Introduction to astroparticle physics

Part 1: Andrii Neronov

Cosmic ray physics
... direct continuation of Gamma'ray aStronomy

research started by V.Hess ... application of particle physics
methods in astronomy

Neutrino physics

* neutrino oscillations
* high-energy neutrino astronomy

Dark matter physics

... direct continuation of
research started by F.Zwicky

Particle physics in the Early Universe

... direct continuation of research started by Gamow
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Dark matter signal as an astronomical source
Dark matter profiles
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The Earth is at the distance D ~ 8 kpc from the center of the
Galaxy, so that the kpc-scale innermost part of the dark

matter halo spans an angle
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The flux of the source is
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Dark matter signal vs. astronomical backgrounds

Fermi LAT, E>1 GeV
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| Dark matter signal, if present, is “diluted” in background of unrelated astronomical
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Gamma-ray glow of the Milky Way

Cosmic rays penetrating the Earth atmosphere come from

sources in the Milky Way. Before reaching the Earth, they travel

through the interstellar gas and interact with it:
p+N-op+N+n°
p+N-on+N+nt

producing pions (%, 7°). Pions decay and produce gamma-rays
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Gamma-ray and multi-messenger sources

Fermi/LAT
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Gamma-ray and multi-messenger sources
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LHAASO

E>1 GeV LHAASO sky map E>100 TeV
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Gamma-ray and multi-messenger sources
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Gamma-ray and multi-messenger sources

Supernova

Neutron star

E>1 GeV



Evolution of massive stars
Noabuming hydrogen

Stars with masses above 8M, are able to synthesize nuclei up to iron

(which has the largest binding energy). Iron is accumulated in the stellar Hydrogen fusion
core. Helium lusion
. . . ape . . . caw ’wm

Stars are typically found in hydrostatic equilibrium: gravity force is e Rt
counterbalanced by pressure gradient force:

dP  GyMp Neon fusion

dR ~ R g g
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The density of the iron core is high (up to 10° g/cm?). S iton

The pressure is provided by the degenerate Fermi gas of electrons:
P =ngvepe



Evolution of massive stars
Noabuming hydrogen

Stars with masses above 8M, are able to synthesize nuclei up to iron
(which has the largest binding energy). Iron is accumulated in the stellar Hydrogen fusion

core. Hedum Tusion

Stars are typically found in hydrostatic equilibrium: gravity force is
counterbalanced by pressure gradient force:
dP GNMP Neon fusion -
dR = R2 Magnesium _
The density of the iron core is high (up to 108 g/cm?3).
The pressure is provided by the degenerate Fermi gas of electrons:
P =n,v,p,
Ax.Ap, ~ 1
1




Evolution of massive stars
Noabuming hydrogen

Stars with masses above 8M, are able to synthesize nuclei up to iron

(which has the largest binding energy). Iron is accumulated in the stellar Hydrogen fusion

core. Hedum Tusion

Stars are typically found in hydrostatic equilibrium: gravity force is
counterbalanced by pressure gradient force:

dP GNM,D Neon fusion -
dR  R? Magnesiun
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The density of the iron core is high (up to 10° g/cm?). oo

The pressure is provided by the degenerate Fermi gas of electrons:
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The hydrostatic equilibrium equation:
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Chandrasekhar mass
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Iron accumulates in the core of the star and the mass of the core
increases. This leads to the decrease of the radius and increase of the
density
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Chandrasekhar mass

5
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Y; R
> 1
mem, Gy M3

Iron accumulates in the core of the star and the mass of the core
increases. This leads to the decrease of the radius and increase of the
density
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Increase of the density leads to the increase of electron velocity:
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Noabuming hydrogen

Hydrogen fusion

Chandrasekhar mass (Mg = 2x1033 gis the Solar mass)




Gravitational collapse
Noabuming hydrogen

Hydrostatic equilibrium equation for relativistic degenerate electron

Hydrogen fusion
gas:
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Hydrostatic equilibrium supported by relativistic electron gas is
possible only for a fixed mass M = M. As soon as the mass of the
iron core exceeds the Chandrasekhar limit, the core collapses under
the force of gravity.



Gravitational collapse

Hydrostatic equilibrium equation for relativistic degenerate electron
gas:
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Hydrostatic equilibrium equation for the relativistic electron gas
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Hydrostatic equilibrium supported by relativistic electron gas is
possible only for a fixed mass M = M. As soon as the mass of the
iron core exceeds the Chandrasekhar limit, the core collapses under
the force of gravity.

Noabuming hydrogen

Hydrogon fusion




Gravitational collapse of stellar core

Noabuming hydrogen

Hydrogen fusion

In the absence of counterbalancing pressure the collapse proceeds on Sy —
the free-fall time scale: Orygen fusion
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The density rapidly grows until it reaches the nuclear density scale: Sificon fusion
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This happens when the size of the collapsed core is down to
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Neutronization
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Increasing density induces destruction of atomic nuclei, the matter

becomes degenerate gas of nucleons: protons and neutrons. Protons can be
converted to neutrons via inverse beta decay:

2
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Free neutrons do not decay, because their decay would release an electron 2 s s
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into highly degenerate electron gas: obsolutely stobie = m"gg e
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Fermi velocity in this gas is close to the speed of light, Fermi energy is 10" g em”

relativistic. All energy levels to which the released electron might be
deposited are already occupied.

= mixed phase

As a result, large part of protons is converted into neutrons. A “neutron
star” is formed.



Neutrino emission
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Particles (neutrinos, photons) can escape from the neutron star if their mean free path is longer than the size of the star:
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This is not the case for the neutron stars: neutrinos are trapped inside. Before escaping, they perform a random walk, so that their escape
time is
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Neutrinos finally escape from a surface layer at which A4,,, = R (“neutrinosphere”, by analogy with the “photosphere” of stars).

N.B.: photon escape time is much longer than that of neutrinos, because for photons ¢ = gy ~ 1072% cm? > gy,,.



Neutrinos from SN 1987A
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Visible light image of SN 1987A supernova in Large Neutrino signal.
Magellanic cloud 30 years after the explosion.

Rate of supernovae in our Galaxy is “several” per century. Since neutrino detection experiments are operating, only one
supernova has exploded at a relatively small distance, in Large Magellanic Cloud at 50 kpc.



