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Solution 1: Neuron activation 

a) The a-v before the increase of CBF: a v
MRC C
F

− =  

The a-v after the increase of CBF: 
1.5*a v

MRC C
F

− =  

(Metabolic rate (MR) and arterial oxygen concentration (Ca) are constants. F is the original flow.)So there is a 
33.3% decrease in the a-v during an 50% increase of CBF. 

b) As shown in a), when CBF is increased by 50%, Cv will increase. So the concentration of the deoxyhemoglobin 
in the veins will decrease. 

This decrease in deoxyhemoglobine concentration during neuron activations allows to image activation of 
the brain using magnetic resonance (MR). The basic principle of that measurement is to image changes of 
deoxhyemoglobine concentrations, which is a paramagnetic compound  influencing magnetic fields, hence 
the MR signal. 

Solution 2: Car exchange 

a) For any time, the system is described by the following differential equations: 
𝑑𝑑𝐿𝐿∗(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑉𝑉
𝐺𝐺∗(𝑡𝑡)
𝐺𝐺

− 𝑉𝑉
𝐿𝐿∗(𝑡𝑡)
𝐿𝐿

𝑑𝑑𝐺𝐺∗(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −𝑉𝑉
𝐺𝐺∗(𝑡𝑡)
𝐺𝐺

+ 𝑉𝑉
𝐿𝐿∗(𝑡𝑡)
𝐿𝐿

 

Where V is the car flux between Geneva and Lausanne in each direction, G and L are the total amount of cars 
in Geneva and Lausanne (assumed to be constant), respectively and G* and L* are the number of red cars in 
Geneva and Lausanne, respectively. In the following notations, the explicit time dependency will be omitted. 
 

b) These two linear differential equations can be written as a differential system in the following way: 

𝑑𝑑
𝑑𝑑𝑑𝑑
�𝐿𝐿

∗

𝐺𝐺∗� = �
−
𝑉𝑉
𝐿𝐿

𝑉𝑉
𝐺𝐺

𝑉𝑉
𝐿𝐿

−
𝑉𝑉
𝐺𝐺

��𝐿𝐿
∗

𝐺𝐺∗� 

We need first to find the eigenvalues and eigenvectors of the matrix defining the differential system. The 
characteristic polynomial is: 

�−
𝑉𝑉
𝐿𝐿
− 𝜆𝜆� �−

𝑉𝑉
𝐺𝐺
− 𝜆𝜆� −

𝑉𝑉2

𝐺𝐺𝐺𝐺
= 0 

From this, we find the two eigenvalues : 
𝜆𝜆1 = 0

𝜆𝜆2 = −�
𝑉𝑉
𝐺𝐺

+
𝑉𝑉
𝐿𝐿
�

 

The corresponding eigenvectors are: 

𝒖𝒖1 = �𝐿𝐿𝐺𝐺�

𝒖𝒖2 = � 1
−1�
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So, the basis vectors of the solutions of this differential system are: 

𝒚𝒚1 = 𝑒𝑒𝜆𝜆1𝑡𝑡 �𝐿𝐿𝐺𝐺� = �𝐿𝐿𝐺𝐺�

𝒚𝒚2 = 𝑒𝑒𝜆𝜆2𝑡𝑡 � 1
−1� = 𝑒𝑒−�

𝑉𝑉
𝐺𝐺+

𝑉𝑉
𝐿𝐿�𝑡𝑡 � 1

−1�
 

Any solution is a combination of these two vectors. However, a single combination is respecting the initial 
conditions, which are 𝐿𝐿∗(0) = 0 and 𝐺𝐺∗(0) = 𝐺𝐺0∗ = 50000: 

�𝐿𝐿
∗

𝐺𝐺∗� = 𝑎𝑎 �𝐿𝐿𝐺𝐺� + 𝑏𝑏 𝑒𝑒−�
𝑉𝑉
𝐺𝐺+

𝑉𝑉
𝐿𝐿�𝑡𝑡 � 1

−1� 

= �𝑎𝑎𝑎𝑎 + 𝑏𝑏 𝑒𝑒−�
𝑉𝑉
𝐺𝐺+

𝑉𝑉
𝐿𝐿�𝑡𝑡  

𝑎𝑎𝑎𝑎 − 𝑏𝑏  𝑒𝑒−�
𝑉𝑉
𝐺𝐺+

𝑉𝑉
𝐿𝐿�𝑡𝑡
� 

With �𝐿𝐿
∗(0)
𝐺𝐺∗(0)� = � 0

𝐺𝐺0∗
�, we get for a and b : 

𝑎𝑎 =
𝐺𝐺0∗

𝐺𝐺 + 𝐿𝐿
 

𝑏𝑏 = −
𝐺𝐺0∗𝐿𝐿
𝐺𝐺 + 𝐿𝐿

 

So, finally, the solution for the labeling is: 

𝐿𝐿∗(𝑡𝑡) =
𝐺𝐺0∗𝐿𝐿
𝐺𝐺 + 𝐿𝐿

�1 − 𝑒𝑒−�
𝑉𝑉
𝐺𝐺+

𝑉𝑉
𝐿𝐿�𝑡𝑡�

𝐺𝐺∗(𝑡𝑡) =
𝐺𝐺0∗𝐺𝐺
𝐺𝐺 + 𝐿𝐿

+
𝐺𝐺0∗𝐿𝐿
𝐺𝐺 + 𝐿𝐿

𝑒𝑒−�
𝑉𝑉
𝐺𝐺+

𝑉𝑉
𝐿𝐿�𝑡𝑡

 

 
c) For 𝑡𝑡 → ∞, we have : 

𝐿𝐿∗(∞) =
𝐺𝐺0∗𝐿𝐿
𝐺𝐺 + 𝐿𝐿

= 14286 𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐺𝐺∗(∞) =
𝐺𝐺0∗𝐺𝐺
𝐺𝐺 + 𝐿𝐿

= 35714 𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 

 
d) Let’s name 𝑡𝑡8000 the time needed to have more than 8000 red cars in Lausanne. The condition is then: 

𝐿𝐿∗(𝑡𝑡8000) =
𝐺𝐺0∗𝐿𝐿
𝐺𝐺 + 𝐿𝐿

�1 − 𝑒𝑒−�
𝑉𝑉
𝐺𝐺+

𝑉𝑉
𝐿𝐿�𝑡𝑡8000� = 8000 

−�
𝑉𝑉
𝐺𝐺

+
𝑉𝑉
𝐿𝐿
� 𝑡𝑡8000 = 𝑙𝑙𝑙𝑙 �1 −

𝐺𝐺 + 𝐿𝐿
𝐺𝐺0∗𝐿𝐿

8000� 

𝑡𝑡8000 =
−1

�𝑉𝑉𝐺𝐺 + 𝑉𝑉
𝐿𝐿�

𝑙𝑙𝑙𝑙 �1 −
𝐺𝐺 + 𝐿𝐿
𝐺𝐺0∗𝐿𝐿

8000� = 147 ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 

 
e) The percentage of red cars in Lausanne and Geneva after a very long time is given by: 

𝐿𝐿∗(∞)
𝐿𝐿

=
𝐺𝐺0∗

𝐺𝐺 + 𝐿𝐿
= 14.3%

𝐺𝐺∗(∞)
𝐺𝐺

=
𝐺𝐺0∗

𝐺𝐺 + 𝐿𝐿
= 14.3%

 

They are equal. The system reaches its equilibrium when they are as many red cars leaving Geneva than 
those leaving Lausanne per unit of time. The total amount of cars per minute driving from or to Geneva is 
the same. In order to have the equilibrium for the red cars, the probability of finding a red car leaving 
Lausanne or Geneva must be the same. This probability is given by the amount of red car over the total 
amount of cars in each city. This value is often called fractional enrichment. 
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Solution 3: FDG-PET modeling / (brain) glucose metabolism 

 

a) The differential equations describing the evolution of the total concentration in each pool are: 
𝑑𝑑
𝑑𝑑𝑑𝑑
𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐾𝐾1𝐶𝐶𝑆𝑆 − (𝑘𝑘2 + 𝑘𝑘3)𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  

𝑑𝑑
𝑑𝑑𝑑𝑑
𝐶𝐶𝑇𝑇 = 𝑘𝑘3𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺  

We assume constant total concentrations, which means that the differentials written above are equal to 
zero. We have: 

𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
𝐾𝐾1𝐶𝐶𝑆𝑆

(𝑘𝑘2 + 𝑘𝑘3)
 

𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑘𝑘3𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  
Which gives: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐶𝐶𝑆𝑆
𝐾𝐾1𝑘𝑘3

(𝑘𝑘2 + 𝑘𝑘3)
 

 
b) We can evaluate α and β using the plasma tracer concentration. To estimate the two parameters, we need 

two measurements. A good idea is to take the ones with the higher signal (5 and 15 min) (the third one can 
be used as verification): 

�
𝛼𝛼 𝑒𝑒−

5
𝛽𝛽 = 𝐶𝐶𝑆𝑆∗(5𝑚𝑚𝑚𝑚𝑚𝑚)          (1)

𝛼𝛼 𝑒𝑒−
15
𝛽𝛽 = 𝐶𝐶𝑆𝑆∗(15𝑚𝑚𝑚𝑚𝑚𝑚)          (2)

 

→ 𝑒𝑒
10
𝛽𝛽 =

𝐶𝐶𝑆𝑆∗(5𝑚𝑚𝑚𝑚𝑚𝑚)
𝐶𝐶𝑆𝑆∗(15𝑚𝑚𝑚𝑚𝑚𝑚) 

→
10
𝛽𝛽

= 𝑙𝑙𝑙𝑙 �
𝐶𝐶𝑆𝑆∗(5𝑚𝑚𝑚𝑚𝑚𝑚)
𝐶𝐶𝑆𝑆∗(15𝑚𝑚𝑚𝑚𝑚𝑚)� 
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→ 𝛽𝛽 =
10

𝑙𝑙𝑙𝑙 � 𝐶𝐶𝑆𝑆
∗(5𝑚𝑚𝑚𝑚𝑚𝑚)

𝐶𝐶𝑆𝑆∗(15𝑚𝑚𝑚𝑚𝑚𝑚)�
= 10 𝑚𝑚𝑚𝑚𝑚𝑚 

We can reuse one of the two equations (1) or (2) to extract α: 

𝛼𝛼 𝑒𝑒−
5
𝛽𝛽 = 𝐶𝐶𝑆𝑆∗(5𝑚𝑚𝑚𝑚𝑚𝑚) 

→ 𝛼𝛼 = 𝑒𝑒
5
𝛽𝛽𝐶𝐶𝑆𝑆∗(5𝑚𝑚𝑚𝑚𝑚𝑚) = 2000

𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚

 

The Patlak formula to calculate the metabolic rate of glucose is: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺𝐺𝐺𝐺𝐺 =
𝐶𝐶𝑆𝑆
𝐿𝐿𝐿𝐿

𝐶𝐶𝑇𝑇∗(𝑇𝑇)

∫ 𝐶𝐶𝑆𝑆∗(𝑡𝑡)𝑑𝑑𝑑𝑑𝑇𝑇
0

 

We have the tissue tracer concentration at 40 min, where the contribution of free tracer in the tissue voxel 
can be neglected. We need then to calculate the integral of the plasma tracer concentration from 0 to 
40min. 

� 𝐶𝐶𝑆𝑆∗(𝑡𝑡)𝑑𝑑𝑑𝑑 = � 𝛼𝛼 𝑒𝑒−
1
𝛽𝛽  𝑡𝑡 𝑑𝑑𝑑𝑑 + � 𝛼𝛼 𝑒𝑒−

𝑡𝑡
𝛽𝛽  𝑑𝑑𝑑𝑑

𝑇𝑇

1

1

0

𝑇𝑇

0
 

= 𝛼𝛼 𝑒𝑒−
1
𝛽𝛽 ∗

1
2
− 𝛼𝛼𝛼𝛼 �𝑒𝑒−

𝑡𝑡
𝛽𝛽�

1

𝑇𝑇

 

=
1
2

 𝛼𝛼 𝑒𝑒−
1
𝛽𝛽 − 𝛼𝛼𝛼𝛼 �𝑒𝑒−

𝑇𝑇
𝛽𝛽 − 𝑒𝑒−

1
𝛽𝛽� = 18635 

𝑘𝑘𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚𝑚𝑚        𝑓𝑓𝑓𝑓𝑓𝑓 𝑇𝑇 = 40𝑚𝑚𝑚𝑚𝑚𝑚 

Finally, we find for the given values: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐺𝐺𝑙𝑙𝑐𝑐 =
𝐶𝐶𝑆𝑆
𝐿𝐿𝐿𝐿

𝐶𝐶𝑇𝑇∗

∫ 𝐶𝐶𝑆𝑆∗(𝑡𝑡)𝑑𝑑𝑑𝑑𝑇𝑇
0

= 𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏  
𝝁𝝁𝝁𝝁𝝁𝝁𝝁𝝁
𝒈𝒈 𝒎𝒎𝒎𝒎𝒎𝒎

 

(we assume a tissue density of 1g/ml) 

Solution 4: Model Fitting Pitfalls 

This problem intends to make you aware of the pitfalls in experimental practice. In order to derive meaningful 
physical parameters (i.e. time constants) from experimental data, one often has to fit to a model function. This 
fitting is not trivial and can be error-prone. 

In a PET experiment, we want to measure a saturation curve A(1-e-λt). The experiment takes 50 minutes and we can 
measure every 5 minutes, obtaining the following values: 

min 5 15 25 35 45 

value 0.0472 0.1964 0.4149 0.4259 0.6265 

fct [1] 0.0942 0.2592 0.3935 0.5034 0.5934 

res [1] 0.0479 0.0628 -0.0214 0.0775 -0.0331 

fct [2] 0.0784 0.2262 0.3625 0.4884 0.6046 

res [2] 0.0312 0.0297 -0.0524 -0.0625 -0.0219 

Now we want to fit to our model function. Consider the following two: 
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1 − 𝑒𝑒−0.02𝑡𝑡  [1] 
2 ∙ (1 − 𝑒𝑒−0.008𝑡𝑡) [2] 

a) RMSE function 1 = 5.23 % 
RMSE function 2 = 4.61 % 

b)  

 
c) Measure longer, reduce the measurement noise. Here’s the curve if we measured 180 min: 
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