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Describe the cosmic ray (CR) energy spectrum and composition.
Discuss CR origin, and propagation.

Discuss the detection principles and measured quantities (mass,
charge, momentum, energy, rigidity, direction, ...) of astroparticle
physics experiments.

Interpret the main results of selected experiments

Assess / Evaluate the state of the art of astroparticle physics
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Light Primaries: p, He, C, O

AMS Report

Protons, one billion proton events collected by AMS
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The proton flux does not follow a single
power law: above 200 GV hardens.
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Above 60 GV, the primary cosmic rays
have identical rigidity dependence.
Also the spectra of He, C, and O above
200 GV harden.

Which is the origin of the spectral hardening?
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Which is the origin of the spectral hardening?

Interpretations of the spectral hardening fall in three categories:

Spectral break at source
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R-a+A Primary CR spectrum
& injected by the source
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oc R—@—6+A Primary CR spectrum

after propagation
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Secondary CR spectrum
after propagation
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Propagation effect

Primary CR spectrum

injected by the source

Primary CR spectrum
after propagation
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Secondary CR spectrum
after propagation

¢’Secondary
o Primary

6 describes the energy-dependence of the diffusion

Local source
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¢Seconda1'y
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Thanks to the measurement of the individual primary and secondary CR spectra and
of their ratios we can understand the origin of the spectral hardening.

Primary CR spectrum
injected by distant sources

o< R—%=8+A(R) primary CR spectrum

after propagation +
Local source
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Secondary CR spectrum
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Light Primary and Secondary Cosmic Rays
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Secondary cosmic rays Li, Be, and B have
their own identical rigidity dependence.

Primaries and Secondaries have distinctly
different spectral shapes: both harden
above 200 GV and secondaries harden

more than primaries.
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Above 192 GV the
secondary-to-
primary flux ratios
harden.

— This observation
favours the
hypothesis that the
observed spectral
hardening is due to a
propagation effect.
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What about nuclei
heavier than
Oxygen?

Is the spectral
hardening universal?
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Light, Heavy and Very heavy Primary Cosmic Rays

AMS Iron
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Primary cosmic rays have at least two classes.

Heavy primaries (Ne, Mg, Si) have their own identical rigidity
behavior but different from the one of light primaries (He, C, O).

Unexpected result: Iron (Fe) belongs to the class of light primary
cosmic rays.
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Nuclear abundance: cosmic rays compared to solar system



https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.041104

Heavy secondary/heavy primary to Light secondary/light primary Ratio

[ (b) - AMS
—— Fit to Eq. (5)
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—> Heavy and light cosmic rays have

Nuclear abundance: cosmic rays compared to solar system

different propagation properties. g
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Nitrogen

AMS Report
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We know that Nitrogen nuclei are produced both
in astrophysical sources, mostly via the C-N-O
cycle, and by the collisions of heavier nuclei with
the interstellar medium.

—> the nitrogen flux is observed to contain both
primary and secondary components.
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Summary: Primary and Secondary Cosmic Nuclei
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There are classes with their own identical rigidity behavior:

light primaries (He, C, O)

heavy primaries (Ne, Mg, Si)

N, Na, Al contain both primary and secondary components
light secondaries (Li, Be, B, F)

heavy secondaries (F)
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Question

Would the measurement of the secondary-to-secondary flux ratio be interesting?

o For example, Be/B?

IAPP 2025 C. Perrina 10



Question

Would the measurement of the secondary-to-secondary flux ratio be interesting?

o For example, Be/B?

https://doi.org/10.48550/arXiv.2309.00298
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https://doi.org/10.48550/arXiv.2309.00298
https://doi.org/10.1103/PhysRevLett.120.021101

Question

Would the measurement of the secondary-to-secondary flux ratio be interesting?

o For example, Be/B?

https://doi.org/10.48550/arXiv.2309.00298
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Question

Would the measurement of the secondary-to-secondary flux ratio be interesting?

o For example, Be/B?
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The dotted line shows the

case without decay for
10Be.

The Be/B ratio is influenced by
the decay of 1°Be, affecting both
the numerator and the
denominator.

This measurement suggests that
at rigidities < 30 GV, the CR
residence time in the Galaxy
(age) is larger than the decay
timescale.
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https://doi.org/10.48550/arXiv.2309.00298
https://doi.org/10.1103/PhysRevLett.120.021101

Solar Modulation of cosmic-ray spectra

https://www.nasa.gov/mission pages/sunearth/science/Heliosphere.html

The Sun ejects a stream of
electrically charged gas (electrons,
protons, helium, ...) called solar
wind. It travels at an average speed
ranging from 300 km/s to 700 km/s Y, oo
until it reaches the termination Heliosphere
shock.
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At this point, the speed of the solar
wind drops abruptly as it begins to
feel the effects of interstellar wind.
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https://www.nasa.gov/mission_pages/sunearth/science/Heliosphere.html

Solar cycle and in-time modulation of CRs

The solar wind generates a magnetlc f|eld which has a cycle, called «solar cycle».

Every ~11 years, the Sun's magnetic field completely flips.
The solar cycle affects the activity on the surface of the Sun, such as sunspots (SSN) which are caused by
Sun's magnetic fields.

|!E| PRL 127, 271102 (2021)
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measurements are October 29, 2019 which includes a major portion of solar cycle
cru Cial to model 24 (from December 2008 to December 2019). The AMS data
cover the ascending phase, the maximum, and descending phase
rad iation haza rds for to the minimum of solar cycle 24. Days with SEPs are removed
for the two lowest rigidity bins. The gaps in the fluxes are due to
human travel |n Spa ce. detector studies and upgrades. The error bars are invisible. As

SEP: solar energetic particles
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Solar cycle and in-time modulation of CRs

The solar wind generates a magnetlc fleld which has a cycle, called «solar cycle».

Every ~11 years, the Sun's magnetic field completely flips.
The solar cycle affects the activity on the surface of the Sun, such as sunspots (SSN) which are caused by
Sun's magnetic fields.

|!E| PRL 127, 271102 (2021)
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FIG. 1. The daily AMS proton fluxes for six typical rigidity
Larger bins from 1.00 to 10.10 GV measured from May 20, 2011 to
October 29, 2019 which includes a major portion of solar cycle
24 (from December 2008 to December 2019). The AMS data
cover the ascending phase, the maximum, and descending phase
to the minimum of solar cycle 24. Days with SEPs are removed
for the two lowest rigidity bins. The gaps in the fluxes are due to
detector studies and upgrades. The error bars are invisible. As
seen, the proton fluxes exhibit large variations with time, and the
relative magnitude of these variations decreases with increasing
rigidity.

momentum
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AMS future measurements
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AMS determination of Cosmic Ray Nuclei

AMS will provide complete and accurate spectra for the
29 elements and provide the foundation for a comprehensive theory of cosmic rays.

Requires more data
for accurate measurement
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Nuclear Charge

https://ams02.space/physics/research-group-unveils-properties-cosmic-

ray-stfur-and-composition-other-primary-cosmic
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What is the origin of the

observed anti-matter (positrons

and antiprotons)?


https://ams02.space/physics/research-group-unveils-properties-cosmic-ray-sulfur-and-composition-other-primary-cosmic
https://ams02.space/physics/research-group-unveils-properties-cosmic-ray-sulfur-and-composition-other-primary-cosmic

Fundamental question: Existence of Heavy Antimatter

The Big Bang origin of the Universe requires matter and antimatter
equally abundant at the very hot beginning.

Universe Anti-Universe

\ i ¥ - B
. el ¥ L] 1 . b [ -y ¢
| S AN LA 0 R e
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Heavy antimatter has never been found.
Where are He, C, O?
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AMS-02 measements ofatter and antimatter
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http://dpnc.unige.ch/dampe/

Launch video: https://voutu.be/lyy Ad4cQzgE

rk Matter Particle Explorer goals:
o Study of cosmic ray spectra (electrons + positrons, protons and heavier nuclei)
o Gamma-ray astronomy
o Search for signatures of annihilation/decay products of dark matter in the electrons +
positrons and gamma-ray energy spectra (indirect DM search)
e E.g., annihilation:x+ 7y > et + e~
o Exotica and “unexpected”, e.g., electromagnetic counterpart of Gravitational waves

3 years (planned), still running (9.5 years)

IAPP 2025 C. Perrina 20


https://youtu.be/Iyy_A4cQzgE
http://dpnc.unige.ch/dampe/

DAMPE: a calorimetric space-borne experiment

Needed: particle identification and energy and direction

1.45 tons
1.2mx1.2mx1m

measurements.
PSD: Plastic Scintillator
Detector
* Charged/neutral particle Charged CR  Photon
identification
* Charge measurement (|Z])

STK: Silicon-Tungsten tracKer-
converter

* Track reconstruction (6x+6y)
* Photon conversion (y = e* e)
* Charge measurement (|Z])

IAPP 2025 C. Perrina

BGO: Bismuth Germanium
Oxide calorimeter

* Energy measurement

* Electron/proton separation

NUD: NeUtron Detector

* Delayed neutrons coming
from the hadronic
interactions 2>
electron/proton separation

21



The DAMPE CoIIan

e China
o Purple Mountain Observatory, CAS, Nanjing
o University of Science and Technology of China, Hefei
o Institute of High Energy Physics, CAS, Beijing
o Institute of Modern Physics, CAS, Lanzhou
o National Space Science Center, CAS, Beijing

» Switzerland
o University of Geneva
o EPFL

* ltaly
o INFN Perugia and University of Perugia
o INFN Bari and University of Bari
o INFN Lecce and University of Salento
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DAMPE principal

DAMPE CRE DAMPE protons DAMPE Helium
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Energy (GeV) Kinetic energy (GeV) Kinetic energy [GeV/n]
3 TeV 13.6 TeV 8.5 TeV/n
* Aspectral break at 0.9 TeV, * Reveals a softening at A softening at about 34 TeV
with the spectral index changing 13.6 TeV, with the (8.5 TeV/n) Suggesting a Z-
from 3.1 to 3.9 confirms the . . .
, ) spectral index changing dependent softening energy
previous evidence found by the ;
ground-based indirect rom 2.60 to 2.85. (14 TeVforz=1)

measurement of the H.E.S.S.
Collaboration.

The inner shaded band shows the systematic uncertainties due to the
analysis procedure, and the outer band shows the total systematic
uncertainties including also those from the hadronic models.
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https://www.nature.com/articles/nature24475
https://www.nature.com/articles/nature24475
https://www.science.org/doi/10.1126/sciadv.aax3793
https://www.science.org/doi/10.1126/sciadv.aax3793

B/C and B/O flux ratios (10 GeV/n—-5.6 TeV/n)

* Several independent analyses are ongoing for 5Li, Be, B, C, N, O, Ne, Mg, Si and ,¢Fe.

B/C flux ratio
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The energy dependence of both the B/C and B/O ratios is in agreement with AMS-02
measurements: they can be well fitted by a broken power-law model, suggesting the
existence in both flux ratios of a spectral hardening at about 100 GeV/n.
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https://doi.org/10.1016/j.scib.2022.10.002

DAMPE future measurements: nuclei analysis

Analysis of Li, Be, B, C, N, O, Ne, Mg, Si ‘
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DAMPE future measurements: CRE up to few tens TeV
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The CRDB at LPSC/IN2P3/CNRS, online since 2013, is fully described in

Maurin et al. (2014, 2020)

The CRDB © SSDC is developed at the Space Science Data Center, a facility
of the Italian Space Agency (ASI).
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https://lpsc.in2p3.fr/crdb
https://ui.adsabs.harvard.edu/abs/2014A%26A...569A..32M
https://ui.adsabs.harvard.edu/abs/2020arXiv200514663M
https://tools.ssdc.asi.it/CosmicRays/

TeV spectrometer
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AMS Rigidity measurement: the sagitta method

.
— | is the total path length in
' / the magnetic field
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AMS Rigidity measurement: the sagitta method

—_—

\‘ 12
—— | is the total path length in s=r,|1-1+ 372
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! / the magnetic field
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Rigidity relative error
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Relative Error

R

o(R)
X BZLO'(ZE)

R

* [isthe total path length
immersed in the magnetic
field.

* Listhe distance between the
first and last position
measurement (different L >
different «spans»)
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[DEH AMS-02 Track reconstruction and rigidity measurement

DEFINITION: The maximum detectable rigidity (MDR) is the rigidity value
for which the relative error is 100%.

The spatial resolution o(x) is 10.7 um for protons and 6.5 um for helium.
» The maximum detectable rigidity (MDR) is 2.0 TV for protons, 3.2 TV

for helium.

The degradation of ofR)/R at high energies is because the bending of the
particle’s trajectory by the magnetic field is smaller, therefore the curvature
radius is measured with less precision.

For low rigidities (< 20 GV) o{R)/R is 0.1.

The degradation of ofR)/R at very low rigidities (< 1 GV) is related to the
multiple Coulomb scattering.
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DAMPE spectra
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Energy measurement in DAMPE

Plastic Scintillator Detector

BGO Calorimeter o |\]ade of 14 layers of 22 BGO (bismuth germanium oxide)
crystal bars each (size of a bar: 2.5 cm x 2.5 cm x 60 cm) =

calorimeter depth = 31 radiation length = 31 X, Verify
* Each crystal end is coupled to a photomultiplier tube (PMT)

Silicon-Tungsten_
Tracker

* Adjacent layers are arranged perpendicularly to reconstruct
the shower topology in the calorimeter.

on Detector

y * We select only «well-contained» showers: i.e., showers

with the maximum before the 10th layer.
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Calorimeter enerlution

Z. Zhang et al., NIM A 836 (2016) 98-104
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* In calorimeters o(E)/E < 1/sqrt(E): energy resolution improves with energy

* In magnetic spectrometers o(R)/R « R: the rigidity resolution deteriorates linearly with rigidity
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Differences between a magnetic spectrometer and a calorimeter

Charge measurement Only absolute value of the charge
(sign + absolute value)

o(R)/R < R o(E)/E « 1/sqrt(E)
the rigidity resolution deteriorates energy resolution improves with energy
with rigidity
There is a MDR: There is not energy limit in principle but
Maximum Detectable Rigidity at high energies becomes difficult to

contain the shower

Solution: stronger magnetic (B) ESqution: deeper calorimeter
field and larger detector (L)
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