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3.1.1 Pedagogical objectives

1. Understand how an ANOVA table is structured
2. Understand the consequences of non orthogonality
3. Being able to compute an ANOVA table for orthogonal and

non-orthogonal designs
4. Being able to use and interprate the Matlab routine fitlm()
5. Being able to interprate the output of a regression
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3.1.2 Analysis of variance (geometric perspective)


α̂ = (XTX )−1XTY

Ŷ = X α̂

ε = Y − Ŷ
Y

Ŷ

constant

effe
cts

ε
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3.1.3 ANOVA of a model as a whole

Sources SS DF MS F p

Model SSŶ P MSŶ =
SSŶ
P x =

MSŶ
MSε

F (x ,P,N − P)

Residue SSε N − P MSε =
SSε
N−P

Total SSY N –

N is the number of runs and P, the number of coefficients in the model
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3.1.4 ANOVA of the Young modulus model

Sources SS DF MS F p

Model 396 990.2 4 99 247.55 4.8 106 1.22 10−16

Residue 0.1 5 0.02

Total 396990.3 9 –

Model : E = 210+ 0.24xC − 0.63xS − 0.053xT avec xi ∈ [−1, 1]
99% of the SS comes from the constant : So this table does not
give interesting information on the quality of the model.
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3.1.5 ANOVA without the constant

Sources SS DF MS F p

Model (without const.) 2.00 3 0.67 32.2 0.11%
Residue 0.1 5 0.02

Total 2.10 9 –

The analysis without the constant is sharper, indicating clearly that
the experiments have put effects in evidence

It would be also interesting to know which coefficients of the model
are significant and which one could be neglected (parsimony
principle).
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3.2.1 How to decompose a model

At the level of the linear system, the parting of a model in two
sub-models is done that way :

Ŷ = Ŷ1 + Ŷ2

X α̂ = [X1 X2]

[
α1
α2

]
= X1α̂1 + X2α̂2

At the level of the sum of squares it gives :

Ŷ 2 = (Ŷ1 + Ŷ2)
2

= Ŷ 2
1+2 Ŷ1 · Ŷ2 + Ŷ 2

2

= Ŷ 2
1 + Ŷ 2

2 if and only if Ŷ1 · Ŷ2 = 0
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3.2.2 ANOVA for two orthogonal parts

Source SS DF MS F p

Partie 1 SSŶ1
P1

SSŶ1
P1

x1 =
MSŶ1
MSε

F (x1,P1,N − P)

Partie 2 SSŶ2
P2

SSŶ2
P2

x2 =
MSŶ2
MSε

F (x2,P2,N − P)

Résidu SSε N − P SSε
N−P

Total SSY N –

N is the number of runs and P1 et P2, the number of coefficients
of the parts 1 and 2 respectively, P = P1 + P2
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3.2.3 Orthogonal decomposition

θ 6= π
2 ⇒ OA1

2 + OA2
2 6= Ŷ 2

θ

Y

Ŷ

ε

X1

•

A1

X2 •
A2

O •
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3.2.3 Orthogonal decomposition (2)


OB1

2 + OB2
2 = Ŷ 2

a∗1 = OB1 = OA1 + OA2 cos θ

a∗2 = OB2 = OA2 sin θ

θ

Y

Ŷ

ε

X1

•

A1

•

B1

X2 •
A2

•

B2

X2.1

O •
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3.2.4 Determination of a cocktail effect

Toxicity of two
combined products

Objective

Type of
investigation

Factors

Response(s)

Model(s)

Strategies

Identify the interaction of the toxicity of two products P1 and P2 found in 4 so-
das

Kind of observation (factors can not be freely manipulated

1. P1 concentration, C1 ∈ [0.1g/l , 0.6g/l ]
2. P2 concentration, C2 ∈ [0.08g/l , 0.2%]

Measurement of an enzyme production related to the risk of diabet

Empirical linear model with interactions Y = ao +
∑

i aix1 +
∑

i<j aijxixj

Perform tests with commercialized sodas
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3.2.5 Design of experiments

• Points of measurement :

x1

x2

−1
−1

1

1

• 1

• 2

• 3

• 4

• Model matrix :

X =



1 −1 −1 1
1 −0.6 0.17 −0.1
1 0.2 −0.83 −0.17
1 1 1 1
1 −1 −1 1
1 −0.6 0.17 −0.1
1 0.2 −0.83 −0.17
1 1 1 1



• Dispersion matrix :

(X ′X )−1 =


0.22 −0.01 0.07 −0.19
−0.01 0.39 −0.25 0.02
0.07 −0.25 0.36 −0.08
−0.19 0.02 −0.08 0.41



• Variance inflation factors :

- a0 a1 a2 a12

VIF 1.7 1.9 2 1.7

The analysis shows that the
design is applicable
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3.2.6 Inference of the coefficients
After the experiments

Experimental data :

Expériences 1 2 3 4
Y(set 1) 80.4 70.8 67.1 270.0
Y(set 2) 89.7 58.9 53.7 275.3

Model coefficients :

- a0 a1 a2 a12
αi 97.7 52.6 41.2 81.2

αi/αo - 54% 42% 83%

Estimator :
α̂ = (X ′X )−1 X ′Y

Model :
Y = 97.7+ 52.6x1+ 41.2x2+ 81.2x1x2
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3.2.7 Angles between regressors and SS

I The information matrix (X ′X ) gives the product of the regressors 2 by 2

I The scalar product is defined ase ~xi · ~xj = ‖~xi‖‖~xi‖ cosφij

I The angles between the regressors can then be computed by

φij = arccos

(
kij√

kii
√

kjj

)
if kij are the element of the matrix of information

- x1 x2 x12

I 97o 102o 53o
x1 - 47o 89o
x2 - - 87o

Regressor I x1 x2 x12

SS(aixi ) 76 366 13 291 9 231 26 842∑
SS(aixi ) 125 730

SS(Y) 178 863 R = 1.42
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3.2.8 Sequential orthogonalisation

1. Compute the half effect, the estimate and the residue for a model
with 1 regressor (let’s say ao)

2. Compute the sum of squares SS(ao) for this model and SS(εo) for
the corresponding residue

3. Compute the half effects, the estimates and the residue for a model
with 2 regressors (let’s say ao et a1)

4. Compute the sum of squares SS(a1|ao) by subtracting SS(ao) from
the sum of squares of the model with two regressors (or from the
difference between the sums of squares of the two residues

5. etc.
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3.2.9 ANOVA with SS of type I

I SS(Ŷ )

I SS(ao )

I SS(a1|ao )

I SS(a2|ao , a1)

I SS(a12|ao , a1, a2)

Source SS SS* DF MS F P
Model 178 863 4 44 716 818 1.1 10−8

Residue 1 218 4 55
ao 116 634 1
Residue 2 62 447 7
ao 116 634 1
a1 37 034 1
Residue 3 25 414 6
ao 116 634 1
a1 37 034 1
a2 9 139 1
Residue 4 16 274 5
ao 116 634 1 116 634 2135 1.23 10−9

a1 37 034 1 37 034 678 3.8 10−8

a2 9 139 1 9 139 167 2.4 10−6

a12 16 056 1 16 056 294 4.6 10−7

Residue 5 219 4 55
Total 179 082 179 082 8

Dr Jean-Marie Fürbringer Modelling and design of experiments



Analysis of variance
Analysis of variance of a model as a whole
Anova of the coefficients of a model
The concept of alias

3.2.10 Types de SS

SS(A|B) = SS(A,B)− SS(A)

Type I (sequential)

SS(ao) for ao
SS(a1|ao) for a1

SS(a2|ao , a1) for a2
SS(a12|ao , a1, a2) for a12

Type II

SS(ao |a1, a2, a12) for ao
SS(a1|ao , a2, a12) for a1
SS(a2|ao , a1, a12) for a2
SS(a12|ao , a1, a2) for a12
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3.2.11 Comparison between type I and type II

Source SS* DF MS F P

a1 37 033 1 37 033 678 0.001 %
a2 9 074 1 9 074 166 0.021 %
a12 16 122 1 16 122 295 0.007 %
Résidu 1 219 4 55

Total 179 082 8

Source SS* DF MS F P

a1 7 130 1 7 130 130 0.034 %
a2 4 700 1 4 700 86 0.075 %
a12 16 122 1 16 122 295 0.007 %
Résidu 1 219 4 55

Total 179 082 8
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3.3.1 What is an alias ?

I Alias : Zorro and Diego de la Vega
I The Concept of alias is useful for dealing with non-orthogonal

situations
I It let compute the connection between two parts of a model
I Examples :

I For a given design, what is the consequence of considering or
not a regressor ?

I For a given design, what is the consequence of considering the
second degree coefficients on the first degree coefficients ?

I In some situations we will see that the fact of considering the
second degree coefficients will change the value of the
constant, meaning that the second degree coefficients are
aliased with the constant.
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3.3.2 The alias matrix

The alias matrix corresponds to the projection of the base vectors
of the second subspace on the base vectors of the first sub-space
I Let’s consider a linear model y = f (x1, . . . , xN , ao , a1, . . . , aM)

and a design with the model matrix X

I Now let’s part the model in two parts f = f1 + f2 with he
corresponding model matrix X1 et X2 so that X = [X1,X2]

I The alias matrix A of X2 in relation to X1 is :

A = (XT
1 X1)

−1 (XT
1 X2)
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3.3.3 What is the alias used to ?

To make the link between the two subspace :

Ŷ1 = X1α̂

Ŷ = [X1 X2]

[
α̂1
α̂2

]

Coefficients : α̂ = α̂1 + A α̂2

Orthogonal projection : X2.1 = X2 − X1A

Orthogonal decomposition :
Y = X1(α̂1 + A α̂2) + (X2 − X1A)α2 + ε
Y = X1α+ X2.1α2 + ε
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3.3.4 Example of an alias matrix

I Let’s consider a design E and the
model
y = ao + a1x1 + a2x2 + a12x1x2

I the separation is between the linear
and the interaction parts :

f1(x) = ao + a1x1 + a2x2
f2(x) = a12x1x2

I X1 =


1 0 0
1 1 1
1 −1 0
1 1 0
1 0 −1
1 0 1

 et X2 =


0
1
0
0
0
0



E =


0 0
1 1
−1 0
1 0
0 −1
0 1



x1

x2

−1
−1

1

1

•

•

•

•

•

•
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3.3.5 Example of an alias matrix (2)

A = (XT
1 X1)

−1(XT
1 X2)

=
1
44

 8 −2 −2
−2 17 −5
−2 −5 17




1 0 0
1 1 1
1 −1 0
1 1 0
1 0 −1
1 0 1



T 
0
1
0
0
0
0



=
1
44

 8 −2 −2
−2 17 −5
−2 −5 17

 1
1
1

 =

 1/11
5/22
5/22

 ⇒


lo = ao + 1

11a12

l1 = a1 + 5
22a12

l2 = a2 + 5
22a12
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3.3.6 ANOVA table for non orthogonal parts

Source SS SS*

X1 α′1X
′
1X1α1 α′X ′1X1α = (α1 + Aα2)

′X ′1X1(α1 + Aα2)
X2 α′2X

′
2X2α2 α′2X

′
2.1X2.1α2 = α′2(X2 − X1A)

′(X2 − X1A)α2
Résidu ε′ε

Total SSY –

N is the number of runs, A the alias matrix relative, α the coefficients of the first part
of the model when it is inferred alone and X2.1 is the model matrix of the second part
of the model orthogonal to the first part.
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3.3.7 Let’s go back to the case of the cocktail
Runs

x1

x2

−1
−1

1

1

• 1

• 2

• 3

• 4

Model matrix

X =



1 −1 −1 1
1 −0.6 0.17 −0.1
1 0.2 −0.83 −0.17
1 1 1 1
1 −1 −1 1
1 −0.6 0.17 −0.1
1 0.2 −0.83 −0.17
1 1 1 1



Corrected sum of squares

ao |a1, a2, a12 → Ao = (−0.1 − 0.165 0.433)

which means that :

a∗o = ao − 0.1a1 − 0.165a2 + 0.433a12

Then :

SS(ao |a1, a2, a12) =ao + Ao

 a1
a2
a12

T

XT
o Xo

a0 + Ao

 a1
a2
a12


And so on for the next steps :

ao , a1|a2, a12 → A1 =

(
−0.09 0.44
0.71 0.09

)

ao , a1|a2, a12 → A2 =

 0.46
−0.04
0.18


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Note : Matrices and arrays in Matlab

I Arrays are the fundamental data type used
to store collections of data in the form of
elements arranged in rows and columns.

I Arrays can be one-dimensional (vectors) or
two-dimensional (matrices), but MATLAB
also supports multidimensional arrays.

I Arrays can hold various types of data, such
as numbers, strings, or even more complex
objects.

I Most operations in MATLAB are vectorized,
meaning that they are applied element-wise
to arrays, which makes computations with
arrays fast and efficient.

I The function repmat(X,v,l) create a new
array by repetition of X, v times vertically
and l times horizontally.
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Note : cell array

I Cell arrays are a type of
data structure that allows
you to store elements of
varying types and sizes.

I Unlike regular arrays, a cell
array can hold different
types of data in each of
its cells.

I Each element in a cell array
is accessed using curly
braces { } to retrieve the
actual content inside the
cell.
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Note : Table in Matlab

I A table is a data type
specifically designed to store
and organize heterogeneous
data, where each column
can hold a different type
of data (e.g., numerical,
text, or categorical).
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Note : Linear model in Matlab

Linearmodel is an object created by
routines such as fitlm or stepwiselm and
with the following content

I experimental data,

I model description,

I statistics for a diagnostic,

I estimated coefficients,

I residuals.

The object can be reused to predict the
responses of the model with the methods
predict and feval
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3.3.8 Routines fitlm and stepwiselm

These MATLAB functions return a linear regression model fit to variables in the table
or dataset array.

Matlab
I mdl=fitlm(tbl)

mdl=fitlm(tbl,modelspec)
mdl=fitlm(x,y)
mdl=fitlm(x,y,modelspec)
mdl=fitlm(...,Name,Value)

I mdl=stepwiselm(tbl,modelspec)
mdl=stepwiselm(x,y,modelspec)
mdl=stepwiselm(...,Name,Value)

These routines can be fed by tables or arrays
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3.3.9 fitlm( ) output
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3.3.10 Wilkinson’s notation

Wilkinson notation is a concise way to specify the terms in a linear model. It describes
the relationships between predictors (independent variables) and a response
(dependent variable) without explicitly stating the coefficients of the model.

Example : Y ∼ 1+ X1 ∗ X2 represents the model y = ao + a1x1 + a2x2 + a12x1x2

Termse of the model Wilkinson’s notation

intercept ao 1
sans intercept -1
a1 X1
a1, a2 X1+ X2
a1, a2, a12 X1 ∗ X2 ou X1+ X2+ X1 : X2
a12 X1 : X2
a1, a11 X12

a11 X12 − X1
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3.3.11 Methods for linear model objects
Matlab offers several methods to be used with linearmodel objects

Matlab

I anova(mdl)

I coefCI(mdl)

I coefTest(mdl), coefTest(mdl,H,C)

I plot(mdl)

I plotAdded(mdl,coef)

I plotDiagnostics(mdl, plottype)

I plotResiduals(mdl)

I plotEffects(mdl)

I ypred = predict(mdl,Xnew)
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1. Significance of Coefficients and R-squared

I Check p-values :
I Small p-values (< 0.05) indicate that the corresponding

predictors are statistically significant.
I R-squared :

I Measures the proportion of variance explained by the model.
I Ranges from 0 to 1 ; higher values indicate a better fit.

I Adjusted R-squared :
I Adjusts for the number of predictors in the model.
I Prevents overfitting by penalizing for additional,

non-informative variables.
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2. Residual Analysis and Normality of Residuals

I Residual Plot :
I Check if residuals are randomly scattered around zero.
I Patterns (curvature, funnel shape) may indicate

misspecification.
I Normality of Residuals :

I Use a Q-Q plot to check if residuals follow a normal
distribution.

I Apply the Shapiro-Wilk test for a formal test of normality.
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3. Homoscedasticity and Leverage & Influence

I Homoscedasticity (Constant Variance) :
I Residuals should have constant variance across the range of

predictors.
I Breusch-Pagan test can formally check for heteroscedasticity.

I Leverage and Influence :
I Use leverage statistics to detect points with large influence on

the model.
I Cook’s distance can help identify outliers that may

disproportionately affect the model.
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3.3.12 Diagnostic of a LSF
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3.3.13 candexch routine

The candexch() function in MATLAB is used to generate optimal experimental
designs. It is commonly used when working with a set of candidate points to select the
most informative subset for fitting a model.

It selects a subset of points from a candidate set that maximizes the D-optimality
criterion, ensuring the most information is gained from the least number of
experimental runs. By exchanging points iteratively, it refines the design to provide a
robust and efficient design for fitting statistical models.

Matlab
I list=candexch(X,nrows)
I This routine candidate exchange allows the selection of the best nrows of a

model matrix in the D-optimal perspective,
I The standard routine proposes duplicated points,
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3.3.14 Summary : ANOVA in DOE
I Purpose of ANOVA :

I Decomposes total variance into components (Model and Residual).
I Tests the significance of factor effects and interactions.

I Key Concepts :
I Sum of Squares (SS) : Measures variability attributed to factors.
I Mean Squares (MS) : SS divided by degrees of freedom (DF).
I F-statistic : Ratio of MS for model terms to MS for residuals.
I p-values : Indicates significance of factors.

I Model Interpretation :
I Significant terms (p-value < 0.05) indicate meaningful effects.
I Main effects and interactions are analyzed through ANOVA tables.

I Common Applications :
I Factorial experiments : Assess main effects and interactions.
I Response surface methodology : Investigate curvature and optimization.
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