1 -1 -1 -1 1 1
8 -1 -1 1 -1 1 1 -1

Dr Jean-Marie Fiirbringer

Modelling and design of experiments
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4.1.14 Determination of the effects

[}

| =

e el e ]

-1

-1

-1

-1

1 1
1 -1 1 -1
-1 -1 1
-1 1 1 -1

-1 -1 -1 -1
-1 1 -1 1
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XYy ==-XY
1 1\ /357 30.4
1 -1 32.8 1.0
1 1 24.2 0.8
-1 1 365 | 0.7
1 -1 301 | = 1.9
-1 1 26.0 —-3.4
11 35.5 1.2
1 -1 221 3.1
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4.1.15 Half-Effects

-3 RMS erro

Factors
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4.1.16 Alias between main effects and interactions

» linear part of the model

h = a1+ axs+ass
Y1 =a,+ Z,- aixi = X1
h = ax+ a3+ as
> mterag:lons part of t)l}e model b = a4 ap+ as
Y2 = Qi< dijXiXj = A202
i<j =y ls = as+ a5+ az
» Matrix of aliases between parts ls = a5+ ais+ ase
— / -1 / _ 1y
A == (X]_X]_) X1X2 == §X1X2 /6 = as + asa + ass
k= a1+ ax +a
12 13 14 15 16 23 24 25 26 34 35 36 45 46 56
a O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ag O 0 0 0 0 1 0 0 0 0 0 0 1 0 0
aa O 1 0 0 0 0 0 0 0 0 0 0 0 1 0
az 1 ] 0 0 0 0 0 0 0 ] 0 0 0 0 1
ag O ] 0 1 0 0 ] 0 1 ] 0 0 0 0 ]
as O 0 1 0 0 0 0 0 0 0 0 1 0 0 0
ag O 0 0 0 0 0 1 0 0 0 1 0 0 0 0
az O 0 0 0 1 0 0 1 0 1 0 0 0 0 0
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4.1.17 Full foldover

Design Essay matrix Model matrix
Hadamard E 1 E]
Foldover —E [1 —E]

Full foldover [_ g]

b ]




4.1.18 Deliasing with the foldover

h
b
3
la
Is
I
k

Classical designs

[L E]

ay + az3 + ass
ax + a3+ ase
az + a2 + ase
a4 + ais + aze
as + a1a + ase
a6 + az4 + ass
a6 + axs + aza
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h
h
ls
I
s
le
l

[L —E]

dl — d23 — d4s
a2 — a13 — d46
d3 — d12 — dse
dq — dai5 — a2
as — d14 — a36
de — d24 — d3s

—d1e — d25 — 434

The foldover design changes the sign of the linear combination of the effects

and then doubles the rank of the system

Dr Jean-Marie Fiirbringer
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4.1 c420 New Half-Effects

A
3
RMS error
2
1
0
= ) w IS o ~ N N Factors
P - .- i & 4§ 4 L
- o o o < o o
-+ a 3 @ 3 3 a o 3
;@i 5o oc o
o o
-2 o s X X T
S o
== 0 =
: § X
-3 a - m
o 2
o =
o
=

y=a0+ > aixi + axxaxs + asxoXs + a35X3X5
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4.1.21 Interaction coefficients (bicycle case)

In the present case it is finally possible

» to identify existing interactions a3, arsetass
P to see that they were not aliased in the full foldover
» to add columns xox3, xox5 and x3x5 to the model matrix

P to estimate the coefficients as3, ass and ass

This aspect is used systematically in the Tagushi method

Dr Jean-Marie Fiirbringer Modelling and design of experiments
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» Let's consider a model y =10+ 12 x3 + 16 x2 + 6 x3 + 4 x1x2

» Let's choose a design that aliases a;> with a3

-1 -1 1

-1 1 1

E= 1 -1 -1
1 1 1

» The third column is created from the product of columns '1" and '2’, the

>

generator being 3 = 12

The results of the experiments are then the following

10+ 12 x
10 4+ 12 x
104+ 12 x
104+ 12 x

—1)+16 x
—1)+16 x
+1) +16 x
+1) +16 x

—1)+6 x (+1) +4 x (~1
1)+ 6 x (—1)+ 4 x (—1
—1)+6x(—1)+4x(+1
+1)+6 x (+1)+4 x (+1

x (-1
x (+1
x (-1
x (+1

+ €1
+ €2
+ €3
+ €4

—_~ o~~~
—_~ o~~~
—_— — — —
—_— — — —

Dr Jean-Marie Fiirbringer Modelling and design of experiments
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4.1.23 Effect calculation

>
>

v

The design has 4 runs, then 4 numbers (contrasts) can be computed

If a model matrix with 5 columns is built :

-1 -1 1 1
-1 1 -1 -1
1 -1 -1 -1
1 1 1 1

x
Il
e

The two last columns are identical : they will the produce the same result

aT=(10 12 16 10 10)7

Only lp = a0, h = a1 and l» = a> have been identified correctly.
I3=ls =a3z3+ a1

The matrix of the model can have only 4 columns
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4.1.24 Matrix of alias

The alias matrix of the linear model versus the interaction 12
confirms that the alias is precisely the expected one.

T

1 -1 -1 1 1 0
Al 111 1| _|o
a1 1 -1 4 -1 0
1 1 1 1 1 1
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4.1.25 Summary - Plans de Hadamard

v

o2

Best possible estimates of the main effects : var(a;) = Ny

The aliases are different from an Hadamard matrix to another

Possibility to dealiase the main effects from the first order
interactions with a foldover

Possibility to estimate the interactions if they are only a few
and identified

Plackett-Burman designs are not the only screening designs...
it exists a few others such as the hyper-saturated designs

Dr Jean-Marie Fiirbringer Modelling and design of experiments
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4.2.1 Full factorial design 2"

(_1v 1)

x2

(1,1)

(_17 _1)

L
(1’ _1)

X1

(-1,1,1) (1,1,1)
(=1, —11) 1, -14)

(=1, -1) (1, -1)
(=1,-1,-1) (1,-1,-1)




4.2.2 OFAT vs factorial design

var(effet) = 202

S0 100 s _ V20 _ 140
SIM—].OA) ==Y = 14%

var(effet) = %

S§2=10% — %= £ =5%

=
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4.2.3 What can we do with a 2V factorial design ?

Identify the main effects and every interaction of n factors :

—ao+§ ax,+§ ajiXiXj + E Ak XiXjXk + ..

i<j i<j<k

The number of coefficients by level is

n n!
o= () = e =00
And we know that ano< :7 > = 2" = Nexp

In MATLAB use the function b=nchoosek(n,k) to calculate the binomial coefficient
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2N Factorial design on Matlab

Matlab

>

vy

vVvyyy

Routine fullfact() generates a complete factorial plan depending on the number
of indicated levels for each factor

The levels begin at 1— standardize the matrix
E=2*(fullfact([2 2 .. .])-1.5)

Routine ff2n() generates a complete factorial plan with two levels for each factor
The levels begin at 0— standardize the matrix

=2%(ff2n(nfact)-0.5)
E=fracfact('a b c d’)

Dr Jean-Marie Fiirbringer Modelling and design of experiments
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4.2.5 Model matrix of a 2" design
Matlab

>  X=x2fx(E,modelspec)

» If modelspec is the keyword ’interactions ' only the interactions of first order are
computed

» To integrate more (or less) interaction coefficients 2 X 2,3 x 3,...n X n, the
model must be defined by a coefficient matrix :

0 0
1 ] . 0
0 1 0 0
modelspec = 1 1 0 0
1 0 1 0
1 1 1 0
etc

» Example :
modelspec=[ zeros(1,n) ;eye(N) ;unique(perms([1 1 0 ... ],"rows")); ... ]

Dr Jean-Marie Fiirbringer Modelling and design of experiments



4.2.6 Case of a chemical reactor




4.2.7 Block diagram

1- Catalyst (kg) =
2-Temperature (K) =—p-
3-Pressure (pa) =
4-Reactant (%) =

Reactor - Conversion ratio (%)




4.2.8 Mind map

Objective

Type of
investigation

Factors

Response(s)

Model(s)

Strategies

Identification of the dominant factors and interactions managing yield of the che-
mical reaction in an industrial reactor

Experiment (factors can be manipulated)

Continuous
1. Catalyst charge in[10/b, 15/b]
2. Temperature in[220°C, 240°C]
3. Pressure in[50psi, 80psi]
4. Concentration of reactant A in[10%, 12%i]

Conversion ratio (%)

Empirical linear model with interaction Y = ao + 32; aj X1 + Y_;; ajj Xi X;

Full factorial design : 2* = 16 runs



Plackett Burman design
Full factorial design
Classical designs Effect selection
Fractional factorial design
Rechtschaffner’s designs

4.2.9 : Essay Matrix 2* — 16 x4

Standardized matrix Matrix with laboratory values
X1 x2 x3 x4 Catalyst Temperature Pressure Reactant A
o .
1 1 a4 4 [1b] °q [psi] 8|
-1 -1 -1 1 10 220 50 10%
-1 -1 1 -1 10 220 50 12%
-1 -1 1 1 10 220 80 10%
-1 1 -1 -1 10 220 80 12%
-1 1 -1 1 10 240 50 10%
-1 1 1 -1 10 240 50 12%
-1 1 1 1 10 240 80 10%
1 -1 -1 -1 10 240 80 12%
1 -1 -1 1 15 220 50 10%
1 -1 1 -1 15 220 50 12%
1 -1 1 1 15 220 80 10%
1 1 -1 -1 15 220 80 12%
1 1 -1 1 15 240 50 10%
1 1 1 -1 15 240 50 12%
1 1 1 1 15 240 80 10%
15 240 80 12%

Matlab

E=fracfact('a b c d’)
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4.2.10 Model Matrix (16 x 11)

1)

i<j

a0+ Y aixi+ Y axix+e

y =

X1X3 ~ X1Xa  X2X3  X2Xa  X3Xa

X1X2

-1
-1

-1
-1
-1

-1
-1
-1
-1
-1

-1
-1

-1

-1
-1
-1
-1

-1

-1
1

-1

-1
-1

-1
-1

1

1

X4

X3

x2

X1

-1
-1

-1
-1

-1
-1

-1

-1
-1

1

x2fx(E,’interactions’)

X =



4.2.11 Measurement
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4.2.11 Case 8 : Results of the measurement

Run Order Catalyst Temp. Pressure Reactant Conversion [%]
1 9 -1 -1 -1 -1 70
2 16 -1 -1 -1 1 60
3 15 -1 -1 1 -1 69
4 3 -1 -1 1 1 60
5 10 -1 1 -1 -1 89
6 11 -1 1 -1 1 88
7 1 -1 1 1 -1 88
8 6 -1 1 1 1 86
9 2 1 -1 -1 -1 60
10 5 1 -1 -1 1 49
11 9 1 -1 1 -1 62
12 12 1 -1 1 1 52
13 4 1 1 -1 -1 81
14 14 1 1 -1 1 82
15 13 1 1 1 -1 81
16 7 1 1 1 1 79

Run

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Dr Jean-Marie Fiirbringer Modelling and design of experiments



4.2.12 Effect inference

&

1
— XY
16

Coefficient  Estimator  Estimate
ao | 72.25
a 1 -4.00
as 2 12.00
as 3 -0.13
as 4 -2.75
aiz 12 0.50
ais 13 0.37
ailq 14 0.00
as3 23 -0.62
az4 24 2.20
asa 34 -0.13
a123 123 -0.38
ai24 124 0.25
aisa 134 -0.13
a234 234 -0.38
a1234 1234 -0.13




4.2.13 Relative half-effects

ai/ao

0.25 I I I

Concentration reactant A(%)

Catalyst charge (Pb) -

Factors

[
1
2
0.15 3 Pressure (psi)
4 Temperature (K) -
0.05 ‘
0.00 -
-0.05 A
3 4 12 13 14 23 24 34 123 124 134 234 1234
-0.15
-0.25 +

alpha = X' * Y / Nexp
alpha_ relative = alpha / alpha(1)




4.2.13 Visualization of the Effects
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4.3.0 Methods for selecting significant effects

» Several methods exist
» Two are presented here :

» The reference distribution
» Normal plot
» Replicated runs and analysis of variance

Dr Jean-Marie Fiirbringer Modelling and design of experiments
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4.3.0 The reference distribution

» The method needs some
replicates of at least one
data point

» Let's consider g sets with N;
data in the set /

» The DF are v; = N; — 1 and
the variances

st =5 2 — )
» The variance is

2 DV Si2

ST = —

Y doivi

Dr Jean-Marie Fiirbringer

» If one experiment only has
been duplicated :

1 A?
2 2
S = — — = —
(v1,y2) 2()/1 ¥2) 5
» with an estimate of s2, it is
possible to compute a
confidence interval (see
chap.2)

52
Ch—o = t%,u V N

Modelling and design of experiments
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4.3.1 Discriminating half-effect with CI

ai/ao

0.25 [T T 1 1 1

Catalyst charge (Pb) —
Concentration reactant A(%)

[

1

2
0.15 3 Pressure (psi)

4 Temperature (K) [
0.05 [
0.00 1 -
0.05 4 Factors

4 12 13 14 23 24 34 123 124 134 234 1234

-0.15
-0.25 +

Let’s consider that run 1 has been replicated with results 69% and 71% — S2 =2
Clo.o = to.05.1 \/g = 42.2 in relative range it gives 3%

Dr Jean-Marie Fiirbringer Modelling and design of experiments
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4.3.2 Normal plot - rational (1)

» Each effect is a linear combination of random variables :
aj = Z X,_,Y,
i

> |f effect would result from an experimental noise only, they
would follow a Normal distribution :

if yi ~ N(u,0?)  then aj~ N (Zx,-j,u, ZXUU2)

» Then effects that are significantly distinct of a Normal
distribution have a large probability to be real.

Dr Jean-Marie Fiirbringer Modelling and design of experiments
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4.3.2 Normal plot - rational (2)

» To check if the effects follow a Normal distribution, the
cumulative distribution function of the effects

plai<x) = [ plx)ax

is compared to the Normal cumulative distribution function
(which is a sigmoid) :

p(X < x) = o) = ; (l—l—erf(

g

)

Dr Jean-Marie Fiirbringer Modelling and design of experiments



4.3.3 The cumulative Normal distribution
CFD of N(v =0,0 = 1)

p(X < X)

14 -
/
ors+ /
/
/
25 +
///
— 6 > X
4 3 2 1 0 1 2 3 4
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4.3.4 Normal plot - Reasoning(3)

» Each effect represents a fraction *—

Neoer
of the considered population. Noer Is 1 1- 1
the number of coefficients without the

constant

» The Y axis is divided in N.er intervals

» The y-coordinate of the plot is placed
at the middle of each interval

3
1 2Ncoef

2Ncoef

» The first y-coordinate is thus in

1
2Ncoef

» The following y-coordinates are at

. 1 x(coefficients)
regular intervals N

Dr Jean-Marie Fiirbringer Modelling and design of experiments
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4.3.5 Normal plot - Reasoning(4)

» Plotting {x = oy}, y = p(i)}
produces a sigmoidal curve

fp(a)

» f,(c) is compared to ®(x)

» However it is difficult to
visually compare curves!

» Then let's transform the
sigmoid into a straight line

7 (fo(e))

Matlab

normplot(x)
probplot(dist,x)
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plot for the case of the reactor

4.3.6 Normal
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4.3.7 Function ®(x) with x >0

p(X < x)

—

0.5
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4.3.8 Half-normal plot

» The sign of the effects depends on
the coding by —1 and 1

» Inverting the coding for the factors
with negative effects, main effects
are obtained

» Then for testing the normality of the
effects the sign has no specific
signification

» Then it is possible to work with half
of the normal distribution and so
increase the density of the sampling

Matlab

probplot(’halfnormal’,abs(x)) 0

x(coefficients)

Dr Jean-Marie Fiirbringer Modelling and design of experiments



4.3.9 Half normal plot - reactor case
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4.3.10 Blocking to mitigate expected source of
error

What would be the consequence of
separating the measurement in two
> Sometimes it is not possible groups?
tontreatv all the experimental units
the same manner :
P |If the process require a
treatment that can not be
applied in a single batch P
» the experiment are not done in Batch 1 Batch 2
the same time
» If the measurement are shared
between different operators or

laboratories x3 o
» So what will be the impact of /2
separating the experimental unit in , x

let's say, two batches?
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4.3.11 Avoid Blocking aliased with a main effect

» The division into two batches according to
the value of a factor would cause an alias of

the main effect of this factor with a possible :1 :i 71
batch effect 1 1 -1
-1 1 1

y=ao+(a1+apg) x1 +axx2+... E = 1 -1 -1

» This is precisely what must be avoid because 1
it would degrade a part of the model that 1 1 -1
interests us in priority 1
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4.3.12 Blocking aliased with an interaction

Batch 1 Batch 2

-1 -1 -1 1 1 1 -1 block1
-1 -1 1 1 -1 -1 1 block2
-1 1 -1 -1 1 -1 1 block2
-1 1 1 -1 -1 1 -1 block1
-1 -1 -1 1 1 block?2
1 -1 1 -1 1 -1 -1 block1
1 1 -1 1 -1 -1 -1 block1
1 1 1 1 1 1 1 block2

N e
[
|
—
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4.3.13 Blocking vs randomisation

» Blocking is used to mitigate identified and predictable sources
of error

» Randomization is used to mitigate random sources of error
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4.3.14 Summary of full factorial design

» A 2N full factorial design is used to explore the relationship between
factors and their effect on a response variable. It involves testing all
possible combinations of the factors at two levels each.

» The variance coefficients are 1/N which is the optimum.

» The number of experimental runs required is equal to 2V, where N
is the number of factors : It can also be resource-intensive.

» The data from a full factorial design is typically analyzed using
ANOVA that is used to identify which factors have significant
effects on the response variable.

» In case of genuine replicate normal plot or half-normal plot can be
used to discriminate non significant effects.

» One limitation is that it assumes a linear relationship between the
factors and the response variable.

Dr Jean-Marie Fiirbringer Modelling and design of experiments



4.4 Fractional factorial designs 2"~ P



Plackett Burman design
Full factorial design
Classical designs Effect selection
Fractional factorial design
Rechtschaffner’s designs

4.4.1 Critics of the full factorial designs

>

With the factorial designs in general and 2" designs in particular,
the number of runs rapidly becomes too large in comparison to the
useful information that is gathered

Let's take the example of the 2% design

>

>
>
>
>

16 runs

4 main effects

6 first order interactions (2 x 2)

4 second order interactions (3 X 3)
1 third order interaction (4 x 4)

So 5 coefficients for which the interest is low, not to mention that
among the main effects and the first order interactions there can be
non significant effects

We have to find a better design!
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4.4.2 Main Effects and First-Level Interactions

1. Efficiency in Experimentation

» Resource Optimization : Lower-order effects require fewer runs, saving time
and resources while providing robust data.

> Statistical Power : Concentrating on main effects and two-way interactions
increases precision in effect estimation by minimizing noise.

» Noise Filtering : Higher-order interactions often contribute minimal variation
and may be indistinguishable from random noise.

2. Practical Relevance

» Actionable Insights : Main effects and two-way interactions are easier to
interpret and apply in practical settings.

» Feasibility in Application : Simple interactions are more likely to be
implementable in real-world engineering and design contexts.
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4.4.3 Epistemology and Theory

3. Model Interpretability

» Conceptual Clarity : Lower-order interactions create more intuitive and
accessible models.

» Ease of Communication : Results are simpler to communicate to
non-specialists, aiding decision-making.

4. Scientific and Theoretical Alignment

» Hierarchical Principle : If higher-order effects exist, main and two-way
interactions likely dominate, forming a stable model foundation.

» Mechanistic Understanding : Main effects and two-way interactions reflect
primary causal relationships, making theories based on them more meaningful.

5. Theory Building and Simplified Models

» Generalizability : Simplified models based on main and two-way interactions are
more likely to generalize across contexts.
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4.4.4 Full factorial vs fractional

Fractional design allows to compensate the exponential expansion

of the factorial design
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4.4.5 Fractional factorial design 2(4~1)

» Let's consider an experimental situation with
4 factors whose main effects and first order

. . . 4-1
interactions has to be determined. 2

Fractional factorial plan
obtained by adding a column

» In the situation with blocking(last chapter) 123 to a design 23
the interaction with the highest order has

been used to create batches, -1 -1 -1 -1
-1 -1 1 1
» In the present example, it starts with 3 —1 1 -1 1
factors and then a fourth factor is introduced —1 1 1 -1
as previously the partition of the runs into E= 1 -1 -1 1
two batches, 1 -1 1 -1
1 1 -1 -1
» Finally, it constitutes a design of 8 runs for 4 1 1 1 1

factors, but with aliases.

» It is named : 241
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4.4.6 Geometrical view of the 2(*~1 design

Fractional 24~ factorial design

B ——
xa
x3
(=1,1,1) (1,1,1)
(=1, -¥1) (1, —14)
(=¥1,-1) (31, -1)

—1,—-1, -1 1, -1, -1
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4.4.7 What can be done with a 2*! plan?

» The model of interest has 11 coefficients

Y= ao+aixy + axxe + azxz + asxa +

A12X1X2 + 313X1X3 + A14X1Xa + a23XoX3 + a24XoXg4 + 334X3X4

» They can not be all identified in only 8 runs
» What are the aliases?

» between main effects and interaction effects
» between interaction effects
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4.4.8 The group of columns of a factorial matrix

The set of 2V columns of the model matrix of a factorial design and the
multiplication operation term by term form a group of Galois :

» The result of the multiplication of two columns in a column,

» The set that contain a neutral element, the column [ of the
constant,

» Each column has an inverse, itself,

» The group is commutative.
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4.4.9 The aliases of the 2*~! design

» The fourth column of the essay » We can multiply the previous
matrix has been built with the equation by 1 (‘or 2, or 3) :
product of the three first columns :

1=11234 = 234

4 =123
Each main effect is aliased by an
Which reveals the alias between a4 interaction 3 x 3
and aiz3 » We can multiply each side of the
» We can multiply each side of the equation by 2 (‘or 3, or 4)
equation by 4 :
12=34
44 = | = 1234 13 = 24
So a, is aliased with a1z34, 14=23
> The rellation I'= 1234 is the Which reveals the aliases between
canonical form of the generator, the interactions 2 x 2.
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4.4.10 The contrast table of the 24! design

>

| 4

lo = a0+ a1234
h = a1+azu
h = a+ais
B = a3+ aix
la = as+ a3
s = +

e = +

7 = +

With a 2*~1 design we can estimate
height contrasts

Neglecting 3 x 3 and 4 x 4
interactions, it brings estimates of
the constant, the main effects and
linear combinations of the 2 x 2
interactions.

It can be sufficient in order to reveal
the significant effects

Dr Jean-Marie Fiirbringer

» A normalplot allows to select the
significant effects

» If all of the contrasts are significant,
it is possible to de-aliase the system
with a complementary plan and
dispose of a complete 2 factorial

plan.
Effects #

Constant %!0! =1
. 41

Main 3= 4
4!

2x2 st =0
1

3x3 o =4
1

4x4 st =1
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4.4.11 Analyse 5 factors with 8 experiments

> A fifth column of the essay matrix » But also with the higher levels of
can be introduced in the model interaction, for example the 3 x 3
matrix, for example : interactions
5=12 135 = 23
145 = 24

» As previously, we can take the

- 23 = 13
canonical form of the generator :
245 = 14
| =1234 =125 345 = 1234

» This new generator creates a list of
additional aliases :

=25
=15
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4.4.12 The table of the constrats of the 2°~2? design

ao + ai2s + azs + ...

ai + ass + axzg + ...

a +ais t+aizs+...

a3+ ass +aipa + ...

as +azs + a3+ ...

as +aip +as+ ...

13 + a4 + a145 + a5 + . ..
a1a + a3 + a135 + azs + ...

Dr Jean-Marie Fiirbringer

Effects #

Constant 5!5!0 =1
Main 4!5!1 =5
2x2 55 = 10
3x3 o5 = 10
4 x4 P =5
5x5 o =1

» Usually the 3 x 3 interactions
and higher are negligible
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4.4.13 Alias vs contrast

Alias An alias is a linear combination, which clarifies
the confusion between the unknowns
(coefficients) of the under-determined system.

Contrast A contrast is a number, often denoted /; in this
course, resulting from the resolution of an
under-determined linear system.

Alias table The alias table is the list of correspondence
between contrasts and aliases.
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4.4.13 Contrasts of the 2°72 design

» A normalplot allows to select the
significant effects.

o = ap+... 5
| 4
L o= a4+ T The two generators share the 2> plan
L N N in four
2 = h > If all of the effects are significant, we
kb = a3+ +.. can de-aliaze the plan with one of
ls = as+ +.. the three fractions left and obtain a
_ 25—1 plan.
s = a5+ + +...
_ » The other fractions are generated by
I = +axa+... . S
the following combinations :
» Once simplified, the table shows the | — 1234 = —125
allases. betweefn main effects and first | = _1234 =125
order interactions.
| = —-1234 = -125

» |t can be sufficient to reveal the
significant effects.
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4.4.14 Generation of a fractional factorial matrix

MATLAB

>

v

[E,conf] = fracfact(gen,’ MaxInt’,m)

E : runs matrix

conf : table of alias

gen : generator in the form of a chain of characters such as 'a b ¢ abc’
m : maximal level of the interactions to consider in the table of alias

gen = fracfactgen(terms)
gen = fracfactgen(terms, k)
gen = fracfactgen(terms,k,R)

terms : factors in the form of a chain of characters such as 'a b ¢ abc’
k : exponent defining the number of runs (Nex, = 2“)
R : resolution of the fractional plan (lIl, IV ou V, but in Arabic numbers)
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4.4.15 The table of 2"P designs

3 4 5 6 7 9 10 1
45531
2III
#-12
8|2 a1 52 63
ZIV 2 m 2 o
H4=12
12 513
#4123 #5=13 #6=23
3 = =
16[ 7 7 25 262
2 fois +5=1234
n[2Z il 3
62345
#7=1345
81245
4fois 2 fois #6=12345 10-1235
64[ 2 2* 23 2 -3
2 v
+7=2346
7-1234|  8=1346
#8-1356
8 fois 4fois 2fois 472173456 9=3456
1282 2* z il 7 952
(z8
16 fois 8 fois 4fois 2 fois 81234567
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resolution of a design

No alias between the main effects a;,

Aliases of the main effects a; with first order
interactions aj;.

No alias between the main effects a;,

No alias between the main effects a; and first order
interactions ajj,

Aliases between the first order interactions aj;.

No alias between the main effects a;,

No alias between the main effects a; and first order
interactions aj;,

No alias between the first order interactions aj;.
Aliases of the first order interactions a;; with second
order interactions ajj.
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4.4.17 Chemical reactor with 5 factors

Chemical reactor

Objective

Type of
investigation

Factors

Response(s)

Model(s)

Strategies

Identification of the dominant factors and interactions managing yield of the che-
mical reaction in an industrial reactor

Experiment (factors can be manipulated)

Continuous
1. Feeding in[10//min, 151/min
2. Catalyst charge in[5/b,7.5/b)
3. Mixing in[100rpm, 120rpm]
4. Temperature in[220°C,240°C]
5. Concentration of reactant A in[10%, 12%!]

Conversion ratio (%)

1. Linear model Y =a,+ ) ;ai x1

2. Linear model with interactions Y = ao + 37, aj x1 + Y2 i Xi X

1. Full factorial design : 2° = 32 runs
2. Fractional factorial design : 2°~ = 16 runs, R=V
3. Fractional factorial design : 2°=2 = 8 runs, R=Il|
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4.4.18 Runs and aliases

» We choose the 25"’/—1 plan » The plan is of resolution V and
allows thus to evaluate the 5 main

> =
We choose as generator 5=1234 effects and the 10 first order

> The plan is interactions
>> [X,confl=fracfact('bcde b ¢ d e','MaxInt',2) conf =
X = 16x3 cell array
1 -1 -1 -1 -1 ‘Term' ‘Generator"’ 'Confounding"’
-1 -1 -1 -1 1 X1t ‘bede’ X1t
-1 -1 -1 1 -1 'X2" 'b" ‘X2
1 -1 -1 1 1 'X3* ‘' 'X3'
-1 -1 1 -1 -1 ‘X4 ‘d' ‘X4
1 -1 1 -1 1 'Xs* ‘e' 'X5"
1 -1 1 1 -1 fX1xX2" ‘cde’ fX1xX2"
-1 -1 1 1 1 fX1%X3' ‘bde"* 'X1xX3"
-1 1 -1 -1 -1 'X1xX4" "bce’ 'X1xX4"
1 1 -1 -1 1 'X1xX5" "bed’ 'X1xX5"'
1 1 -1 1 -1 'X2%X3"' ‘bc’ 'X2%X3"'
-1 1 -1 1 1 'X2%X4" "bd* 'X2%X4"
1 1 1 -1 -1 'X2%X5" ‘be"’ 'X2%X5"
-1 1 1 -1 1 'X3%X4" ‘cd! 'X3%X4'
-1 1 1 1 -1 'X3%X5" ‘ce' 'X3%X5"
1 1 1 1 1 ' X4%X5" ‘de" ' X4xX5"
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Experimental Results

Feeding Catalyst Agitation Temperature Concentration Rate

1/ min kg rpm °c % %
— 10 5.0 100 220 10
+ 15 7.5 120 240 12
1 1 -1 -1 -1 -1 53
2 -1 1 -1 -1 -1 63
3 -1 -1 1 -1 -1 53
4 1 1 1 -1 -1 61
5 -1 -1 -1 1 -1 69
6 1 1 -1 1 -1 93
7 1 -1 1 1 -1 60
8 -1 1 1 1 -1 95
9 -1 -1 -1 -1 1 56
10 1 1 -1 -1 1 65
11 1 -1 1 -1 1 55
12 -1 1 1 -1 1 67
13 1 -1 -1 1 1 45
14 -1 1 -1 1 1 78
15 -1 -1 1 1 1 49
16 1 1 1 1 1 82
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4.4.20 Standardized effects

20

15

10

Coeffi

cients

-10

-15

1-Feeding, 2-Catalyst, 3-Agitation, 4-temperature, 5-Concentration

Dr Jean-Marie Fiirbringer Modelling and design of experiments



4.4.21 Normal plot of the 2°~! design
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4.4.22 Normalplot of the 2°
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4.4.22 A smart Pareto analysis

How DOE helps to determine interactions
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4.4.22 Case presentation

Factors Response

width 1 :x;
radius 1 :xo

volume 1 :x3 y : life duration

volume 2 :x4
temperature 2 X5 =——b

» During a technology validation phase in laboratory, the process
of production is analysed to determine the dominant factors
(and their potential interactions) on the life duration of a
medical device.

» There are 5 factors, x;

» There is one answer, y, the life duration of a device
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4.4.22 Empirical model

}/(Y) = 3o + aix1 + axxo + arox1xp + €

» In this case, the target model has 16 coefficients

5 5
y=ao+ g aiXj + E ajjXiX;
i=1 i>j




4.4.22Fractional factorial designs
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4.4.22The fractional factorial design 23, *

» To identify the 16

Bl e coefficients of the model, we
2 can use the 2&\3/_1 fractional
X1 X4

x5 factorial design

» [t counts 16 runs

. » The variance of the
.. . 2
coefficients is var(f) =

Dr Jean-Marie Fiirbringer Modelling and design of experiments
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4.4.22 Pareto Diagram

Half-effect

Pareto's diagram
T T
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4.4.22Conclusion for this case

» Interactions are key information for managing a
process

» In this case, the use of a DOE technique brings
efficiency in term of determining the interactions
and permitting a smart Pareto analysis.

» The choice of the adequate design let's us
minimizing the number of experiments

» DOE expertise allows the experimenters to
determine before the experiments which
coefficients are calculable and also the size of
their confidence interval in function of the
precision of the measurement technique
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4.4.23 Summary fractional factorial design

Full factorial

a linear model

defines—, interactions

an essay matrix

design 2~n

determine

can be
divided in 2”p

a model matrix has———| 2~n columns

Fractional

27(n-p)

Factorial Design has such as<:

determined by defining confounded coefficients (2 oroup structure ]

a set of generators » illy manipulated thanks to
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4.4.24 Summary fractional factorial design

>

Definition : A fractional factorial design is a statistical technique used to study
the effect of a subset of factors on a response variable. Unlike full factorial
designs, fractional factorial designs do not test all possible combinations of the
factors, but instead test a carefully chosen subset of them.

Design : In a fractional factorial design, the number of experimental runs
required is a fraction of the total number of runs required for a full factorial
design. The design is carefully constructed to minimize the confounding of
higher-order interactions between the independent variables.

Analysis : The data from a fractional factorial design is typically analyzed using
an ANOVA to determine the main effects of each factors and their interactions.

Advantages : Fractional factorial designs are more efficient than full factorial
designs, as they require fewer experimental runs while controlling for
confounding between higher-order interactions.

Limitations : fractional factorial designs may not be able to identify higher-order
interactions between the independent variables, which may be important in
some applications. Finally, the choice of the fraction used in the design may
impact the accuracy of the estimates of the effects of the independent variables.
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4.4.25 Learning outcomes of lesson on fractional
factorial design

v

vvyyypy

At the end of this lesson, you must be able to select, use and
analyze a fractional factorial design — table by Box

to choose a generator
to determine the aliases
to build the essay matrix

to perform the analysis of the results — Normalplot
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4.5 Rechtschaffner's designs



4.5.1
>
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Rechtschaffner’s designs

Specialized design for estimating main effects and first-order
interactions,
Three types of lines (for n factors) :

1. a line for the constant

[++...+]ou[——...—]

2. n lines for the main effects
(. ou [+~ .. -]

3. 2( ; lines for the interactions of first order
[——+ Alou [++—... -]

The most interesting designs are R4,Rg, R7 et Rg their
performances pass the factorial designs 2* 26 ! 27\/2, 2?\/3,

But these designs are not orthogonal

Dr Jean-Marie Fiirbringer Modelling and design of experiments



4.5.2 Rechtschaffner VS factorial

80

70

60

50

40

30

20

10

Nexp
2P ® Ry1
[ ] ® ® ® ® [ ]
271 812 913 ,10—-4 ,11-5
vl V| I 1V 1V
® R1io0
® Ry
5 261 21772 ®Rg 2;374
® ® [ J ® ®
83
Ry I
51 ®Re
> 2
[ ® Ry
Ry
Rs3 2y
T
0 4 5 6 7 8 9 10 11

Neace



4.5.3 Rechtschaffner design for 4 factors R,

—_
X4
X3
b=
X1
—1 -1 -1 -1
-1 1 1 1
. 1 -1 1 1
Essay matrix 11 -1
E= —1 —1 1 1

-1 1 -1 1
-1 1 1 -1
i -1 -1 1
1 -1 1 -1
1 1 -1 -1
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4.5.4 Dispersion matrix (Rechtschaffner-4)
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» Transfer of the experimental variance : 10%(a,) and 14% (aj, aj;) to be
compared with 6.25% for a 2% design that counts 5 more experiments,

> VIF : 1.1(ao) and 1.5 (a;,a;) to be compared to 1 for a 2% design.
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Classical designs

4.5.5 Angles between the

5-b=|al|b|cos¢ =
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estimators
Cos ¢j;i = iXTX
v /V®¢

¢j = {75°,85°,05°,105°}

Alias with higher order interactions

1 -1
B —

1 -1

-1 2

2 1

A=l 11
3 1 -2

2 1

1 -2

2 1

2 -2
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coefficients (aji and ajjx)

-1 -1 1
-1 2 =2
2 -1 =2
-1 -1 =2
-1 -1 =2
-2 -2 -1
1 -2 -1
1 -2 -1
-2 1 -1
-2 1 -1
1 1 -1
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4.5.6 Rechtschaffner - 6 factors

» Transfer of the
experimental error :
about 5%
compared to 3.1%
for the 2,6\71 design
which has 10 more
experiments,

> VIF : 1.2(a,) and
1.15 (a,—,a,-j).
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4.5.7 Orthogonality vs. Resolution

» Orthogonality : Ensures that estimates of main effects are
completely independent of each other, but often requires a
larger number of runs.

» Resolution : Determines the level of confounding between
effects. Higher-resolution designs (e.g., Resolution V) allow
clear estimation of main effects and selected interactions, but
achieving this with orthogonality may demand more
experimental runs.

» Trade-off : Rechtschafner’s designs prioritize higher resolution
at the expense of full orthogonality, balancing interpretability
with resource constraints.
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4.5.8 The "Right" Trade-Off

» When to Prioritize Orthogonality :

» Main effects are the primary focus.
» Interactions are negligible or assumed unimportant.
» Ample resources to afford more experimental runs.

» When to Prioritize Resolution :

» Interactions may significantly influence outcomes.
» Limited resources (e.g., time, materials).
» Partial confounding is acceptable, especially during screening.

Dr Jean-Marie Fiirbringer Modelling and design of experiments



Plackett Burman design
Full factorial design
Classical designs Effect selection
Fractional factorial design
Rechtschaffner’s designs

4.5.9 Advantages of Rechtschafner’s designs

» |deal for efficient screening of factors in resource-constrained
experiments.

» Resolution V separates main effects from two-factor
interactions.

» Structured confounding allows for interpretability without
requiring the extensive resources of fully orthogonal designs.
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4.5.10 Design 3/4 for 4 factors

Essay matrix
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4.5.11 Conclusions - Rechtschaffner’s design

Feature Three-Quarter Design Rechtschafner Design
Levels per Factor Two (—1,+1) Two (—1,+1)
Number of Runs % x 2k 1+ k+ (12()
Resolution Typically 1V or higher Typically V
Confounding Reduced Minimal

Orthogonality

Partial orthogonality

Structured confounding

Use Case

Sequential exp. or refinement

Screening experiments, min. runs

Table — Comparison of Three-Quarter and Rechtschafner Designs
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