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Solution 1 – Crystal Sensors 

The value of μtissue is 0.5 cm-1, μbone is 1 cm-1, and μcrystal is 2 cm-1 

 

 

 

 

 

 

The intensity of signal (light) produced by the crystal is proportional to the attenuation of X-rays within the crystal.  

The intensity of signal coming into the crystal is equal to: 

𝐼𝐼𝑖𝑖𝑖𝑖1 = 𝐼𝐼0𝑒𝑒−0.5∗1𝑒𝑒−0.5∗1 = 𝐼𝐼0𝑒𝑒−0.5∗2 
𝐼𝐼𝑖𝑖𝑖𝑖2 = 𝐼𝐼0𝑒𝑒−0.5∗1𝑒𝑒−1∗1 
𝐼𝐼𝑖𝑖𝑖𝑖3 = 𝐼𝐼0𝑒𝑒−0.5∗1  

The intensity of signal coming out of the crystal is equal to: 

𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜1 = 𝐼𝐼𝑖𝑖𝑖𝑖1𝑒𝑒
−2∗1 

𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜2 = 𝐼𝐼𝑖𝑖𝑖𝑖2𝑒𝑒
−2∗1 

𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜3 = 𝐼𝐼𝑖𝑖𝑖𝑖3𝑒𝑒
−2∗1 

 Therefore the intensity of signal (light) produced by the crystal is given by: 

𝑆𝑆 ∝ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =  𝐼𝐼𝑖𝑖𝑖𝑖 − 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜  

𝑆𝑆1 ∝ 𝐼𝐼𝑖𝑖𝑖𝑖1 − 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜1 = 𝐼𝐼𝑖𝑖𝑖𝑖1 − 𝐼𝐼𝑖𝑖𝑖𝑖1𝑒𝑒
−2∗1 = 𝐼𝐼0𝑒𝑒−0.5∗2(1 − 𝑒𝑒−2∗1) = 0.318 𝐼𝐼0 

𝑆𝑆2 ∝ 𝐼𝐼𝑖𝑖𝑖𝑖2 − 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜2 = 𝐼𝐼𝑖𝑖𝑖𝑖2 − 𝐼𝐼𝑖𝑖𝑖𝑖2𝑒𝑒
−2∗1 = 𝐼𝐼0𝑒𝑒−0.5∗1𝑒𝑒−1∗1(1 − 𝑒𝑒−2∗1) = 0.193 𝐼𝐼0 

𝑆𝑆3 ∝ 𝐼𝐼𝑖𝑖𝑖𝑖3 − 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜3 = 𝐼𝐼𝑖𝑖𝑖𝑖3 − 𝐼𝐼𝑖𝑖𝑖𝑖3𝑒𝑒
−2∗1 = 𝐼𝐼0𝑒𝑒−0.5∗1(1 − 𝑒𝑒−2∗1) = 0.524 𝐼𝐼0 

Solution 2 – Radiation Detection 

With all the conversion efficiency coefficients given for the different physical processes involved in the radiation 
detection, the total efficiency of the detection can be obtained by simply multiplying the efficiencies of the 
subprocesses : 

Nb of scintillation photons produced in the NaI(T1) crystal : 60[𝑘𝑘𝑘𝑘𝑘𝑘] ∗ 30 � 𝛾𝛾
𝑘𝑘𝑘𝑘𝑘𝑘

� = 1800 𝛾𝛾 

Nb of photons absorbed by the photocathode: 1800 𝛾𝛾 ∗ 80% = 1440 𝛾𝛾 
Nb of electrons produced in the photocathode: 1440 𝛾𝛾 ∗ 0.05 = 72 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
Nb of electrons produced after multiplication in the dynodes: 72 ∗ 310 = 𝟒𝟒.𝟐𝟐𝟐𝟐 𝟏𝟏𝟏𝟏𝟔𝟔 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 

 

Solution 3 – SNR Considerations 
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a) Since the SNR is proportional to the square root of the number of counts, the doubled injected dose 
increases the SNR by the square root of 2 to give a value of 71:1. 

b) The activity decay is described by A(t) = A0e−λt. 

λ can be derived from the half-life time with the following relation : 𝜆𝜆 = ln (2)
𝑇𝑇1/2

= 3.21 10−5𝑠𝑠−1 

The number of counts (C) in the experiment is assumed to be proportional to the number of disintegrations 
(D): C = α D where α is the efficiency of the detection. 
The SNR is proportional to the square root of the number of counts. The activity is the infinitesimal number 
of disintegrations per unit of time. Thus, the number of disintegrations during a given period is the integral 
of the activity in this period: 

D1,2 = � A(t)dt =
t2

t1
� A0e−λtdt =
t2

t1

−1
λ

A0�e−λt�
t2
t1

=
A0

λ
�e−λt1 − e−λt2� =

1
λ

(A(t1) − A(t2)) 

 
The detected counts during this period are thereby: 

 C1,2 = α
λ

(A(t1) − A(t2)) = α A0
λ
�e−λt1 − e−λt2� 

 
We know now that the SNR is proportional to the number of counts in the measurement. In the case of the 
30 min scan, we have: 

SNR1 ∝ �C0,30min = �α 
λ

(A(0) − A(30min))  

In the case of the 60 min scan, we have: 

SNR2 ∝ �C0,60min = �α 
λ

(A(0) − A(60min))  

In both cases, λ is the same since the radiotracer is the same and α is also the same in both measurements, 
assuming same detection geometry. Thus, since we are working with proportionalities, we can write:  

SNR1 ∝ �(A(0) − A(30min)) 

SNR2 ∝ �(A(0) − A(60min)) 
A(0) is in both cases 1mCi. 

A(30min) = A(1800 seconds) = A(0)e−λ(t=1800s) = A(0)e−3.21∗10−5(t=1800s) 
Similarly, A(60min) = A(3600 seconds) = A(0)e−λ(t=3600s) = A(0)e−3.21∗10−5(t=3600s) 
We know that the SNR1 = 50: 1. Let’s calculate the ratio between SNR1 and SNR2 to get free from the 
proportionalities: 

SNR2

SNR1
= �

(A(0) − A(60min))
(A(0) − A(30min)) = �

A(0)�1 − e−3.21∗10−5∗3600�
A(0)�1 − e−3.21∗10−5∗1800�

= 1.394 

So, since SNR1 is 50:1, then SNR2 is 1.394 ∗ SNR1 =  69.7: 1  
c) We calculate first the energy of the emitted photon : 

𝐸𝐸 = ℎ𝜈𝜈 = ℎ
𝑐𝑐
𝜆𝜆

= 2.26 𝐽𝐽 = 141 𝑘𝑘𝑘𝑘𝑘𝑘 

In the table at the end of the series 5, we see that the mass attenuation coefficient of iron at this energy is : 
𝜇𝜇
𝜌𝜌� = 1.96 10−1  𝑐𝑐𝑐𝑐

2
𝑔𝑔�  

The linear attenuation coefficient can then be calculated using the density of iron: 
𝜇𝜇 = 𝜇𝜇

𝜌𝜌� ∗ 𝜌𝜌 = 1.54 𝑐𝑐𝑐𝑐−1  
The measured intensity behind 2 cm of iron will be : 

𝐼𝐼1 = 𝐼𝐼0𝑒𝑒−𝜇𝜇𝜇𝜇 = 𝐼𝐼0𝑒𝑒−1.54∗2 = 0.046 𝐼𝐼0 
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We know that the SNR goes with the square root of the number of counts (or intensity). 
For I0 , we had a SNR of 50:1. We have then : 

𝑆𝑆𝑆𝑆𝑆𝑆1
𝑆𝑆𝑆𝑆𝑆𝑆0

=
�𝐼𝐼1
�𝐼𝐼0

=
�0.046 𝐼𝐼0

�𝐼𝐼0
= 0.21 

𝑆𝑆𝑆𝑆𝑆𝑆1 = 0.21 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆0 = 11: 1 

 
Solution 4 – Collimation I 

Sizes are displayed in the figure on the right. The resolution R can be defined 
as the minimum distance at which two point sources can still be separated. 
Two triangles with an angle θ can be defined so that tanθ=d/L=½(R-d)/z, so 
R=(2dz+dL)/L. 

 

 

 

 

 

 

 

 

Solution 5 – Collimation II 

a) The measured sensitivity for  99mTc is 5.88 105/(51.80 103⋅2) = 5.676 counts/(kBq⋅min). The factory 
specification is 202 cnts/(µCi⋅min) = 202/37 cnts/(kBq⋅min) = 5.459 cnts/(kBq⋅min). Here  µCi = 37 kBq is 
used. The measurement thus gives a 4% higher sensitivity. 

b)  The surface of the Petri dish that can be seen from P is circular and has a radius R=0.5 D⋅(H+L)/L if H is the 
distance from the dish to the top of the collimator. The surface is then πR2. Only the activity within this 
surface can be attributed to the number of counts in P. The chance that radiation from this surface goes 
through a surface dA around P is equal to the relative spatial angle (ωr) under which dA is seen: ωr 
=dA/(4π⋅(H+L)2). The number of counts in dA around P is then proportional to πR2⋅ωr = 
π{0.5⋅D.(H+L)/L}2⋅dA/(4π⋅(H+L)2) = 0.0625(D/L)2 dA = 0.0625 (1.45/24.1)2 dA = 2.262 10-4dA. This is 
independent of H. This example can be generalized by looking at a random spatial angle from a random 
point on the crystal. 

c)  The number of crystal parts under the Petri dish is given by: 𝑛𝑛 = 𝑆𝑆

𝜋𝜋𝐷𝐷
2
4

 

The part a of the total activity A in front of each hole is:  𝑎𝑎 = 𝐴𝐴
𝑆𝑆
𝜋𝜋 𝐷𝐷2

4
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The radiation density r seen by each crystal part is given by the spatial angle with which a point on the Petri 
dish “sees” the crystal part: 

𝑟𝑟 = 𝑎𝑎 ∗
𝜋𝜋 𝐷𝐷

2

4
4𝜋𝜋𝐿𝐿2

 

Finally, the total radiation density R seen by the complete crystal is: 

𝑅𝑅 = 𝑛𝑛 ∗ 𝑟𝑟 =
𝑆𝑆

𝜋𝜋 𝐷𝐷
2

4

∗ 𝑎𝑎 ∗
𝜋𝜋 𝐷𝐷

2

4
4𝜋𝜋𝐿𝐿2

=
𝑆𝑆

𝜋𝜋 𝐷𝐷
2

4

∗
𝐴𝐴
𝑆𝑆
𝜋𝜋
𝐷𝐷2

4
∗
𝜋𝜋 𝐷𝐷

2

4
4𝜋𝜋𝐿𝐿2

=  𝐴𝐴 ∗
𝜋𝜋𝐷𝐷

2

4
4𝜋𝜋𝐿𝐿2�

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝜀𝜀

 

𝜀𝜀 = 2.262 ∗ 10−4 

d)  The factory specification says 202 cnts/(µCi⋅min) are counted. An activity of  1 µCi corresponds to 60⋅3.7 104 
disintegrations per minute. The fraction of disintegrations that leads to a count (using 1 Ci = 37 GBq, 1 Bq = 
1/s) is then: 

 
(202 cnts/min) / (3.7⋅104 Bq) = (202 cnts/ 60 s) / (3.7⋅104 s) = 9.099 10-5. 

 

e)  The geometric sensitivity (c.) is higher because (I) in the real measurement not all gammas are detected 
(only photons that undergo photo-absorption are counted, but there is also Compton scattering), (II) we 
neglected the surface of lead which decreases the effective crystal surface, (III) there is attenuation in the 
fluid and the dish, the coating of the collimator and the protection of the NaI crystal, and (IV) 99mTc only 
emits a 140 keV photon in 88% of its disintegrations.  

However, detection of scattered photons also takes place, which will slightly compensate for the effects 
mentioned above. Apparently the effects under (I) to (IV) dominate though. 


