Fundamentals of Bioimaging (Prof. Gruetter) M

Solutions to Problem Set No. 7 4.4.2025

Solution 1: Neuron activation

MR
a) Thea-v before the increase of CBF: C, —C, = e

MR
1.5*F

The a-v after the increase of CBF: C, —C, =

(Metabolic rate (MR) and arterial oxygen concentration (C,) are constants. F is the original flow.)So there is a
33.3% decrease in the a-v during an 50% increase of CBF.

b) Asshown in a), when CBF is increased by 50%, C, will increase. So the concentration of the deoxyhemoglobin
in the veins will decrease.

This decrease in deoxyhemoglobine concentration during neuron activations allows to image activation of
the brain using magnetic resonance (MR). The basic principle of that measurement is to image changes of

deoxhyemoglobine concentrations, which is a paramagnetic compound influencing magnetic fields, hence
the MR signal.

Solution 2: Car exchange

a) Forany time, the system is described by the following differential equations:
dL*(t G*(t L*(t
®_,60_, Lo

dt G L
dG*(t)  G*(t)  L'(t)
dt 4 G v L

Where V is the car flux between Geneva and Lausanne in each direction, G and L are the total amount of cars
in Geneva and Lausanne (assumed to be constant), respectively and G* and L* are the number of red cars in
Geneva and Lausanne, respectively. In the following notations, the explicit time dependency will be omitted.

b) These two linear differential equations can be written as a differential system in the following way:

vV v

d * - - *

dt (é) - VL GV (é)
I G

We need first to find the eigenvalues and eigenvectors of the matrix defining the differential system. The

(55850

From this, we find the two eigenvalues :

characteristic polynomial is:

The corresponding eigenvectors are:
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c)

d)

e)

So, the basis vectors of the solutions of this differential system are:

n=e(()=(0)
y, = elzt( 11) _ e—(5+z)t (_11)

Any solution is a combination of these two vectors. However, a single combination is respecting the initial

conditions, which are L*(0) = 0 and G*(0) = G5 = 50000:

(6)=a(g)+peedr ()
_ (aL +b e_(%'%)t )
aG —b e_(%"%)t
With (éi((%))) = (C?*)' we getforaand b :

So, finally, the solution for the labeling is:

L (t) = Gol (1 - e‘(%*%)t)

G+1L
GoG  GoL (v,
= ¢t
CO=rI e+1°
Fort — oo, we have :
L* () = L = 14286 red cars
G*() = G G = 35714 red
o) = =

) red cars

Let’s name tgggo the time needed to have more than 8000 red cars in Lausanne. The condition is then:

L*(tgoo0) = I

G+
( )t8000 <1— oL 8000)

L

t 1 - 8000 | =147 h

8000 = (V V) n < Gl ) ours
G L

(1 —e (%"%)%000) = 8000

The percentage of red cars in Lausanne and Geneva after a very long time is given by:

L' () G
= = 14.39
L G+L %
G*() Gy
= = 14.39
G G+L 3%

They are equal. The system reaches its equilibrium when they are as many red cars leaving Geneva than

those leaving Lausanne per unit of time. The total amount of cars per minute driving from or to Geneva is

the same. In order to have the equilibrium for the red cars, the probability of finding a red car leaving
Lausanne or Geneva must be the same. This probability is given by the amount of red car over the total
amount of cars in each city. This value is often called fractional enrichment.
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b)
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Solution 3: FDG-PET modeling / (brain) glucose metabolism
K, k,
C C CMR >
S < free T Glc
kz
a) The differential equations describing the evolution of the total concentration in each pool are:

d
chree = K,Cs — (k, + k3)Cfree

d
ECT = kBCfree — CMRg¢

We assume constant total concentrations, which means that the differentials written above are equal to
zero. We have:

K Cs
“rree = Ty + k)
CMRg,c = kSCfree
Which gives:
Kiks
CMRg,. = CS—(kz k)

We can evaluate a and B using the plasma tracer concentration. To estimate the two parameters, we need
two measurements. A good idea is to take the ones with the higher signal (5 and 15 min) (the third one can
be used as verification):

(1
(2)

5

ae B =C;(5min)
_15

ae F =Ci(15min)

10 _ Cs(5min)

—»ebh = ——— —_
C;(15min)
10 C¢(5min)
- —= _—
g~ "\ c;(15min)
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10 ]
- p= l (CS*(Smin) ) =10 min
"\C; (15min)
We can reuse one of the two equations (1) or (2) to extract a:

5
ae B =C;(5min)
> kBq

- a = eBC{(5min) = 2000 —-
ml

The Patlak formula to calculate the metabolic rate of glucose is:

Cs  Cr(T)

e

LC [ c;at

We have the tissue tracer concentration at 40 min, where the contribution of free tracer in the tissue voxel

can be neglected. We need then to calculate the integral of the plasma tracer concentration from 0 to
40min.

CMRGlC =

T 1 _l T _L
f Cs*(t)dt=f ae 3tdt+f ae Pdt
0 0 1
T
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=ae Px=—af

Finally, we find for the given values:

(we assume a tissue density of 1g/ml)

e P

1 t
|

1 1 ro 1 kB
=—ae ﬂ—aﬂ(e B—e ﬁ>=18635 Wmin

pmol

g min

Solution 4: Model Fitting Pitfalls

for T = 40min

This problem intends to make you aware of the pitfalls in experimental practice. In order to derive meaningful
physical parameters (i.e. time constants) from experimental data, one often has to fit to a model function. This
fitting is not trivial and can be error-prone.

In a PET experiment, we want to measure a saturation curve A(1-e™). The experiment takes 50 minutes and we can
measure every 5 minutes, obtaining the following values:

min 5 15 25 35 45
value 0.0472 0.1964 0.4149 0.4259 0.6265
fet [1] 0.0942 0.2592 0.3935 0.5034 0.5934
res [1] 0.0479 0.0628 -0.0214 0.0775 -0.0331
fct [2] 0.0784 0.2262 0.3625 0.4884 0.6046
res [2] 0.0312 0.0297 -0.0524 -0.0625 -0.0219

Now we want to fit to our model function. Consider the following two:
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1— e—0.02t [1]
2. (1 _ e—0.00St) [2]

a) RMSE function 1=5.23 %
RMSE function2 =4.61 %

b)
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c) Measure longer, reduce the measurement noise. Here’s the curve if we measured 180 min:
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