

1: Introduction to the course

- How is the course organized ?
 1. What is Bio-imaging ?
 2. How can SNR and CNR be optimized ?
 3. What is the importance of biomedical imaging ?
 4. Examples

After this course you

1. know the course organization and coverage of topics;
2. know the contribution of bio-imaging to life science and why it is an interdisciplinary effort.
3. know the main elements required for bio imaging;
4. are able to perform contrast to noise and signal to noise calculations;
5. are familiar with noise error propagation calculations

1-1

Fund Biolmag 2025

How is the course organized ?

Course web site (moodle, physics, master):

moodle.epfl.ch/course/view.php?id=250

If you are not enrolled yet :

Enrollment key = bioimaging23

Copies of parts of the presentation

Will be provided on moodle (pdf)

Please take notes during lecture !!

Exercises (Fri 15:15 CE 104):

Handed out by assistant on day of lecture

Available on moodle

Solution of selected problems of prior week

If you miss a course ...

The course given was filmed and is available on youtube

the link is provided on moodle for each lecture

1-2

Fund Biolmag 2025

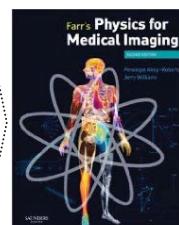
What is the content of this course ?

Theme	Elements	
Introduction (Lectures 1-2)	Definition and importance of bio-imaging Ultrasound imaging Basis of x-ray imaging	
X-ray imaging (Lectures 3-7)	Interactions of photons with matter/Radioprotection X-ray imaging (computed tomography) Emission computed tomography Positron emission tomography Tracer dynamics	Links Life science @ EPFL Systems and signals Image processing Mathematical and computational models in biology
Magnetic resonance I Basics (Lectures 8-10)	Basis of magnetic resonance effect T_1 and T_2 relaxation Spectroscopy Echo formation	Physics Neural networks and biological modeling Classical electrodynamics
Magnetic resonance II Advanced topics and contrast mechanisms (Lectures 11-13)	Elements of image formation Biophysics of BOLD Contrast agents Diffusion tensor imaging	

1-3

Fund Biolmag 2025

What supplemental reading/material is recommended ?

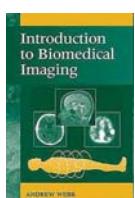

I will provide pdf versions of the lecture on moodle

Handouts without your personal notes will not be complete.

To complete the Handouts

1. personal notes during course
2. incorporate insights gained during exos

For a shorter text: Penelope Alisy-Roberts, Jerry Williams
"Farr's Physics for Medical Imaging"
(200p., small, ~EUR 50)
USD 30+ on amazon.com
A lot of focus on simple x-ray (not covered in the course)


Course text:

Andrew Webb

"Introduction to biomedical imaging"
(250p. ~EUR 110, available as ebook at the library EPFL)

USD 60+ on amazon.com

- Is more complete on MRI
- Excellent reference text for later use

Other Text books

- Zhang-Hee Cho, Joie J. Jones, Manbir Singh
"Foundations of Medical Imaging"
- William R. Hendee, E. Russel Ritenour
"Medical Imaging Physics"
- Jerrold T. Bushberg, J. Anthony Seibert, Edwin M. Leidholt, John M. Boone
"The Essential Physics of Medical Imaging"

1-4

Fund Biolmag 2025

1-1. What is Biomedical Imaging ?

Definition of bio-imaging

Localized measurement of a **contrast generating** biophysical effect in body/organ of living system

What is measured (some useful definitions)

Image=nxm matrix of pixels

Pixel = picture element

3D image=kxnxm matrix of voxels

Voxel = volume element

Important:

Contrast between voxels/pixels

In principle n,m,k can be unlimited...

What is Contrast ?

Ability to distinguish tissue features against noise

Contrast = difference in signal between tissues one wishes to distinguish

In reality one needs to deal with Contrast-to-noise

Is there a free lunch for imaging ?

Resolution **Sensitivity/Contrast**

1-6

Fund Biolmag 2025

What is the difference between signal-to-noise and contrast-to-noise ratio ?

To obtain good measurements (not only in imaging) we need good signal to noise ratio

Definition

Signal-to-noise ratio (SNR)

S: signal (or measurement variable)

σ : standard deviation of its measurement (either determined experimentally (how?) or estimated quantitatively)

$$SNR = \frac{S}{\sigma}$$

SNR provides a means to estimate the precision with which the signal S is measured

It is possible to have excellent SNR but no CNR (when?)

To discriminate two signals S_1 and S_2 we need more than just good signal to noise ratio. The ability to discriminate the two is assessed using the contrast to noise ratio

Definition

Contrast-to-noise ratio (CNR)

S_1 and S_2 : two signals (or measurement variable) of two different tissues,

σ : standard deviation of their measurement (see left, assumed here to be identical and statistically independent)

$$CNR = \frac{S_1 - S_2}{\sigma}$$

CNR provides a means to estimate the precision with which the signal S_1 can be discriminated from S_2

Fund Biolmag 2025

1-7

1-2. How can we optimize SNR ?

It is possible to optimize SNR by performing N repeated measurements S_i .

The precision of the average $\langle S \rangle = \sum S_i / N$ depends on the **square root law** (4 measurements improve the precision by twofold):

$$S_i = S + \varepsilon_i$$

where $\langle \varepsilon_i^2 \rangle = \sigma^2$, $\langle \varepsilon_i \rangle = 0$.

S is the true signal (unknown)

$$\langle S \rangle = \sum S_i / N = S + \sum \varepsilon_i / N$$

$$\Delta S \equiv \langle S \rangle - S = \frac{\sum \varepsilon_i}{N} \quad \left| \quad \Delta S^2 = \frac{(\sum \varepsilon_i)^2}{N^2} \right.$$

$$\langle \varepsilon_i \varepsilon_j \rangle = 0, \quad i \neq j$$

$$\Delta S^2 = \frac{(\sum \varepsilon_i^2)}{N^2} + \frac{(\sum \varepsilon_i \varepsilon_j)}{N^2}$$

$$\langle \Delta S^2 \rangle = \frac{\sum \langle \varepsilon_i^2 \rangle}{N^2} = \frac{N \sigma^2}{N^2} = \frac{\sigma^2}{N}$$

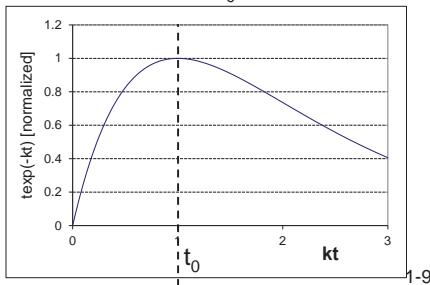
$$\langle \Delta S \rangle = \frac{\sigma}{\sqrt{N}}$$

This is well-known from statistics (SEM)
 \Rightarrow results in increased measurement time

How can we optimize CNR ?

Optimizing contrast = choice of experimental parameters (e.g. protocol) to maximize the difference in two tissue signals S_1 and S_2 .

complex and empirical procedure
 some effects can be predicted/calculated, if the signal behavior can be modeled.


$$\frac{d}{dt} (-S_0 t e^{-kt}) = 0$$

$$= -S_0 e^{-kt} \underbrace{(1 - kt)}_{=0}$$

$$t_0 = 1/k$$

For an exponentially decaying signal, the optimal time of measurement is equal to 1/decay rate

How critical is the choice of t_0 ?

Example: $S(k, t) = S_0 e^{-kt}$

$$\frac{dS(k, t)}{dk} = -S_0 t e^{-kt}$$

Maximum is where derivative with respect to t is zero

1-3. What is the importance of Bio-Imaging ?

Life Sciences are unthinkable without Bio-Imaging

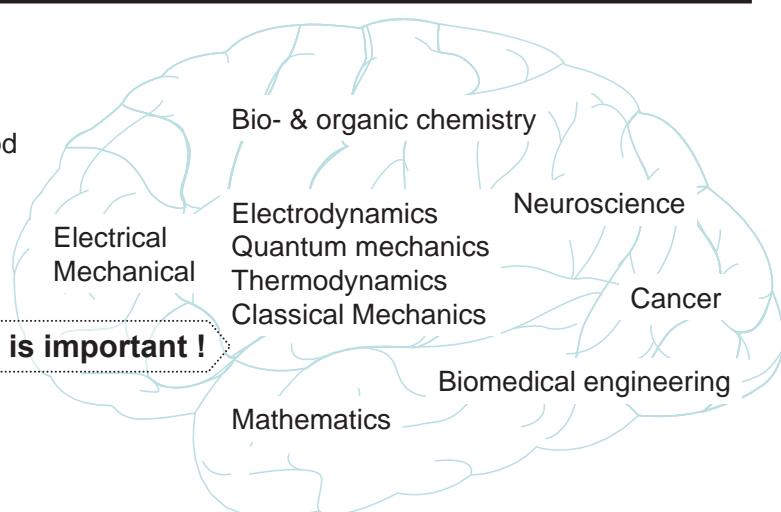
Assessment of biological processes with **minimal** perturbation of the system

Examples:

Humans, animals,
cell/organ preparations

Modalities:

x-ray
computed tomography
positron emission tomography
magnetic resonance
ultrasound
electrical imaging (EEG, MEG)
optical imaging


Development of Bio-Imaging
capabilities, modalities and
effects
... unthinkable without
physics

1-10

Fund Biolmag 2025

What are essential ingredients of bio-imaging ?

1. Life Sciences
2. Physics
3. Engineering/Good instrumentation
4. Mathematics
5. Chemistry

1-11

Fund Biolmag 2025

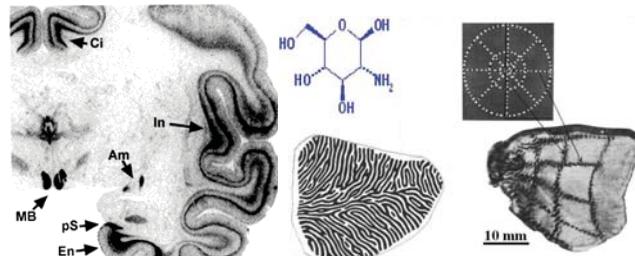
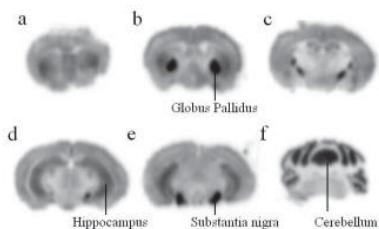
What is the perfect imaging modality ?

- 1. Easy to use
- 2. Portable
- 3. Highly sensitive/good contrast

⇒ Does this exist ?

In reality,
every imaging method/modality
has its strengths and limitations

In this course you will learn to appreciate these
and the reasons behind

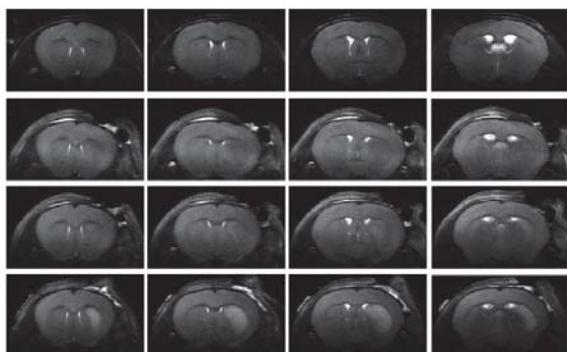


1-12

Fund Biolmag 2025

1-4. Examples

Autoradiography

Autoradiography of a brain slice


Autoradiography of a monkey brain (visual cortex)

1-13

Fund Biolmag 2025

What are the distinct advantages of Bio-imaging compared to tissue analysis ?

Mice subjected to 30 min of stroke assessed using MRI before and 3-24h after

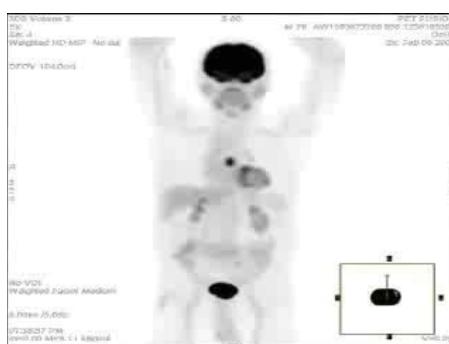
Histology: Tissue is fixed, cut into slices, then subjected to a dye. The resulting sections are then analyzed.

Imaging advantages

relative to histology or invasive tissue analysis

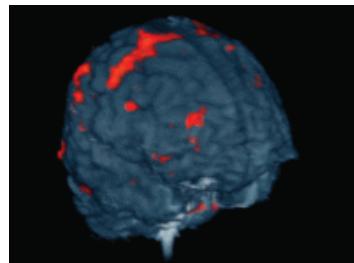
1. Rapid acquisition of the information
2. Non-destructive, i.e. minimal perturbation
3. In situ or in vivo
4. Repetitive (longitudinal) studies possible

1-14


Fund Biolmag 2025

Examples: Biomedical Imaging

http://nobelprize.org/educational_games/physics/imaginglife/narratives.html



3D rendering of tumor for surgical planning (MRI)

Metastasis localization (PET)

fMRI of whole brain activation

1-15

Fund Biolmag 2025